sharpenb commited on
Commit
e473eff
1 Parent(s): f3146b4

Upload folder using huggingface_hub (#2)

Browse files

- fba1ce891af4f27534bbc1bc01a3aae6dbfb5d92aa06043569818aef40bf7b55 (ee19df31f899045e96eb340f417778a07add4a75)
- 97216e8e5e8c9507e4ef8ebc0c603e6cf6c38080e86b632bf9b623f99d9e1c99 (4f440c06fdb7484b8ceaf2fe5d28ef40acccf38d)
- 0409c93fcb8d3d6e8897440850c8cc9549152301c0eb94f8b603749803b76c73 (6307c6ca4cd10a7690d4560ab0538179305574f1)

Files changed (4) hide show
  1. README.md +2 -2
  2. config.json +2 -2
  3. plots.png +0 -0
  4. smash_config.json +1 -1
README.md CHANGED
@@ -34,7 +34,7 @@ tags:
34
 
35
  ## Results
36
 
37
- Detailed efficiency metrics coming soon!
38
 
39
  **Frequently Asked Questions**
40
  - ***How does the compression work?*** The model is compressed with llm-int8.
@@ -61,7 +61,7 @@ You can run the smashed model with these steps:
61
  from transformers import AutoModelForCausalLM, AutoTokenizer
62
 
63
  model = AutoModelForCausalLM.from_pretrained("PrunaAI/meta-math-MetaMath-Mistral-7B-bnb-8bit-smashed",
64
- trust_remote_code=True)
65
  tokenizer = AutoTokenizer.from_pretrained("meta-math/MetaMath-Mistral-7B")
66
 
67
  input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
 
34
 
35
  ## Results
36
 
37
+ ![image info](./plots.png)
38
 
39
  **Frequently Asked Questions**
40
  - ***How does the compression work?*** The model is compressed with llm-int8.
 
61
  from transformers import AutoModelForCausalLM, AutoTokenizer
62
 
63
  model = AutoModelForCausalLM.from_pretrained("PrunaAI/meta-math-MetaMath-Mistral-7B-bnb-8bit-smashed",
64
+ trust_remote_code=True, device_map='auto')
65
  tokenizer = AutoTokenizer.from_pretrained("meta-math/MetaMath-Mistral-7B")
66
 
67
  input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "/tmp/tmpu_urg1yh",
3
  "architectures": [
4
  "MistralForCausalLM"
5
  ],
@@ -18,7 +18,7 @@
18
  "quantization_config": {
19
  "bnb_4bit_compute_dtype": "bfloat16",
20
  "bnb_4bit_quant_type": "fp4",
21
- "bnb_4bit_use_double_quant": true,
22
  "llm_int8_enable_fp32_cpu_offload": false,
23
  "llm_int8_has_fp16_weight": false,
24
  "llm_int8_skip_modules": [
 
1
  {
2
+ "_name_or_path": "/tmp/tmp8mmuzs6_",
3
  "architectures": [
4
  "MistralForCausalLM"
5
  ],
 
18
  "quantization_config": {
19
  "bnb_4bit_compute_dtype": "bfloat16",
20
  "bnb_4bit_quant_type": "fp4",
21
+ "bnb_4bit_use_double_quant": false,
22
  "llm_int8_enable_fp32_cpu_offload": false,
23
  "llm_int8_has_fp16_weight": false,
24
  "llm_int8_skip_modules": [
plots.png ADDED
smash_config.json CHANGED
@@ -8,7 +8,7 @@
8
  "compilers": "None",
9
  "task": "text_text_generation",
10
  "device": "cuda",
11
- "cache_dir": "/ceph/hdd/staff/charpent/.cache/modelsg7wd83pj",
12
  "batch_size": 1,
13
  "model_name": "meta-math/MetaMath-Mistral-7B",
14
  "pruning_ratio": 0.0,
 
8
  "compilers": "None",
9
  "task": "text_text_generation",
10
  "device": "cuda",
11
+ "cache_dir": "/ceph/hdd/staff/charpent/.cache/modelswq_f029c",
12
  "batch_size": 1,
13
  "model_name": "meta-math/MetaMath-Mistral-7B",
14
  "pruning_ratio": 0.0,