--- license: mit datasets: - Qingyun/lmmrotate-sft-data language: - en base_model: - microsoft/Florence-2-large pipeline_tag: image-text-to-text tags: - aerial - geoscience - remotesensing ---

LMMRotate 🎮: A Simple Aerial Detection Baseline of Multimodal Language Models

Qingyun LiYushi ChenXinya ShuDong ChenXin HeYi YuXue Yang

If you find our work helpful, please consider giving us a ⭐!

- ArXiv Paper: https://arxiv.org/abs/2501.09720 - GitHub Repo: https://github.com/Li-Qingyun/mllm-mmrotate - HuggingFace Page: https://huggingface.co/collections/Qingyun/lmmrotate-6780cabaf49c4e705023b8df This repo hosts all the available checkpoints of Florence-2 trained for aerial detection with LMMRotate in [our paper](https://arxiv.org/abs/2501.09720). LMMRotate is a technical practice to fine-tune Large Multimodal language Models for oriented object detection as in MMRotate and hosts the official implementation of the paper: A Simple Aerial Detection Baseline of Multimodal Language Models. framework See the list of available checkpoint [here](https://huggingface.co/Qingyun/Florence-2-models-lmmrotate/tree/main). The folder is named `{base_model}_vis{vision_input_size}-lang{max_language_input_length}_{dataset_name}-{annotation_version}_b{samples_per_gpu}x{num_gpus}-{num_epoch}e-{note}` For example: > `florence-2-b_vis1024-lang2048_dota1-train-v2_b2x16-100e-slurm-zero2`: > - **base_model**: Microsoft/Florence-2-base > - **vision input size**: 1024 \times 1024 > - **max language input length**: 2048 > - **aerial detection source dataset name**: dota-train (`train` split of `split_ss_dota`) > - **annotation version**: v2 (the users should ignore this) > - **batch size and resources**: 2x16gpus = 32 > - **schedule**: 100 epochs > - **note**: the model is trained on a slurm cluster and accelerated with DeepSpeed ZeRO2 ## Downloading Guide You can download with your web browser on [the file page](https://huggingface.co/datasets/Qingyun/Florence-2-models-lmmrotate/tree/main). We recommand downloading in terminal using huggingface-cli (`pip install --upgrade huggingface_cli`). You can refer to [the document](https://huggingface.co/docs/huggingface_hub/guides/download) for more usages. ``` # Set Huggingface Mirror for Chinese users (if required): export HF_ENDPOINT=https://hf-mirror.com # Download a certain checkpoint: huggingface-cli download Qingyun/Florence-2-models-lmmrotate --repo-type model --local-dir checkpoint/ # If any error (such as network error) interrupts the downloading, you just need to execute the same command, the latest huggingface_hub will resume downloading. ``` ## Detection Performance ![](https://github.com/user-attachments/assets/2f45fad2-bab9-45f3-8b7f-fdd1a16db335) ## Cite LMMRotate paper: ``` @article{li2025lmmrotate, title={A Simple Aerial Detection Baseline of Multimodal Language Models}, author={Li, Qingyun and Chen, Yushi and Shu, Xinya and Chen, Dong and He, Xin and Yu Yi and Yang, Xue }, journal={arXiv preprint arXiv:2501.09720}, year={2025} } ```