cecilemacaire commited on
Commit
2557360
1 Parent(s): f22e32a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -3
README.md CHANGED
@@ -1,3 +1,112 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - fr
5
+ library_name: transformers
6
+ tags:
7
+ - NMT
8
+ - commonvoice
9
+ - pytorch
10
+ - pictograms
11
+ - translation
12
+ metrics:
13
+ - bleu
14
+ ---
15
+
16
+ # t2p-nmt-commonvoice
17
+
18
+ *t2p-nmt-commonvoice* is a text-to-pictograms translation model built by training from scratch the [NMT](https://github.com/facebookresearch/fairseq/blob/main/examples/translation/README.md) model on a dataset of pairs of transcriptions / pictogram token sequence (each token is linked to a pictogram image from [ARASAAC](https://arasaac.org/)).
19
+ The model is used only for **inference**.
20
+
21
+ ## Training details
22
+
23
+ ### Datasets
24
+
25
+ The [Propicto-commonvoice dataset](https://www.ortolang.fr/market/corpora/propicto) is used, which was created from the CommmonVoice v.15.0 corpus.
26
+ This dataset was built with the method presented in the research paper titled ["A Multimodal French Corpus of Aligned Speech, Text, and Pictogram Sequences for Speech-to-Pictogram Machine Translation](https://aclanthology.org/2024.lrec-main.76/)" at LREC-Coling 2024. The dataset was split into training, validation, and test sets.
27
+ | **Split** | **Number of utterances** |
28
+ |:-----------:|:-----------------------:|
29
+ | train | 527,390 |
30
+ | valid | 16,124 |
31
+ | test | 16,120 |
32
+
33
+ ### Parameters
34
+
35
+ A full list of the parameters is available in the config.json file. This is the arguments in the training pipeline :
36
+
37
+ ```bash
38
+ fairseq-train \
39
+ data-bin/commonvoice.tokenized.fr-frp \
40
+ --arch transformer_iwslt_de_en --share-decoder-input-output-embed \
41
+ --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
42
+ --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
43
+ --dropout 0.3 --weight-decay 0.0001 \
44
+ --save-dir exp_commonvoice/checkpoints/nmt_fr_frp_commonvoice \
45
+ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
46
+ --max-tokens 4096 \
47
+ --eval-bleu \
48
+ --eval-bleu-args '{"beam": 5, "max_len_a": 1.2, "max_len_b": 10}' \
49
+ --eval-bleu-detok moses \
50
+ --eval-bleu-remove-bpe \
51
+ --eval-bleu-print-samples \
52
+ --best-checkpoint-metric bleu --maximize-best-checkpoint-metric \
53
+ --max-epoch 40 \
54
+ --keep-best-checkpoints 5 \
55
+ --keep-last-epochs 5
56
+ ```
57
+
58
+ ### Evaluation
59
+
60
+ The model was evaluated with BLEU, where we compared the reference pictogram translation with the model hypothesis.
61
+
62
+ ### Results
63
+
64
+ Comparison to other translation models :
65
+ | **Model** | **validation** | **test** |
66
+ |:-----------:|:-----------------------:|:-----------------------:|
67
+ | **t2p-t5-large-commonvoice** | 86.3 | 86.5 |
68
+ | t2p-nmt-commonvoice | 86.0 | 82.6 |
69
+ | t2p-mbart-large-cc25-commonvoice | 72.3 | 72.3 |
70
+ | t2p-nllb-200-distilled-600M-commonvoice | **87.4** | **87.6** |
71
+
72
+ ### Environmental Impact
73
+
74
+ Fine-tuning was performed using a single Nvidia V100 GPU with 32 GB of memory which took around 2 hours in total.
75
+
76
+ ## Using t2p-nmt-commonvoice model
77
+
78
+ The scripts to use the *t2p-nmt-commonvoice* model are located in the [speech-to-pictograms GitHub repository](https://github.com/macairececile/speech-to-pictograms).
79
+
80
+ ## Information
81
+
82
+ - **Language(s):** French
83
+ - **License:** Apache-2.0
84
+ - **Developed by:** Cécile Macaire
85
+ - **Funded by**
86
+ - GENCI-IDRIS (Grant 2023-AD011013625R1)
87
+ - PROPICTO ANR-20-CE93-0005
88
+ - **Authors**
89
+ - Cécile Macaire
90
+ - Chloé Dion
91
+ - Emmanuelle Esperança-Rodier
92
+ - Benjamin Lecouteux
93
+ - Didier Schwab
94
+
95
+
96
+ ## Citation
97
+
98
+ If you use this model for your own research work, please cite as follows:
99
+
100
+ ```bibtex
101
+ @inproceedings{macaire_jeptaln2024,
102
+ title = {{Approches cascade et de bout-en-bout pour la traduction automatique de la parole en pictogrammes}},
103
+ author = {Macaire, C{\'e}cile and Dion, Chlo{\'e} and Schwab, Didier and Lecouteux, Benjamin and Esperan{\c c}a-Rodier, Emmanuelle},
104
+ url = {https://inria.hal.science/hal-04623007},
105
+ booktitle = {{35{\`e}mes Journ{\'e}es d'{\'E}tudes sur la Parole (JEP 2024) 31{\`e}me Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles (TALN 2024) 26{\`e}me Rencontre des {\'E}tudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RECITAL 2024)}},
106
+ address = {Toulouse, France},
107
+ publisher = {{ATALA \& AFPC}},
108
+ volume = {1 : articles longs et prises de position},
109
+ pages = {22-35},
110
+ year = {2024}
111
+ }
112
+ ```