cecilemacaire
commited on
Commit
•
2557360
1
Parent(s):
f22e32a
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,112 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- fr
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- NMT
|
8 |
+
- commonvoice
|
9 |
+
- pytorch
|
10 |
+
- pictograms
|
11 |
+
- translation
|
12 |
+
metrics:
|
13 |
+
- bleu
|
14 |
+
---
|
15 |
+
|
16 |
+
# t2p-nmt-commonvoice
|
17 |
+
|
18 |
+
*t2p-nmt-commonvoice* is a text-to-pictograms translation model built by training from scratch the [NMT](https://github.com/facebookresearch/fairseq/blob/main/examples/translation/README.md) model on a dataset of pairs of transcriptions / pictogram token sequence (each token is linked to a pictogram image from [ARASAAC](https://arasaac.org/)).
|
19 |
+
The model is used only for **inference**.
|
20 |
+
|
21 |
+
## Training details
|
22 |
+
|
23 |
+
### Datasets
|
24 |
+
|
25 |
+
The [Propicto-commonvoice dataset](https://www.ortolang.fr/market/corpora/propicto) is used, which was created from the CommmonVoice v.15.0 corpus.
|
26 |
+
This dataset was built with the method presented in the research paper titled ["A Multimodal French Corpus of Aligned Speech, Text, and Pictogram Sequences for Speech-to-Pictogram Machine Translation](https://aclanthology.org/2024.lrec-main.76/)" at LREC-Coling 2024. The dataset was split into training, validation, and test sets.
|
27 |
+
| **Split** | **Number of utterances** |
|
28 |
+
|:-----------:|:-----------------------:|
|
29 |
+
| train | 527,390 |
|
30 |
+
| valid | 16,124 |
|
31 |
+
| test | 16,120 |
|
32 |
+
|
33 |
+
### Parameters
|
34 |
+
|
35 |
+
A full list of the parameters is available in the config.json file. This is the arguments in the training pipeline :
|
36 |
+
|
37 |
+
```bash
|
38 |
+
fairseq-train \
|
39 |
+
data-bin/commonvoice.tokenized.fr-frp \
|
40 |
+
--arch transformer_iwslt_de_en --share-decoder-input-output-embed \
|
41 |
+
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
|
42 |
+
--lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
|
43 |
+
--dropout 0.3 --weight-decay 0.0001 \
|
44 |
+
--save-dir exp_commonvoice/checkpoints/nmt_fr_frp_commonvoice \
|
45 |
+
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
|
46 |
+
--max-tokens 4096 \
|
47 |
+
--eval-bleu \
|
48 |
+
--eval-bleu-args '{"beam": 5, "max_len_a": 1.2, "max_len_b": 10}' \
|
49 |
+
--eval-bleu-detok moses \
|
50 |
+
--eval-bleu-remove-bpe \
|
51 |
+
--eval-bleu-print-samples \
|
52 |
+
--best-checkpoint-metric bleu --maximize-best-checkpoint-metric \
|
53 |
+
--max-epoch 40 \
|
54 |
+
--keep-best-checkpoints 5 \
|
55 |
+
--keep-last-epochs 5
|
56 |
+
```
|
57 |
+
|
58 |
+
### Evaluation
|
59 |
+
|
60 |
+
The model was evaluated with BLEU, where we compared the reference pictogram translation with the model hypothesis.
|
61 |
+
|
62 |
+
### Results
|
63 |
+
|
64 |
+
Comparison to other translation models :
|
65 |
+
| **Model** | **validation** | **test** |
|
66 |
+
|:-----------:|:-----------------------:|:-----------------------:|
|
67 |
+
| **t2p-t5-large-commonvoice** | 86.3 | 86.5 |
|
68 |
+
| t2p-nmt-commonvoice | 86.0 | 82.6 |
|
69 |
+
| t2p-mbart-large-cc25-commonvoice | 72.3 | 72.3 |
|
70 |
+
| t2p-nllb-200-distilled-600M-commonvoice | **87.4** | **87.6** |
|
71 |
+
|
72 |
+
### Environmental Impact
|
73 |
+
|
74 |
+
Fine-tuning was performed using a single Nvidia V100 GPU with 32 GB of memory which took around 2 hours in total.
|
75 |
+
|
76 |
+
## Using t2p-nmt-commonvoice model
|
77 |
+
|
78 |
+
The scripts to use the *t2p-nmt-commonvoice* model are located in the [speech-to-pictograms GitHub repository](https://github.com/macairececile/speech-to-pictograms).
|
79 |
+
|
80 |
+
## Information
|
81 |
+
|
82 |
+
- **Language(s):** French
|
83 |
+
- **License:** Apache-2.0
|
84 |
+
- **Developed by:** Cécile Macaire
|
85 |
+
- **Funded by**
|
86 |
+
- GENCI-IDRIS (Grant 2023-AD011013625R1)
|
87 |
+
- PROPICTO ANR-20-CE93-0005
|
88 |
+
- **Authors**
|
89 |
+
- Cécile Macaire
|
90 |
+
- Chloé Dion
|
91 |
+
- Emmanuelle Esperança-Rodier
|
92 |
+
- Benjamin Lecouteux
|
93 |
+
- Didier Schwab
|
94 |
+
|
95 |
+
|
96 |
+
## Citation
|
97 |
+
|
98 |
+
If you use this model for your own research work, please cite as follows:
|
99 |
+
|
100 |
+
```bibtex
|
101 |
+
@inproceedings{macaire_jeptaln2024,
|
102 |
+
title = {{Approches cascade et de bout-en-bout pour la traduction automatique de la parole en pictogrammes}},
|
103 |
+
author = {Macaire, C{\'e}cile and Dion, Chlo{\'e} and Schwab, Didier and Lecouteux, Benjamin and Esperan{\c c}a-Rodier, Emmanuelle},
|
104 |
+
url = {https://inria.hal.science/hal-04623007},
|
105 |
+
booktitle = {{35{\`e}mes Journ{\'e}es d'{\'E}tudes sur la Parole (JEP 2024) 31{\`e}me Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles (TALN 2024) 26{\`e}me Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RECITAL 2024)}},
|
106 |
+
address = {Toulouse, France},
|
107 |
+
publisher = {{ATALA \& AFPC}},
|
108 |
+
volume = {1 : articles longs et prises de position},
|
109 |
+
pages = {22-35},
|
110 |
+
year = {2024}
|
111 |
+
}
|
112 |
+
```
|