--- library_name: pruna-engine thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption ---
PrunaAI
[![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.com/invite/vb6SmA3hxu) to share feedback/suggestions or get help. **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed by using bitsandbytes. - ***How does the model quality change?*** The quality of the model output will slightly degrade. - ***What is the model format?*** We the standard safetensors format. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). ## Usage These are several general ways to use the DBRX models: * DBRX Base and DBRX Instruct are available for download on HuggingFace (see our Quickstart guide below). This is the HF repository for DBRX Base; DBRX Instruct can be found [here](https://huggingface.co/databricks/dbrx-instruct). * The DBRX model repository can be found on GitHub [here](https://github.com/databricks/dbrx). * DBRX Base and DBRX Instruct are available with [Databricks Foundation Model APIs](https://docs.databricks.com/en/machine-learning/foundation-models/index.html) via both *Pay-per-token* and *Provisioned Throughput* endpoints. These are enterprise-ready deployments. * For more information on how to fine-tune using LLM-Foundry, please take a look at our LLM pretraining and fine-tuning [documentation](https://github.com/mosaicml/llm-foundry/blob/main/scripts/train/README.md). ## Quickstart Guide Getting started with DBRX models is easy with the `transformers` library. The model requires ~264GB of RAM and the following packages: ```bash pip install "torch==2.4.0" "transformers>=4.39.2" "tiktoken>=0.6.0" "bitsandbytes" ``` If you'd like to speed up download time, you can use the `hf_transfer` package as described by Huggingface [here](https://huggingface.co/docs/huggingface_hub/en/guides/download#faster-downloads). ```bash pip install hf_transfer export HF_HUB_ENABLE_HF_TRANSFER=1 ``` You will need to request access to this repository to download the model. Once this is granted, [obtain an access token](https://huggingface.co/docs/hub/en/security-tokens) with `read` permission, and supply the token below. ### Run the model on multiple GPUs: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("PrunaAI/dbrx-base-bnb-4bit", trust_remote_code=True, token="hf_YOUR_TOKEN") model = AutoModelForCausalLM.from_pretrained("PrunaAI/dbrx-base-bnb-4bit", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True, token="hf_YOUR_TOKEN") input_text = "Databricks was founded in " input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids, max_new_tokens=100) print(tokenizer.decode(outputs[0])) ``` ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model databricks/dbrx-base before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).