File size: 2,885 Bytes
0344f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: TheBloke/OpenHermes-2-Mistral-7B-GPTQ
model-index:
- name: openhermes-mistral-dpo-gptq
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openhermes-mistral-dpo-gptq

This model is a fine-tuned version of [TheBloke/OpenHermes-2-Mistral-7B-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GPTQ) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5935
- Rewards/chosen: 0.0821
- Rewards/rejected: -0.1240
- Rewards/accuracies: 0.875
- Rewards/margins: 0.2061
- Logps/rejected: -193.3659
- Logps/chosen: -263.6407
- Logits/rejected: -2.0827
- Logits/chosen: -2.0590

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6737        | 0.01  | 10   | 0.6325          | 0.1116         | -0.0125          | 0.8125             | 0.1241          | -192.2511      | -263.3457    | -2.0830         | -2.0711       |
| 0.7088        | 0.01  | 20   | 0.5983          | 0.1753         | -0.0556          | 1.0                | 0.2309          | -192.6819      | -262.7091    | -2.0822         | -2.0681       |
| 0.7333        | 0.01  | 30   | 0.5994          | 0.1257         | -0.0786          | 0.875              | 0.2043          | -192.9118      | -263.2048    | -2.0841         | -2.0637       |
| 0.7023        | 0.02  | 40   | 0.5838          | 0.1417         | -0.1014          | 0.8125             | 0.2431          | -193.1394      | -263.0449    | -2.0813         | -2.0600       |
| 0.6754        | 0.03  | 50   | 0.5935          | 0.0821         | -0.1240          | 0.875              | 0.2061          | -193.3659      | -263.6407    | -2.0827         | -2.0590       |


### Framework versions

- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2