--- license: apache-2.0 language: - fr library_name: transformers tags: - t5 - orfeo - pytorch - pictograms - translation metrics: - bleu widget: - text: "je mange une pomme" example_title: "A simple sentence" - text: "je ne pense pas à toi" example_title: "Sentence with a negation" - text: "il y a 2 jours, les gendarmes ont vérifié ma licence" example_title: "Sentence with a polylexical term" --- # t2p-t5-large-orféo *t2p-t5-large-orféo* is a text-to-pictograms translation model built by fine-tuning the [t5-large](https://huggingface.co/google-t5/t5-large) model on a dataset of pairs of transcriptions / pictogram token sequence (each token is linked to a pictogram image from [ARASAAC](https://arasaac.org/)). ## Training details ### Datasets ### Parameters ### Evaluation ### Results ### Environmental Impact ## Using t2p-t5-large-orféo model with HuggingFace transformers ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM source_lang = "fr" target_lang = "frp" max_input_length = 128 max_target_length = 128 tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) inputs = tokenizer("Je mange une pomme", return_tensors="pt").input_ids outputs = model.generate(inputs.to("cuda:0"), max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95) pred = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ## Information - **Language(s):** French - **License:** Apache-2.0 - **Developed by:** Cécile Macaire - **Funded by** - GENCI-IDRIS (Grant 2023-AD011013625R1) - PROPICTO ANR-20-CE93-0005 - **Authors** - Cécile Macaire - Chloé Dion - Emmanuelle Esperança-Rodier - Benjamin Lecouteux - Didier Schwab ## Citation If you use this model for your own research work, please cite as follows: ```bibtex ```