--- license: apache-2.0 language: - fr library_name: transformers tags: - mbart - commonvoice - pytorch - pictograms - translation metrics: - sacrebleu inference: false --- # t2p-mbart-large-cc25-commonvoice *t2p-mbart-large-cc25-commonvoice* is a text-to-pictograms translation model built by fine-tuning the [mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) model on a dataset of pairs of transcriptions / pictogram token sequence (each token is linked to a pictogram image from [ARASAAC](https://arasaac.org/)). The model is used only for **inference**. ## Training details The model was trained with [Fairseq](https://github.com/facebookresearch/fairseq/blob/main/examples/mbart/README.md). ### Datasets The [Propicto-commonvoice dataset](https://www.ortolang.fr/market/corpora/propicto) is used, which was created from the CommmonVoice v.15.0 corpus. This dataset was built with the method presented in the research paper titled ["A Multimodal French Corpus of Aligned Speech, Text, and Pictogram Sequences for Speech-to-Pictogram Machine Translation](https://aclanthology.org/2024.lrec-main.76/)" at LREC-Coling 2024. The dataset was split into training, validation, and test sets. | **Split** | **Number of utterances** | |:-----------:|:-----------------------:| | train | 527,390 | | valid | 16,124 | | test | 16,120 | ### Parameters This is the arguments in the training pipeline : ```bash fairseq-train $DATA \ --encoder-normalize-before --decoder-normalize-before \ --arch mbart_large --layernorm-embedding \ --task translation_from_pretrained_bart \ --source-lang fr --target-lang frp \ --criterion label_smoothed_cross_entropy --label-smoothing 0.2 \ --optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \ --lr-scheduler polynomial_decay --lr 3e-05 --warmup-updates 2500 --total-num-update 40000 \ --dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \ --max-tokens 1024 --update-freq 2 \ --save-interval 1 --save-interval-updates 5000 --keep-interval-updates 5 \ --seed 222 --log-format simple --log-interval 2 \ --langs $langs \ --ddp-backend legacy_ddp \ --max-epoch 40 \ --save-dir models/checkpoints/mt_mbart_fr_frp_commonvoice_langs \ --keep-best-checkpoints 5 \ --keep-last-epochs 5 ``` ### Evaluation The model was evaluated with sacreBLEU, where we compared the reference pictogram translation with the model hypothesis. ```bash fairseq-generate commonvoice_data/data/ \ --path $model_dir/checkpoint_best.pt \ --task translation_from_pretrained_bart \ --gen-subset test \ -t frp -s fr \ --bpe 'sentencepiece' --sentencepiece-model mbart.cc25.v2/sentence.bpe.model \ --sacrebleu \ --batch-size 32 --langs $langs > out.txt ``` The output file prints the following information : ```txt S-1071 cette collaboration dure trois ans T-1071 le collaboration durer 3 année H-1071 -0.2111533135175705 ▁le ▁collaboration ▁dur er ▁3 ▁année D-1071 -0.2111533135175705 le collaboration durer 3 année P-1071 -0.2783 -0.0584 -0.2309 -0.2009 -0.2145 -0.1210 -0.3330 -0.2523 Generate test with beam=5: BLEU4 = 72.31, 84.3/77.4/72.3/67.7 (BP=0.962, ratio=0.963, syslen=227722, reflen=236545) ``` ### Results Comparison to other translation models : | **Model** | **validation** | **test** | |:-----------:|:-----------------------:|:-----------------------:| | t2p-t5-large-commonvoice | 86.3 | 86.5 | | t2p-nmt-commonvoice | 86.0 | 82.6 | | **t2p-mbart-large-cc25-commonvoice** | 72.3 | 72.3 | | t2p-nllb-200-distilled-600M-commonvoice | **87.4** | **87.6** | ### Environmental Impact Training was performed using a single Nvidia V100 GPU with 32 GB of memory which took around 18 hours in total. ## Using t2p-mbart-large-cc25-commonvoice The scripts to use the *t2p-mbart-large-cc25-commonvoice* model are located in the [speech-to-pictograms GitHub repository](https://github.com/macairececile/speech-to-pictograms). ## Information - **Language(s):** French - **License:** Apache-2.0 - **Developed by:** Cécile Macaire - **Funded by** - GENCI-IDRIS (Grant 2023-AD011013625R1) - PROPICTO ANR-20-CE93-0005 - **Authors** - Cécile Macaire - Chloé Dion - Emmanuelle Esperança-Rodier - Benjamin Lecouteux - Didier Schwab ## Citation If you use this model for your own research work, please cite as follows: ```bibtex @inproceedings{macaire_jeptaln2024, title = {{Approches cascade et de bout-en-bout pour la traduction automatique de la parole en pictogrammes}}, author = {Macaire, C{\'e}cile and Dion, Chlo{\'e} and Schwab, Didier and Lecouteux, Benjamin and Esperan{\c c}a-Rodier, Emmanuelle}, url = {https://inria.hal.science/hal-04623007}, booktitle = {{35{\`e}mes Journ{\'e}es d'{\'E}tudes sur la Parole (JEP 2024) 31{\`e}me Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles (TALN 2024) 26{\`e}me Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RECITAL 2024)}}, address = {Toulouse, France}, publisher = {{ATALA \& AFPC}}, volume = {1 : articles longs et prises de position}, pages = {22-35}, year = {2024} } ```