aashish1904 commited on
Commit
e14c3d2
β€’
1 Parent(s): 208b1e7

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +49 -5
README.md CHANGED
@@ -12,6 +12,8 @@ tags:
12
  - llama
13
  - trl
14
  - sft
 
 
15
 
16
  ---
17
 
@@ -23,13 +25,55 @@ This is quantized version of [mlabonne/FineLlama-3.1-8B](https://huggingface.co/
23
  # Original Model Card
24
 
25
 
26
- # Uploaded model
27
 
28
- - **Developed by:** mlabonne
29
- - **License:** apache-2.0
30
- - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-bnb-4bit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
33
 
34
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
35
-
 
12
  - llama
13
  - trl
14
  - sft
15
+ datasets:
16
+ - mlabonne/FineTome-100k
17
 
18
  ---
19
 
 
25
  # Original Model Card
26
 
27
 
28
+ # 🍷 FineLlama-3.1-8B
29
 
30
+ ![](https://i.imgur.com/jUDo6ID.jpeg)
31
+
32
+ This is a finetune of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) made for my article ["Fine-tune Llama 3.1 Ultra-Efficiently with Unsloth"](https://huggingface.co/blog/mlabonne/sft-llama3).
33
+
34
+ It was trained on 100k super high-quality samples from the [mlabonne/FineTome-100k](https://huggingface.co/datasets/mlabonne/FineTome-100k) dataset.
35
+
36
+ **Try the demo**: https://huggingface.co/spaces/mlabonne/FineLlama-3.1-8B
37
+
38
+ ## πŸ”Ž Applications
39
+
40
+ This model was made for educational purposes. I recommend using Meta's instruct model for real applications.
41
+
42
+ ## ⚑ Quantization
43
+
44
+ * **GGUF**: https://huggingface.co/mlabonne/FineLlama-3.1-8B-GGUF
45
+
46
+ ## πŸ† Evaluation
47
+
48
+ TBD.
49
+
50
+ ## πŸ’» Usage
51
+
52
+ ```python
53
+ !pip install -qU transformers accelerate
54
+
55
+ from transformers import AutoTokenizer
56
+ import transformers
57
+ import torch
58
+
59
+ model = "mlabonne/FineLlama-3.1-8B"
60
+ messages = [{"role": "user", "content": "What is a large language model?"}]
61
+
62
+ tokenizer = AutoTokenizer.from_pretrained(model)
63
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
64
+ pipeline = transformers.pipeline(
65
+ "text-generation",
66
+ model=model,
67
+ torch_dtype=torch.float16,
68
+ device_map="auto",
69
+ )
70
+
71
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
72
+ print(outputs[0]["generated_text"])
73
+ ```
74
+
75
+ ---
76
 
77
  This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
78
 
79
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)