File size: 1,930 Bytes
d0b09cf
 
 
 
 
 
 
 
 
 
 
bcf9121
 
d0b09cf
 
f624dbb
d0b09cf
f624dbb
 
 
d0b09cf
f624dbb
d0b09cf
f624dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
base_model: unsloth/phi-4-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
datasets:
- bespokelabs/Bespoke-Stratos-17k
---

# Phi4 Turn R1Distill LoRA Adapters

## Overview
Hey! These LoRA adapters are trained using different reasoning datasets that utilize **Thought** and **Solution** for reasoning responses.  
I hope these help jumpstart your project! These adapters have been trained on an **A800 GPU** and should provide a solid base for fine-tuning or merging.  

Everything on my page is left **public** for Open Source use.  

## Available LoRA Adapters  
Here are the links to the available adapters as of **January 30, 2025**:  

- [Phi4.Turn.R1Distill-Lora1](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora1)  
- [Phi4.Turn.R1Distill-Lora2](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora2)  
- [Phi4.Turn.R1Distill-Lora3](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora3)  
- [Phi4.Turn.R1Distill-Lora4](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora4)  
- [Phi4.Turn.R1Distill-Lora5](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora5)  
- [Phi4.Turn.R1Distill-Lora6](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora6)  
- [Phi4.Turn.R1Distill-Lora7](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora7)  
- [Phi4.Turn.R1Distill-Lora8](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora8)  

## Usage  
These adapters can be loaded and used with `peft` and `transformers`. Here’s a quick example:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

base_model = "microsoft/Phi-4"
lora_adapter = "Quazim0t0/Phi4.Turn.R1Distill-Lora1"

tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model)
model = PeftModel.from_pretrained(model, lora_adapter)

model.eval()