munish0838 commited on
Commit
662f70f
·
verified ·
1 Parent(s): bc4d99a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ base_model: RLHFlow/pair-preference-model-LLaMA3-8B
4
+ library_name: transformers
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - llama
8
+ - conversational
9
+ ---
10
+
11
+ # pair-preference-model-LLaMA3-8B-GGUF
12
+ This is quantized version of [RLHFlow/pair-preference-model-LLaMA3-8B](https://huggingface.co/RLHFlow/pair-preference-model-LLaMA3-8B) created using llama.cpp
13
+
14
+ # Model Description
15
+ This preference model is trained from [LLaMA3-8B-it](meta-llama/Meta-Llama-3-8B-Instruct) with the training script at [Reward Modeling](https://github.com/RLHFlow/RLHF-Reward-Modeling/tree/pm_dev/pair-pm).
16
+
17
+ The dataset is RLHFlow/pair_preference_model_dataset. It achieves Chat-98.6, Char-hard 65.8, Safety 89.6, and reasoning 94.9 in reward bench.
18
+
19
+ See our paper [RLHF Workflow: From Reward Modeling to Online RLHF](https://arxiv.org/abs/2405.07863) for more details of this model.
20
+
21
+ ## Service the RM
22
+
23
+ Here is an example to use the Preference Model to rank a pair. For n>2 responses, it is recommened to use the tournament style ranking strategy to get the best response so that the complexity is linear in n.
24
+
25
+ ```python
26
+ device = 0
27
+
28
+ model = AutoModelForCausalLM.from_pretrained(script_args.preference_name_or_path,
29
+ torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2").cuda()
30
+ tokenizer = AutoTokenizer.from_pretrained(script_args.preference_name_or_path, use_fast=True)
31
+ tokenizer_plain = AutoTokenizer.from_pretrained(script_args.preference_name_or_path, use_fast=True)
32
+ tokenizer_plain.chat_template = "\n{% for message in messages %}{% if loop.index0 % 2 == 0 %}\n\n<turn> user\n {{ message['content'] }}{% else %}\n\n<turn> assistant\n {{ message['content'] }}{% endif %}{% endfor %}\n\n\n"
33
+
34
+ prompt_template = "[CONTEXT] {context} [RESPONSE A] {response_A} [RESPONSE B] {response_B} \n"
35
+ token_id_A = tokenizer.encode("A", add_special_tokens=False)
36
+ token_id_B = tokenizer.encode("B", add_special_tokens=False)
37
+ assert len(token_id_A) == 1 and len(token_id_B) == 1
38
+ token_id_A = token_id_A[0]
39
+ token_id_B = token_id_B[0]
40
+ temperature = 1.0
41
+
42
+
43
+ model.eval()
44
+ response_chosen = "BBBB"
45
+ response_rejected = "CCCC"
46
+
47
+ ## We can also handle multi-turn conversation.
48
+ instruction = [{"role": "user", "content": ...},
49
+ {"role": "assistant", "content": ...},
50
+ {"role": "user", "content": ...},
51
+ ]
52
+ context = tokenizer_plain.apply_chat_template(instruction, tokenize=False)
53
+ responses = [response_chosen, response_rejected]
54
+ probs_chosen = []
55
+
56
+ for chosen_position in [0, 1]:
57
+ # we swap order to mitigate position bias
58
+ response_A = responses[chosen_position]
59
+ response_B = responses[1 - chosen_position]
60
+ prompt = prompt_template.format(context=context, response_A=response_A, response_B=response_B)
61
+ message = [
62
+ {"role": "user", "content": prompt},
63
+ ]
64
+
65
+ input_ids = tokenizer.encode(tokenizer.apply_chat_template(message, tokenize=False).replace(tokenizer.bos_token, ""), return_tensors='pt', add_special_tokens=False).cuda()
66
+
67
+ with torch.no_grad():
68
+ output = model(input_ids)
69
+ logit_A = output.logits[0, -1, token_id_A].item()
70
+ logit_B = output.logits[0, -1, token_id_B].item()
71
+ # take softmax to get the probability; using numpy
72
+ Z = np.exp(logit_A / temperature) + np.exp(logit_B / temperature)
73
+ logit_chosen = [logit_A, logit_B][chosen_position]
74
+ prob_chosen = np.exp(logit_chosen / temperature) / Z
75
+ probs_chosen.append(prob_chosen)
76
+
77
+ avg_prob_chosen = np.mean(probs_chosen)
78
+ correct = 0.5 if avg_prob_chosen == 0.5 else float(avg_prob_chosen > 0.5)
79
+ print(correct)
80
+ ```