cecilemacaire commited on
Commit
20df07a
·
verified ·
1 Parent(s): 1e1749e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +125 -3
README.md CHANGED
@@ -1,3 +1,125 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - fr
5
+ metrics:
6
+ - wer
7
+ base_model:
8
+ - LeBenchmark/wav2vec2-FR-7K-large
9
+ pipeline_tag: automatic-speech-recognition
10
+ library_name: speechbrain
11
+ tags:
12
+ - Transformer
13
+ - wav2vec2
14
+ - CTC
15
+ - inference
16
+ ---
17
+
18
+ # asr-wav2vec2-orfeo-fr : LeBenchmark/wav2vec2-FR-7K-large fine-tuned on Orféo dataset
19
+
20
+ <!-- Provide a quick summary of what the model is/does. -->
21
+
22
+ *asr-wav2vec2-orfeo-fr* is an Automatic Speech Recognition model fine-tuned on Orféo with *LeBenchmark/wav2vec2-FR-7K-large* as the pretrained wav2vec2 model.
23
+
24
+ The fine-tuned model achieves the following performance :
25
+ | Release | Valid WER | Test WER | GPUs | Epochs
26
+ |:-------------:|:--------------:|:--------------:| :--------:|:--------:|
27
+ | 2023-09-08 | 23.24 | 23.29 | 4xV100 32GB | 30 |
28
+
29
+ ## 📝 Model Details
30
+
31
+ The ASR system is composed of:
32
+ - the **Tokenizer** (char) that transforms the input text into a sequence of characters ("cat" into ["c", "a", "t"]) and trained with the train transcriptions (train.tsv).
33
+ - the **Acoustic model** (wav2vec2.0 + DNN + CTC greedy decode). The pretrained wav2vec 2.0 model [LeBenchmark/wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large) is combined with two DNN layers and fine-tuned on Orféo.
34
+ The final acoustic representation is given to the CTC greedy decode.
35
+
36
+ We used recordings sampled at 16kHz (single channel).
37
+
38
+ ## 💻 How to transcribe a file with the model
39
+
40
+ ### Install and import speechbrain
41
+
42
+ ```bash
43
+ pip install speechbrain
44
+ ```
45
+
46
+ ```python
47
+ from speechbrain.inference.ASR import EncoderASR
48
+ ```
49
+
50
+ ### Pipeline
51
+
52
+ ```python
53
+ def transcribe(audio, model):
54
+ return model.transcribe_file(audio).lower()
55
+
56
+
57
+ def save_transcript(transcript, audio, output_file):
58
+ with open(output_file, 'w', encoding='utf-8') as file:
59
+ file.write(f"{audio}\t{transcript}\n")
60
+
61
+
62
+ def main():
63
+ model = EncoderASR.from_hparams("Propicto/asr-wav2vec2-orfeo-fr", savedir="tmp/")
64
+ transcript = transcribe(audio, model)
65
+ save_transcript(transcript, audio, "out.txt")
66
+ ```
67
+
68
+ ## ⚙️ Training Details
69
+
70
+ ### Training Data
71
+
72
+ We use train/validation/test splits with an 80/10/10 distribution, corresponding to:
73
+ | | Train | Valid | Test |
74
+ |:-------------:|:-------------:|:--------------:|:--------------:|
75
+ | # utterances | 231,374 | 28,796 | 29,009 |
76
+ | # hours | 147.26 | 18.43 | 13.95 |
77
+
78
+ ### Training Procedure
79
+
80
+ We follow the training procedure provided in the [ASR-CTC speechbrain recipe](https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonVoice/ASR/CTC).
81
+
82
+ #### Training Hyperparameters
83
+
84
+ Refer to the hyperparams.yaml file to get the hyperparameters' information.
85
+
86
+ #### Training time
87
+
88
+ With 4xV100 32GB, the training took ~ 22 hours.
89
+
90
+ #### Libraries
91
+
92
+ [Speechbrain](https://speechbrain.github.io/):
93
+ ```bibtex
94
+ @misc{SB2021,
95
+ author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
96
+ title = {SpeechBrain},
97
+ year = {2021},
98
+ publisher = {GitHub},
99
+ journal = {GitHub repository},
100
+ howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
101
+ }
102
+ ```
103
+
104
+ ## 💡 Information
105
+
106
+ - **Developed by:** Cécile Macaire
107
+ - **Funded by [optional]:** GENCI-IDRIS (Grant 2023-AD011013625R1)
108
+ PROPICTO ANR-20-CE93-0005
109
+ - **Language(s) (NLP):** French
110
+ - **License:** Apache-2.0
111
+ - **Finetuned from model:** LeBenchmark/wav2vec2-FR-7K-large
112
+
113
+ ## 📌 Citation
114
+
115
+ ```bibtex
116
+ @inproceedings{macaire24_interspeech,
117
+ title = {Towards Speech-to-Pictograms Translation},
118
+ author = {Cécile Macaire and Chloé Dion and Didier Schwab and Benjamin Lecouteux and Emmanuelle Esperança-Rodier},
119
+ year = {2024},
120
+ booktitle = {Interspeech 2024},
121
+ pages = {857--861},
122
+ doi = {10.21437/Interspeech.2024-490},
123
+ issn = {2958-1796},
124
+ }
125
+ ```