Professor12's picture
Push LunarLander-v2 model
9537354 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d2fe0dac280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d2fe0dac310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d2fe0dac3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d2fe0dac430>", "_build": "<function ActorCriticPolicy._build at 0x7d2fe0dac4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7d2fe0dac550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d2fe0dac5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d2fe0dac670>", "_predict": "<function ActorCriticPolicy._predict at 0x7d2fe0dac700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d2fe0dac790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d2fe0dac820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d2fe0dac8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d2fe0d3d4c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1734119153880577099, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIZgBT44o5i7j/2kOzTxB7rGYty8XcfougAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKYoVIqbz+MAWyUTSIBjAF0lEdAp3dyZc9nsnV9lChoBkdAcRsAJLM9sGgHTVgBaAhHQKd4ZRl6JIl1fZQoaAZHQHMzVTBInShoB02EAWgIR0Cneh12zOX3dX2UKGgGR0BwyqYF7laKaAdNXwFoCEdAp3sSMtK7I3V9lChoBkdAcZWUd7v5QGgHTUwBaAhHQKd7/pBX0Xh1fZQoaAZHQHDC1fVqeshoB00iAWgIR0CnfW2SEDhcdX2UKGgGR0Bs1d6cAimmaAdNPQFoCEdAp35PX05EMXV9lChoBkdAcSqZnctXgmgHTVIBaAhHQKd/O1UlzEJ1fZQoaAZHQHBjocm0E5hoB01yAmgIR0CngaLV4HHFdX2UKGgGR0Bxc3Ls8gZCaAdNQgFoCEdAp4KGBnSOR3V9lChoBkdAb0DkRzzVc2gHTUABaAhHQKeECKG+K0l1fZQoaAZHQEHnjoZAIIFoB0vmaAhHQKeEstOmBOJ1fZQoaAZHQGvyK7Ackt5oB00zAWgIR0Cnhco/qxC6dX2UKGgGR0Bxna7aqS5iaAdNTAFoCEdAp4bydOIqLHV9lChoBkdARG7vy9VWCGgHS+doCEdAp4izqW1MNHV9lChoBkdAbZkQFLWZqmgHTW0BaAhHQKeKIwWWQfZ1fZQoaAZHQEDJrwe/5+JoB0vpaAhHQKeK6gg5imV1fZQoaAZHQG1hf4h2W6doB01OAWgIR0CnjHnoxHoYdX2UKGgGR0BxoqCOFQEZaAdNXwFoCEdAp417gXMyJ3V9lChoBkdAcWgu1WsBAGgHTS0BaAhHQKeOV4pMHr11fZQoaAZHQHJ5rr1M/QloB02BAWgIR0CnkA+dkJ8fdX2UKGgGR0BtWNTJhfBvaAdNSQFoCEdAp5DzTF2mpHV9lChoBkdAb0hFJg9eQmgHTTQBaAhHQKeRyFnIyTJ1fZQoaAZHQGsZmKQ7tAtoB00jAWgIR0CnkzYIjW07dX2UKGgGR0BJjhzmwJPZaAdL8mgIR0Cnk+NdiUgTdX2UKGgGR0BxL4jHGS6laAdNMQFoCEdAp5TBrDZUUHV9lChoBkdAbmy0tyxRmGgHTTYBaAhHQKeVnsF+uvF1fZQoaAZHQHBE9xIatLdoB01AAWgIR0CnlykKmbb2dX2UKGgGR0A8FVLBbfP5aAdL4mgIR0Cnl88HObAldX2UKGgGR0BxfKzF+/g0aAdNLgFoCEdAp5iqAMDwIHV9lChoBkdAckLf29L6DWgHTS0BaAhHQKeZf69CeEt1fZQoaAZHQHGGf420iQloB01DAWgIR0CnmwdUS7GvdX2UKGgGR0BwvnPw/gR9aAdNFgFoCEdAp5vQH5aePXV9lChoBkdARvOYx+KCQWgHS9loCEdAp5xt54W1t3V9lChoBkdAcHDu+h4+r2gHTTMBaAhHQKed40waisZ1fZQoaAZHQG9qdi+cpb5oB02fAWgIR0Cnn0htUGVzdX2UKGgGR0Bwgs/t6X0HaAdNTgFoCEdAp6B0p9ZzP3V9lChoBkdAcNqWZZ0Sy2gHTWwBaAhHQKeiv7/n4fx1fZQoaAZHQHFYeBMBZIRoB00WAWgIR0Cno8fEwWWQdX2UKGgGR0Bw4nFWGRFJaAdNSgFoCEdAp6S1BnjABXV9lChoBkdAQdJY3eenRGgHS9doCEdAp6VM4tHx0HV9lChoBkdAblBXcxj8UGgHTQ8BaAhHQKemtO0svqV1fZQoaAZHQHF0Nx6v7nBoB005AWgIR0Cnp5UVJtiydX2UKGgGR0BxZSrQw9JSaAdNOAFoCEdAp6hyd1+y7nV9lChoBkdAbxeqXnhbW2gHTZABaAhHQKeqKfAbhm51fZQoaAZHQG8vsCT2WY5oB006AWgIR0CnqwkF4cFRdX2UKGgGR0BtuxA4XGfgaAdNKQFoCEdAp6vafYjB23V9lChoBkdAb7182rGR3mgHTRoBaAhHQKetU7Xg9/11fZQoaAZHQHCjFefI0ZZoB00MAWgIR0CnrhE2pAD8dX2UKGgGR0BwR1i6QNkOaAdNPgFoCEdAp674WrOqvXV9lChoBkdAcNT1jiGWU2gHTdoBaAhHQKew6xGDtgN1fZQoaAZHQHBM7VjI7vJoB00yAWgIR0CnscXj+717dX2UKGgGR0A3MY8uBczJaAdLwWgIR0Cnsk+DOC5FdX2UKGgGR0BwPRqk/KQraAdNHAFoCEdAp7McqDsdDXV9lChoBkdAcWcA4GUwBmgHTSwBaAhHQKe0jGPPszF1fZQoaAZHQHGaWPYFqztoB00vAWgIR0CntWb4Ju2rdX2UKGgGR0ByHJJCjUNKaAdNNwFoCEdAp7ZEPMB6r3V9lChoBkdAS8xbKRuCPWgHS+xoCEdAp7eLiGWUr3V9lChoBkdAcHv7cfvF32gHTR0BaAhHQKe4nYfW+XZ1fZQoaAZHQG/Nt+kP+XJoB03kAmgIR0CnvEq6OHWSdX2UKGgGR0BuTho0ygwoaAdNFwFoCEdAp70Qfr8iwHV9lChoBkdAba44EwFkhGgHTV0BaAhHQKe+C2pAD7t1fZQoaAZHQEbrSWJJoTRoB0vVaAhHQKe+obtJFsp1fZQoaAZHQEgyL0Bfa6BoB0vfaAhHQKe/3Fw1ivx1fZQoaAZHQHGZ5a7mMfloB01MAWgIR0CnwMn752yLdX2UKGgGR0BO7GDcuanaaAdL02gIR0CnwWKHoHLSdX2UKGgGR0Bu3ajHn2ZiaAdNDAFoCEdAp8IfHtF8X3V9lChoBkdAcO69zwMH8mgHTVUBaAhHQKfDs2S+xnp1fZQoaAZHQHA0GC7K7qZoB01YAWgIR0CnxKeEIw/QdX2UKGgGR0BwIfFefI0ZaAdNOwFoCEdAp8WMMI/qxHV9lChoBkdAbYyXw9aEBmgHTQoBaAhHQKfG5whGH591fZQoaAZHQG07h7u2JBRoB00mAWgIR0Cnx71tfoicdX2UKGgGR0BtXb7ALy+YaAdNjgFoCEdAp8jYCSzPbHV9lChoBkdAbZn3YcvM82gHTREBaAhHQKfKOLBKtgd1fZQoaAZHQHJuMKXv6TJoB02RAWgIR0Cny1fSYw7DdX2UKGgGR0BxVn8DSw4baAdNEgFoCEdAp8wg6uGKynV9lChoBkdAcZO+yZ8a42gHTZkBaAhHQKfN4qS5iEx1fZQoaAZHQEwBjwx33YdoB0vxaAhHQKfOjGuLaVV1fZQoaAZHQG9Mw3PzFuNoB02UAWgIR0Cnz6k1VHWjdX2UKGgGR0BkLLslb/wRaAdN6ANoCEdAp9QoOWjXWnV9lChoBkdAccXX0XgtOGgHTSABaAhHQKfVQoH9m6J1fZQoaAZHQHBjd4FA3UBoB00gAWgIR0Cn1tczAN5MdX2UKGgGR0Bxh/RE4NqhaAdNaAFoCEdAp9fWBe5WinV9lChoBkdAcpOd+XqqwWgHTR4BaAhHQKfYpX/YJ3R1fZQoaAZHQHD+pV4oqkNoB0v/aAhHQKfZ9jslb/x1fZQoaAZHQHG2lKsdT5xoB00iAWgIR0Cn2seuNgjRdX2UKGgGR0BxVpZGKAJ+aAdNowNoCEdAp94IbGWD6HV9lChoBkdAcPF0q6OHWWgHTWgBaAhHQKffCjY7JXB1fZQoaAZHQHHMvysjmjloB01yAWgIR0Cn4K7ItDlYdX2UKGgGR0BtSD+98JD3aAdNGwFoCEdAp+F3dbgTAXV9lChoBkdAZn4cbzbvgGgHTegDaAhHQKflB/vv0Ad1fZQoaAZHQHDSKiO/+KloB00zAWgIR0Cn5eLPD50sdX2UKGgGR0BxY8cMmWt2aAdN1AFoCEdAp+fK6vq1PXV9lChoBkdAb+aN4qwyI2gHTU4BaAhHQKfozSNOuaF1fZQoaAZHQG/GpLEk0JpoB00RAWgIR0Cn6Zcv24/edX2UKGgGR0BuYT8WKuSwaAdNLAFoCEdAp+q8h5gPVnV9lChoBkdAcFEAPNFBp2gHTY8BaAhHQKftDFo+Ofd1fZQoaAZHQHFp4v38GcFoB00AAmgIR0Cn7xQm3OObdX2UKGgGR0BxV4dhiLEUaAdNCQFoCEdAp/CCa1Cw8nV9lChoBkdAbtpsWweNk2gHTScBaAhHQKfxWElme191ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4300, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}