File size: 2,885 Bytes
0344f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: TheBloke/OpenHermes-2-Mistral-7B-GPTQ
model-index:
- name: openhermes-mistral-dpo-gptq
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openhermes-mistral-dpo-gptq
This model is a fine-tuned version of [TheBloke/OpenHermes-2-Mistral-7B-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GPTQ) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5935
- Rewards/chosen: 0.0821
- Rewards/rejected: -0.1240
- Rewards/accuracies: 0.875
- Rewards/margins: 0.2061
- Logps/rejected: -193.3659
- Logps/chosen: -263.6407
- Logits/rejected: -2.0827
- Logits/chosen: -2.0590
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6737 | 0.01 | 10 | 0.6325 | 0.1116 | -0.0125 | 0.8125 | 0.1241 | -192.2511 | -263.3457 | -2.0830 | -2.0711 |
| 0.7088 | 0.01 | 20 | 0.5983 | 0.1753 | -0.0556 | 1.0 | 0.2309 | -192.6819 | -262.7091 | -2.0822 | -2.0681 |
| 0.7333 | 0.01 | 30 | 0.5994 | 0.1257 | -0.0786 | 0.875 | 0.2043 | -192.9118 | -263.2048 | -2.0841 | -2.0637 |
| 0.7023 | 0.02 | 40 | 0.5838 | 0.1417 | -0.1014 | 0.8125 | 0.2431 | -193.1394 | -263.0449 | -2.0813 | -2.0600 |
| 0.6754 | 0.03 | 50 | 0.5935 | 0.0821 | -0.1240 | 0.875 | 0.2061 | -193.3659 | -263.6407 | -2.0827 | -2.0590 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2 |