kalomaze commited on
Commit
4f6e68e
·
verified ·
1 Parent(s): c52b8ab

Upload folder using huggingface_hub

Browse files
Files changed (43) hide show
  1. .gitattributes +1 -0
  2. added_tokens.json +24 -0
  3. config.json +29 -0
  4. generation_config.json +7 -0
  5. global_step330/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  6. global_step330/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  7. global_step330/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  8. global_step330/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  9. global_step330/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  10. global_step330/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  11. global_step330/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  12. global_step330/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  13. global_step330/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  14. global_step330/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  15. global_step330/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  16. global_step330/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  17. global_step330/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  18. global_step330/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  19. global_step330/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  20. global_step330/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  21. latest +1 -0
  22. merges.txt +0 -0
  23. model-00001-of-00004.safetensors +3 -0
  24. model-00002-of-00004.safetensors +3 -0
  25. model-00003-of-00004.safetensors +3 -0
  26. model-00004-of-00004.safetensors +3 -0
  27. model.safetensors.index.json +346 -0
  28. rng_state_0.pth +3 -0
  29. rng_state_1.pth +3 -0
  30. rng_state_2.pth +3 -0
  31. rng_state_3.pth +3 -0
  32. rng_state_4.pth +3 -0
  33. rng_state_5.pth +3 -0
  34. rng_state_6.pth +3 -0
  35. rng_state_7.pth +3 -0
  36. scheduler.pt +3 -0
  37. special_tokens_map.json +31 -0
  38. tokenizer.json +3 -0
  39. tokenizer_config.json +208 -0
  40. trainer_state.json +2343 -0
  41. training_args.bin +3 -0
  42. vocab.json +0 -0
  43. zero_to_fp32.py +760 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/cproject_updated/Qwen2.5-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 3584,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 18944,
12
+ "max_position_embeddings": 131072,
13
+ "max_window_layers": 28,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 28,
16
+ "num_hidden_layers": 28,
17
+ "num_key_value_heads": 4,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.47.1",
25
+ "use_cache": false,
26
+ "use_mrope": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 2048,
6
+ "transformers_version": "4.47.1"
7
+ }
global_step330/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d1c926afd79594d521710eaa7aea1da900d4342c297e54f5f60b876b6af7422
3
+ size 5742198243
global_step330/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a49c519d84b7813744e6526364c111eabddbcee18cb7ab6052b1e02bfc751a1a
3
+ size 5742198243
global_step330/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fd30a7c0d57034150b2b8ff6774d45691cb7bce3db0358ef66f44eb46ab3635
3
+ size 5742198243
global_step330/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:785f0cfd892b0fda76104e79ff48c1dcd82b3935db30f71ee6da28ead87ac3ac
3
+ size 5742198243
global_step330/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a6fd1b8cee51efec999c49d7856a62cee5335dbb3c9bb63598167ac448b6be6
3
+ size 5742198243
global_step330/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09fd18dc70063d1f2e6321b39cc9479bd29c82d35cb8b37971637cb8944785f5
3
+ size 5742198243
global_step330/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4154dac51415a50f8ee10ae9495556b305ad3439325386d810bbc014674da7b
3
+ size 5742198243
global_step330/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:941a5685ce3f12fad2fbe9e5cf5387504f81279c6d0f2ff0cdc45e55d11b7018
3
+ size 5742198243
global_step330/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b0ffd17fe99bb156e6896a953f977b1f3b2faae6a4b46bc9164f4e38720c733
3
+ size 170133
global_step330/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6eef76b686f83478ef44262ef78b5546c340c09968b72827ecbf3bbf4bbae8b1
3
+ size 170133
global_step330/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b5bc2f493aec601401bb59766845072edac0285f03f6fdb4eda36bd2051c587
3
+ size 170133
global_step330/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22584a768b535d93d4f599c2f42e550e21ed63065fe99a4a7eba6be10490f29d
3
+ size 170133
global_step330/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f8794bfbda4bd70a9b9d7d94117f65138dd15b41e1f4ec9ff94200b4e6d2305
3
+ size 170133
global_step330/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5ee15d84ba7475b951f0d707163d39dea929129d874affd06492f7524fd176a
3
+ size 170133
global_step330/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28243f0711075897fbdd70bb0529ad368026feb9cbe01929edda4aedefe595be
3
+ size 170133
global_step330/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb122f7cac6d3b23053f601c52e2b1d54fbca5542a1cc26aa0b46bb85bac6569
3
+ size 170133
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step330
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:526144b8d851bf585327c28dcc93293d8afe6b74b36e59310234ba6d112f98b1
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b02d4f8e3dcc86ad7a673e4617159cc4c36076f313d9a78d94750511a74f88c
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:664d903b356aa24bc62a6d70ddef0bfc4434a660fd8a08f833020e1ac90fdbcc
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a52d1b3652828c54186d1e89082ec07f19a69c0e112dfa76b603a9568d8d8ad1
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:575119a228f98110923ffa2dedcb50e3317251b26054355d015e0b2240d566f2
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0728b56dab7abb5ef8a0d4bae3519c5767c97467bdd886d26bf19cc8599d0312
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4e481d4ef1546694da7337f6bb6c658b866dcb79b85deeb477da0d27ebe851e
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:353c60be37ea56fc992fca446598ceca5d1fd002aa3bd6dbb9ad740e6f47ebb3
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9107fe964ba7205e354084b85210e5a5ea1c98cfd4d38adb9cd3926945dcae4
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69d1bb1abee38b92e53f3f23549b642ce0f1edcdccf7b6129847ac61636e96d5
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afd5516048e20f36959601574e29e40106085a7d3cdc7bf425ce5e84633490e6
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e2c46927fc06939b4c976a01e4b95dec1f8b98ceaea86d31a5d756fc30ff006
3
+ size 15984
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4c372067c2e65a84860f907ed62c07f26ff90e78aba64c04d2d38130db00caa
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,2343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9977324263038548,
5
+ "eval_steps": 500,
6
+ "global_step": 330,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0030234315948601664,
13
+ "grad_norm": 0.6349862119317693,
14
+ "learning_rate": 5.000000000000001e-07,
15
+ "loss": 1.3237,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.006046863189720333,
20
+ "grad_norm": 0.6915137231647266,
21
+ "learning_rate": 1.0000000000000002e-06,
22
+ "loss": 1.3595,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.009070294784580499,
27
+ "grad_norm": 0.623700079073619,
28
+ "learning_rate": 1.5e-06,
29
+ "loss": 1.343,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.012093726379440665,
34
+ "grad_norm": 0.7242880491963869,
35
+ "learning_rate": 2.0000000000000003e-06,
36
+ "loss": 1.3527,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.015117157974300832,
41
+ "grad_norm": 0.6516906859598985,
42
+ "learning_rate": 2.5e-06,
43
+ "loss": 1.3319,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.018140589569160998,
48
+ "grad_norm": 0.5742747957897,
49
+ "learning_rate": 3e-06,
50
+ "loss": 1.342,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.021164021164021163,
55
+ "grad_norm": 0.557815390462239,
56
+ "learning_rate": 3.5e-06,
57
+ "loss": 1.3152,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.02418745275888133,
62
+ "grad_norm": 0.4620246107786041,
63
+ "learning_rate": 4.000000000000001e-06,
64
+ "loss": 1.2963,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.027210884353741496,
69
+ "grad_norm": 0.44763809541022137,
70
+ "learning_rate": 4.5e-06,
71
+ "loss": 1.2895,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.030234315948601664,
76
+ "grad_norm": 0.3416187088663793,
77
+ "learning_rate": 5e-06,
78
+ "loss": 1.2531,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.03325774754346183,
83
+ "grad_norm": 0.31917539621933483,
84
+ "learning_rate": 4.999970800043822e-06,
85
+ "loss": 1.2006,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.036281179138321996,
90
+ "grad_norm": 0.27239571970104204,
91
+ "learning_rate": 4.9998832008573975e-06,
92
+ "loss": 1.1767,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.039304610733182165,
97
+ "grad_norm": 0.32495241030295385,
98
+ "learning_rate": 4.999737204487039e-06,
99
+ "loss": 1.1951,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.042328042328042326,
104
+ "grad_norm": 0.31114523478470957,
105
+ "learning_rate": 4.999532814343219e-06,
106
+ "loss": 1.1474,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.045351473922902494,
111
+ "grad_norm": 0.26573282398874887,
112
+ "learning_rate": 4.999270035200483e-06,
113
+ "loss": 1.1684,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.04837490551776266,
118
+ "grad_norm": 0.27675989125666167,
119
+ "learning_rate": 4.998948873197342e-06,
120
+ "loss": 1.142,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.05139833711262283,
125
+ "grad_norm": 0.2341024474066861,
126
+ "learning_rate": 4.99856933583613e-06,
127
+ "loss": 1.1735,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.05442176870748299,
132
+ "grad_norm": 0.20679018253539813,
133
+ "learning_rate": 4.998131431982826e-06,
134
+ "loss": 1.0896,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.05744520030234316,
139
+ "grad_norm": 0.21159362728987222,
140
+ "learning_rate": 4.9976351718668485e-06,
141
+ "loss": 1.1191,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.06046863189720333,
146
+ "grad_norm": 0.19379985234830382,
147
+ "learning_rate": 4.9970805670808174e-06,
148
+ "loss": 1.1162,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.06349206349206349,
153
+ "grad_norm": 0.2039064731806591,
154
+ "learning_rate": 4.9964676305802794e-06,
155
+ "loss": 1.1155,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.06651549508692366,
160
+ "grad_norm": 0.22133580902562022,
161
+ "learning_rate": 4.995796376683411e-06,
162
+ "loss": 1.0603,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.06953892668178382,
167
+ "grad_norm": 0.24913058306438574,
168
+ "learning_rate": 4.9950668210706795e-06,
169
+ "loss": 1.0854,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.07256235827664399,
174
+ "grad_norm": 0.22434864947712013,
175
+ "learning_rate": 4.994278980784478e-06,
176
+ "loss": 1.0601,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.07558578987150416,
181
+ "grad_norm": 0.18349247230596857,
182
+ "learning_rate": 4.9934328742287285e-06,
183
+ "loss": 1.1042,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.07860922146636433,
188
+ "grad_norm": 0.1585429266996897,
189
+ "learning_rate": 4.992528521168449e-06,
190
+ "loss": 1.0409,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.08163265306122448,
195
+ "grad_norm": 0.16168593725598268,
196
+ "learning_rate": 4.991565942729298e-06,
197
+ "loss": 1.0341,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.08465608465608465,
202
+ "grad_norm": 0.19566832668054185,
203
+ "learning_rate": 4.990545161397073e-06,
204
+ "loss": 1.0689,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.08767951625094482,
209
+ "grad_norm": 0.2499930738278608,
210
+ "learning_rate": 4.989466201017188e-06,
211
+ "loss": 1.0096,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.09070294784580499,
216
+ "grad_norm": 0.2779488624344162,
217
+ "learning_rate": 4.988329086794122e-06,
218
+ "loss": 1.0609,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.09372637944066516,
223
+ "grad_norm": 0.2244846945907016,
224
+ "learning_rate": 4.987133845290823e-06,
225
+ "loss": 1.0366,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.09674981103552532,
230
+ "grad_norm": 0.17994766023159892,
231
+ "learning_rate": 4.98588050442809e-06,
232
+ "loss": 1.0314,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.09977324263038549,
237
+ "grad_norm": 0.22279237142259942,
238
+ "learning_rate": 4.984569093483922e-06,
239
+ "loss": 1.0445,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.10279667422524566,
244
+ "grad_norm": 0.2494526014297992,
245
+ "learning_rate": 4.983199643092833e-06,
246
+ "loss": 1.0344,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.10582010582010581,
251
+ "grad_norm": 0.21434458455232053,
252
+ "learning_rate": 4.981772185245135e-06,
253
+ "loss": 1.0421,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.10884353741496598,
258
+ "grad_norm": 0.18307769428152484,
259
+ "learning_rate": 4.980286753286196e-06,
260
+ "loss": 0.9864,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.11186696900982615,
265
+ "grad_norm": 0.21179293089346243,
266
+ "learning_rate": 4.97874338191565e-06,
267
+ "loss": 0.9842,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.11489040060468632,
272
+ "grad_norm": 0.23379777419897857,
273
+ "learning_rate": 4.977142107186602e-06,
274
+ "loss": 0.9955,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.11791383219954649,
279
+ "grad_norm": 0.20298340697744424,
280
+ "learning_rate": 4.975482966504772e-06,
281
+ "loss": 0.9957,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.12093726379440665,
286
+ "grad_norm": 0.22788321802784506,
287
+ "learning_rate": 4.973765998627628e-06,
288
+ "loss": 0.9909,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.12396069538926682,
293
+ "grad_norm": 0.22447377185154144,
294
+ "learning_rate": 4.97199124366348e-06,
295
+ "loss": 0.9995,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.12698412698412698,
300
+ "grad_norm": 0.19695029744427425,
301
+ "learning_rate": 4.970158743070542e-06,
302
+ "loss": 0.9781,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.13000755857898716,
307
+ "grad_norm": 0.178963231333608,
308
+ "learning_rate": 4.9682685396559625e-06,
309
+ "loss": 0.9779,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.1330309901738473,
314
+ "grad_norm": 0.1873471219218099,
315
+ "learning_rate": 4.966320677574828e-06,
316
+ "loss": 0.9796,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.1360544217687075,
321
+ "grad_norm": 0.22949932135410833,
322
+ "learning_rate": 4.964315202329127e-06,
323
+ "loss": 0.9965,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.13907785336356765,
328
+ "grad_norm": 0.2274052062281532,
329
+ "learning_rate": 4.9622521607666936e-06,
330
+ "loss": 0.9625,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.1421012849584278,
335
+ "grad_norm": 0.1806669455946557,
336
+ "learning_rate": 4.960131601080104e-06,
337
+ "loss": 0.9807,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.14512471655328799,
342
+ "grad_norm": 0.19467061044424094,
343
+ "learning_rate": 4.957953572805558e-06,
344
+ "loss": 0.9615,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.14814814814814814,
349
+ "grad_norm": 0.2731410757300855,
350
+ "learning_rate": 4.9557181268217225e-06,
351
+ "loss": 0.9819,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.15117157974300832,
356
+ "grad_norm": 0.19042718807008738,
357
+ "learning_rate": 4.953425315348534e-06,
358
+ "loss": 0.9547,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.15419501133786848,
363
+ "grad_norm": 0.16643927370098177,
364
+ "learning_rate": 4.9510751919459895e-06,
365
+ "loss": 0.9892,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.15721844293272866,
370
+ "grad_norm": 0.2524323083468839,
371
+ "learning_rate": 4.94866781151289e-06,
372
+ "loss": 1.0181,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.1602418745275888,
377
+ "grad_norm": 0.27545197371921265,
378
+ "learning_rate": 4.946203230285558e-06,
379
+ "loss": 0.9713,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.16326530612244897,
384
+ "grad_norm": 0.17013540947461778,
385
+ "learning_rate": 4.943681505836523e-06,
386
+ "loss": 1.0005,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.16628873771730915,
391
+ "grad_norm": 0.18283369295290966,
392
+ "learning_rate": 4.941102697073181e-06,
393
+ "loss": 0.9183,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.1693121693121693,
398
+ "grad_norm": 0.2189807492467087,
399
+ "learning_rate": 4.938466864236413e-06,
400
+ "loss": 0.9683,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.17233560090702948,
405
+ "grad_norm": 0.2766806847549335,
406
+ "learning_rate": 4.935774068899184e-06,
407
+ "loss": 0.958,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.17535903250188964,
412
+ "grad_norm": 0.2295270706172793,
413
+ "learning_rate": 4.933024373965097e-06,
414
+ "loss": 0.9399,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.17838246409674982,
419
+ "grad_norm": 0.20415845821236425,
420
+ "learning_rate": 4.930217843666929e-06,
421
+ "loss": 0.9677,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.18140589569160998,
426
+ "grad_norm": 0.18705886763979152,
427
+ "learning_rate": 4.927354543565131e-06,
428
+ "loss": 0.9453,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.18442932728647016,
433
+ "grad_norm": 0.25228689054978015,
434
+ "learning_rate": 4.924434540546291e-06,
435
+ "loss": 0.9639,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.1874527588813303,
440
+ "grad_norm": 0.2685784416971121,
441
+ "learning_rate": 4.921457902821578e-06,
442
+ "loss": 0.9561,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.19047619047619047,
447
+ "grad_norm": 0.24674154778238747,
448
+ "learning_rate": 4.918424699925146e-06,
449
+ "loss": 0.952,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.19349962207105065,
454
+ "grad_norm": 0.19937803912058571,
455
+ "learning_rate": 4.915335002712506e-06,
456
+ "loss": 0.9158,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.1965230536659108,
461
+ "grad_norm": 0.21943107617585558,
462
+ "learning_rate": 4.912188883358879e-06,
463
+ "loss": 0.9622,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.19954648526077098,
468
+ "grad_norm": 0.20789781104002328,
469
+ "learning_rate": 4.9089864153575016e-06,
470
+ "loss": 0.9432,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.20256991685563114,
475
+ "grad_norm": 0.21625333461538526,
476
+ "learning_rate": 4.9057276735179134e-06,
477
+ "loss": 0.9136,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.20559334845049132,
482
+ "grad_norm": 0.20774782340550482,
483
+ "learning_rate": 4.902412733964212e-06,
484
+ "loss": 0.9205,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.20861678004535147,
489
+ "grad_norm": 0.23205941698573587,
490
+ "learning_rate": 4.899041674133266e-06,
491
+ "loss": 0.9193,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.21164021164021163,
496
+ "grad_norm": 0.20096610581169602,
497
+ "learning_rate": 4.895614572772916e-06,
498
+ "loss": 0.9332,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.2146636432350718,
503
+ "grad_norm": 0.18733010074274722,
504
+ "learning_rate": 4.89213150994013e-06,
505
+ "loss": 0.9562,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.21768707482993196,
510
+ "grad_norm": 0.2131500035254074,
511
+ "learning_rate": 4.888592566999134e-06,
512
+ "loss": 0.978,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.22071050642479215,
517
+ "grad_norm": 0.25995206465303416,
518
+ "learning_rate": 4.884997826619512e-06,
519
+ "loss": 0.9615,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.2237339380196523,
524
+ "grad_norm": 0.20122899473383501,
525
+ "learning_rate": 4.88134737277427e-06,
526
+ "loss": 0.9223,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.22675736961451248,
531
+ "grad_norm": 0.20082627865414718,
532
+ "learning_rate": 4.8776412907378845e-06,
533
+ "loss": 0.9129,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.22978080120937264,
538
+ "grad_norm": 0.22559902896183986,
539
+ "learning_rate": 4.873879667084301e-06,
540
+ "loss": 0.9331,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.2328042328042328,
545
+ "grad_norm": 0.24097328648057836,
546
+ "learning_rate": 4.870062589684917e-06,
547
+ "loss": 0.9302,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.23582766439909297,
552
+ "grad_norm": 0.2191859905396367,
553
+ "learning_rate": 4.866190147706525e-06,
554
+ "loss": 0.906,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.23885109599395313,
559
+ "grad_norm": 0.1927603541449588,
560
+ "learning_rate": 4.862262431609235e-06,
561
+ "loss": 0.9158,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.2418745275888133,
566
+ "grad_norm": 0.20091846606347583,
567
+ "learning_rate": 4.858279533144358e-06,
568
+ "loss": 0.9241,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.24489795918367346,
573
+ "grad_norm": 0.19776572498006212,
574
+ "learning_rate": 4.854241545352262e-06,
575
+ "loss": 0.908,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.24792139077853365,
580
+ "grad_norm": 0.19142342325998066,
581
+ "learning_rate": 4.8501485625602e-06,
582
+ "loss": 0.9031,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.2509448223733938,
587
+ "grad_norm": 0.255824517812554,
588
+ "learning_rate": 4.846000680380106e-06,
589
+ "loss": 0.896,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.25396825396825395,
594
+ "grad_norm": 0.23838401037023174,
595
+ "learning_rate": 4.841797995706362e-06,
596
+ "loss": 0.9169,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.25699168556311414,
601
+ "grad_norm": 0.20594758086068155,
602
+ "learning_rate": 4.837540606713538e-06,
603
+ "loss": 0.9293,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.2600151171579743,
608
+ "grad_norm": 0.21813818048500913,
609
+ "learning_rate": 4.833228612854088e-06,
610
+ "loss": 0.9194,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.26303854875283444,
615
+ "grad_norm": 0.23454835369326738,
616
+ "learning_rate": 4.828862114856038e-06,
617
+ "loss": 0.9214,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.2660619803476946,
622
+ "grad_norm": 0.2204000662732641,
623
+ "learning_rate": 4.824441214720629e-06,
624
+ "loss": 0.907,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.2690854119425548,
629
+ "grad_norm": 0.2250848297991148,
630
+ "learning_rate": 4.819966015719933e-06,
631
+ "loss": 0.9032,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.272108843537415,
636
+ "grad_norm": 0.2535347696118056,
637
+ "learning_rate": 4.815436622394442e-06,
638
+ "loss": 0.9149,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.2751322751322751,
643
+ "grad_norm": 0.22450012032883543,
644
+ "learning_rate": 4.810853140550625e-06,
645
+ "loss": 0.9055,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.2781557067271353,
650
+ "grad_norm": 0.17386208282106705,
651
+ "learning_rate": 4.806215677258456e-06,
652
+ "loss": 0.8933,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.2811791383219955,
657
+ "grad_norm": 0.19053752177477154,
658
+ "learning_rate": 4.801524340848917e-06,
659
+ "loss": 0.8915,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.2842025699168556,
664
+ "grad_norm": 0.2725320545499666,
665
+ "learning_rate": 4.796779240911461e-06,
666
+ "loss": 0.9251,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.2872260015117158,
671
+ "grad_norm": 0.2386183196781376,
672
+ "learning_rate": 4.791980488291457e-06,
673
+ "loss": 0.8928,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.29024943310657597,
678
+ "grad_norm": 0.1817710733957378,
679
+ "learning_rate": 4.787128195087596e-06,
680
+ "loss": 0.9165,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.29327286470143615,
685
+ "grad_norm": 0.17308690210240787,
686
+ "learning_rate": 4.782222474649279e-06,
687
+ "loss": 0.887,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.2962962962962963,
692
+ "grad_norm": 0.2404735832702819,
693
+ "learning_rate": 4.777263441573963e-06,
694
+ "loss": 0.9012,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.29931972789115646,
699
+ "grad_norm": 0.28779677911496493,
700
+ "learning_rate": 4.772251211704487e-06,
701
+ "loss": 0.9016,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.30234315948601664,
706
+ "grad_norm": 0.15787837522906498,
707
+ "learning_rate": 4.7671859021263635e-06,
708
+ "loss": 0.9051,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.30536659108087677,
713
+ "grad_norm": 0.1575234808015298,
714
+ "learning_rate": 4.762067631165049e-06,
715
+ "loss": 0.8917,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.30839002267573695,
720
+ "grad_norm": 0.17558403452861931,
721
+ "learning_rate": 4.756896518383173e-06,
722
+ "loss": 0.9174,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.31141345427059713,
727
+ "grad_norm": 0.28974349430226604,
728
+ "learning_rate": 4.751672684577747e-06,
729
+ "loss": 0.8929,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.3144368858654573,
734
+ "grad_norm": 0.24411092218088543,
735
+ "learning_rate": 4.746396251777348e-06,
736
+ "loss": 0.8811,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.31746031746031744,
741
+ "grad_norm": 0.16801064806045637,
742
+ "learning_rate": 4.74106734323926e-06,
743
+ "loss": 0.8758,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.3204837490551776,
748
+ "grad_norm": 0.19248014461061233,
749
+ "learning_rate": 4.7356860834466e-06,
750
+ "loss": 0.9103,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.3235071806500378,
755
+ "grad_norm": 0.27209908752286666,
756
+ "learning_rate": 4.730252598105407e-06,
757
+ "loss": 0.8843,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.32653061224489793,
762
+ "grad_norm": 0.2293714752972601,
763
+ "learning_rate": 4.72476701414171e-06,
764
+ "loss": 0.9231,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.3295540438397581,
769
+ "grad_norm": 0.18392800235656956,
770
+ "learning_rate": 4.7192294596985564e-06,
771
+ "loss": 0.8552,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.3325774754346183,
776
+ "grad_norm": 0.1893627518175467,
777
+ "learning_rate": 4.7136400641330245e-06,
778
+ "loss": 0.8811,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.3356009070294785,
783
+ "grad_norm": 0.27532406651290064,
784
+ "learning_rate": 4.7079989580132005e-06,
785
+ "loss": 0.9032,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.3386243386243386,
790
+ "grad_norm": 0.21281637805817608,
791
+ "learning_rate": 4.702306273115122e-06,
792
+ "loss": 0.8731,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.3416477702191988,
797
+ "grad_norm": 0.21685692387167585,
798
+ "learning_rate": 4.696562142419712e-06,
799
+ "loss": 0.8713,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.34467120181405897,
804
+ "grad_norm": 0.27021306476550466,
805
+ "learning_rate": 4.690766700109659e-06,
806
+ "loss": 0.88,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.3476946334089191,
811
+ "grad_norm": 0.23439835580439225,
812
+ "learning_rate": 4.684920081566295e-06,
813
+ "loss": 0.8814,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.3507180650037793,
818
+ "grad_norm": 0.21025681348048122,
819
+ "learning_rate": 4.679022423366424e-06,
820
+ "loss": 0.8535,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.35374149659863946,
825
+ "grad_norm": 0.21924118290065314,
826
+ "learning_rate": 4.673073863279133e-06,
827
+ "loss": 0.8869,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.35676492819349964,
832
+ "grad_norm": 0.2875708297089177,
833
+ "learning_rate": 4.667074540262577e-06,
834
+ "loss": 0.8646,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.35978835978835977,
839
+ "grad_norm": 0.20014737080144987,
840
+ "learning_rate": 4.661024594460733e-06,
841
+ "loss": 0.8718,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.36281179138321995,
846
+ "grad_norm": 0.19119381829230253,
847
+ "learning_rate": 4.654924167200124e-06,
848
+ "loss": 0.8683,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.36583522297808013,
853
+ "grad_norm": 0.2655620248145862,
854
+ "learning_rate": 4.648773400986513e-06,
855
+ "loss": 0.8655,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.3688586545729403,
860
+ "grad_norm": 0.25081787812962225,
861
+ "learning_rate": 4.6425724395015865e-06,
862
+ "loss": 0.8582,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.37188208616780044,
867
+ "grad_norm": 0.2146047325963571,
868
+ "learning_rate": 4.636321427599586e-06,
869
+ "loss": 0.8893,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.3749055177626606,
874
+ "grad_norm": 0.2309806267470169,
875
+ "learning_rate": 4.63002051130393e-06,
876
+ "loss": 0.8486,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.3779289493575208,
881
+ "grad_norm": 0.27736367362748365,
882
+ "learning_rate": 4.623669837803803e-06,
883
+ "loss": 0.8687,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.38095238095238093,
888
+ "grad_norm": 0.2224756513405458,
889
+ "learning_rate": 4.617269555450715e-06,
890
+ "loss": 0.8825,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.3839758125472411,
895
+ "grad_norm": 0.17936830170379472,
896
+ "learning_rate": 4.610819813755038e-06,
897
+ "loss": 0.8546,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.3869992441421013,
902
+ "grad_norm": 0.18923636586433076,
903
+ "learning_rate": 4.604320763382512e-06,
904
+ "loss": 0.87,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.3900226757369615,
909
+ "grad_norm": 0.18724186374787236,
910
+ "learning_rate": 4.597772556150724e-06,
911
+ "loss": 0.8676,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.3930461073318216,
916
+ "grad_norm": 0.2914426770268331,
917
+ "learning_rate": 4.591175345025567e-06,
918
+ "loss": 0.8799,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.3960695389266818,
923
+ "grad_norm": 0.23506817928141502,
924
+ "learning_rate": 4.584529284117662e-06,
925
+ "loss": 0.8895,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.39909297052154197,
930
+ "grad_norm": 0.19429487340998514,
931
+ "learning_rate": 4.5778345286787575e-06,
932
+ "loss": 0.8272,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.4021164021164021,
937
+ "grad_norm": 0.24906142354962724,
938
+ "learning_rate": 4.5710912350981066e-06,
939
+ "loss": 0.8647,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.4051398337112623,
944
+ "grad_norm": 0.25795927507557026,
945
+ "learning_rate": 4.56429956089881e-06,
946
+ "loss": 0.8653,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.40816326530612246,
951
+ "grad_norm": 0.18224019982541997,
952
+ "learning_rate": 4.5574596647341414e-06,
953
+ "loss": 0.8555,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.41118669690098264,
958
+ "grad_norm": 0.20473182208619398,
959
+ "learning_rate": 4.550571706383833e-06,
960
+ "loss": 0.8664,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.41421012849584277,
965
+ "grad_norm": 0.22168708013084754,
966
+ "learning_rate": 4.543635846750351e-06,
967
+ "loss": 0.8515,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.41723356009070295,
972
+ "grad_norm": 0.21632029243557258,
973
+ "learning_rate": 4.536652247855133e-06,
974
+ "loss": 0.8619,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.42025699168556313,
979
+ "grad_norm": 0.1920055931208493,
980
+ "learning_rate": 4.529621072834805e-06,
981
+ "loss": 0.8566,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.42328042328042326,
986
+ "grad_norm": 0.1880614895437287,
987
+ "learning_rate": 4.522542485937369e-06,
988
+ "loss": 0.8243,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.42630385487528344,
993
+ "grad_norm": 0.25600769805101486,
994
+ "learning_rate": 4.515416652518366e-06,
995
+ "loss": 0.8551,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.4293272864701436,
1000
+ "grad_norm": 0.2034314626277561,
1001
+ "learning_rate": 4.508243739037016e-06,
1002
+ "loss": 0.8603,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.4323507180650038,
1007
+ "grad_norm": 0.23508415301120186,
1008
+ "learning_rate": 4.501023913052326e-06,
1009
+ "loss": 0.8826,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.43537414965986393,
1014
+ "grad_norm": 0.2775448226015208,
1015
+ "learning_rate": 4.4937573432191766e-06,
1016
+ "loss": 0.8764,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.4383975812547241,
1021
+ "grad_norm": 0.24618223106362153,
1022
+ "learning_rate": 4.486444199284386e-06,
1023
+ "loss": 0.8973,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.4414210128495843,
1028
+ "grad_norm": 0.23424108283949535,
1029
+ "learning_rate": 4.47908465208274e-06,
1030
+ "loss": 0.8736,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.4444444444444444,
1035
+ "grad_norm": 0.22742376996470443,
1036
+ "learning_rate": 4.471678873533002e-06,
1037
+ "loss": 0.8581,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.4474678760393046,
1042
+ "grad_norm": 0.24653243269473768,
1043
+ "learning_rate": 4.464227036633901e-06,
1044
+ "loss": 0.8489,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.4504913076341648,
1049
+ "grad_norm": 0.2408835452466121,
1050
+ "learning_rate": 4.456729315460084e-06,
1051
+ "loss": 0.8637,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.45351473922902497,
1056
+ "grad_norm": 0.20149761505503935,
1057
+ "learning_rate": 4.449185885158056e-06,
1058
+ "loss": 0.8671,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.4565381708238851,
1063
+ "grad_norm": 0.19127590785183332,
1064
+ "learning_rate": 4.4415969219420846e-06,
1065
+ "loss": 0.8792,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.4595616024187453,
1070
+ "grad_norm": 0.22390628054581238,
1071
+ "learning_rate": 4.433962603090083e-06,
1072
+ "loss": 0.8468,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.46258503401360546,
1077
+ "grad_norm": 0.2957253215613366,
1078
+ "learning_rate": 4.426283106939474e-06,
1079
+ "loss": 0.8268,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.4656084656084656,
1084
+ "grad_norm": 0.20506648122584112,
1085
+ "learning_rate": 4.418558612883016e-06,
1086
+ "loss": 0.8772,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.46863189720332576,
1091
+ "grad_norm": 0.18636265474604682,
1092
+ "learning_rate": 4.410789301364621e-06,
1093
+ "loss": 0.858,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.47165532879818595,
1098
+ "grad_norm": 0.2674232446173923,
1099
+ "learning_rate": 4.402975353875134e-06,
1100
+ "loss": 0.8683,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.47467876039304613,
1105
+ "grad_norm": 0.2747499333038218,
1106
+ "learning_rate": 4.3951169529480934e-06,
1107
+ "loss": 0.8439,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.47770219198790626,
1112
+ "grad_norm": 0.18463338955505504,
1113
+ "learning_rate": 4.3872142821554695e-06,
1114
+ "loss": 0.8321,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.48072562358276644,
1119
+ "grad_norm": 0.19683973897761153,
1120
+ "learning_rate": 4.379267526103374e-06,
1121
+ "loss": 0.8378,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.4837490551776266,
1126
+ "grad_norm": 0.23093724944543254,
1127
+ "learning_rate": 4.3712768704277535e-06,
1128
+ "loss": 0.8342,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.48677248677248675,
1133
+ "grad_norm": 0.25457828536678356,
1134
+ "learning_rate": 4.36324250179004e-06,
1135
+ "loss": 0.8438,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.4897959183673469,
1140
+ "grad_norm": 0.2341347444247441,
1141
+ "learning_rate": 4.355164607872806e-06,
1142
+ "loss": 0.874,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.4928193499622071,
1147
+ "grad_norm": 0.19832386653308293,
1148
+ "learning_rate": 4.347043377375369e-06,
1149
+ "loss": 0.8871,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.4958427815570673,
1154
+ "grad_norm": 0.23548674821464477,
1155
+ "learning_rate": 4.338879000009389e-06,
1156
+ "loss": 0.8571,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.4988662131519274,
1161
+ "grad_norm": 0.2564635876122362,
1162
+ "learning_rate": 4.3306716664944345e-06,
1163
+ "loss": 0.8441,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.5018896447467877,
1168
+ "grad_norm": 0.22937827244764553,
1169
+ "learning_rate": 4.322421568553529e-06,
1170
+ "loss": 0.8435,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.5049130763416477,
1175
+ "grad_norm": 0.20546938114609037,
1176
+ "learning_rate": 4.314128898908672e-06,
1177
+ "loss": 0.8427,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.5079365079365079,
1182
+ "grad_norm": 0.24461216551872245,
1183
+ "learning_rate": 4.305793851276335e-06,
1184
+ "loss": 0.8488,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.5109599395313681,
1189
+ "grad_norm": 0.2280451372713774,
1190
+ "learning_rate": 4.297416620362939e-06,
1191
+ "loss": 0.8493,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.5139833711262283,
1196
+ "grad_norm": 0.2202142714476725,
1197
+ "learning_rate": 4.288997401860303e-06,
1198
+ "loss": 0.8514,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.5170068027210885,
1203
+ "grad_norm": 0.2426775141297586,
1204
+ "learning_rate": 4.280536392441078e-06,
1205
+ "loss": 0.8501,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.5200302343159486,
1210
+ "grad_norm": 0.1998543423805206,
1211
+ "learning_rate": 4.272033789754146e-06,
1212
+ "loss": 0.8313,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.5230536659108088,
1217
+ "grad_norm": 0.1847895892138973,
1218
+ "learning_rate": 4.263489792420008e-06,
1219
+ "loss": 0.8195,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.5260770975056689,
1224
+ "grad_norm": 0.23817124539909545,
1225
+ "learning_rate": 4.254904600026143e-06,
1226
+ "loss": 0.8581,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.5291005291005291,
1231
+ "grad_norm": 0.2575742303999011,
1232
+ "learning_rate": 4.246278413122344e-06,
1233
+ "loss": 0.8511,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.5321239606953893,
1238
+ "grad_norm": 0.22609359204972732,
1239
+ "learning_rate": 4.2376114332160325e-06,
1240
+ "loss": 0.843,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.5351473922902494,
1245
+ "grad_norm": 0.22696322689045012,
1246
+ "learning_rate": 4.2289038627675585e-06,
1247
+ "loss": 0.833,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.5381708238851096,
1252
+ "grad_norm": 0.2083064134180325,
1253
+ "learning_rate": 4.220155905185461e-06,
1254
+ "loss": 0.8707,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.5411942554799698,
1259
+ "grad_norm": 0.2188998951871127,
1260
+ "learning_rate": 4.211367764821722e-06,
1261
+ "loss": 0.8756,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.54421768707483,
1266
+ "grad_norm": 0.21174182945781866,
1267
+ "learning_rate": 4.202539646966993e-06,
1268
+ "loss": 0.8431,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.54724111866969,
1273
+ "grad_norm": 0.26921219919236117,
1274
+ "learning_rate": 4.193671757845797e-06,
1275
+ "loss": 0.8346,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.5502645502645502,
1280
+ "grad_norm": 0.2410488610748255,
1281
+ "learning_rate": 4.184764304611715e-06,
1282
+ "loss": 0.8323,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.5532879818594104,
1287
+ "grad_norm": 0.19188924232191892,
1288
+ "learning_rate": 4.17581749534254e-06,
1289
+ "loss": 0.8275,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.5563114134542706,
1294
+ "grad_norm": 0.24965929389660024,
1295
+ "learning_rate": 4.166831539035423e-06,
1296
+ "loss": 0.8558,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.5593348450491308,
1301
+ "grad_norm": 0.2715497253670651,
1302
+ "learning_rate": 4.1578066456019885e-06,
1303
+ "loss": 0.8667,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.562358276643991,
1308
+ "grad_norm": 0.19906288449082996,
1309
+ "learning_rate": 4.148743025863432e-06,
1310
+ "loss": 0.8535,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.5653817082388511,
1315
+ "grad_norm": 0.22076525732705374,
1316
+ "learning_rate": 4.139640891545591e-06,
1317
+ "loss": 0.8296,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.5684051398337112,
1322
+ "grad_norm": 0.25483531753570576,
1323
+ "learning_rate": 4.130500455274005e-06,
1324
+ "loss": 0.8355,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.5714285714285714,
1329
+ "grad_norm": 0.24421069561222894,
1330
+ "learning_rate": 4.121321930568946e-06,
1331
+ "loss": 0.8357,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.5744520030234316,
1336
+ "grad_norm": 0.20339394657166124,
1337
+ "learning_rate": 4.112105531840427e-06,
1338
+ "loss": 0.8357,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.5774754346182918,
1343
+ "grad_norm": 0.24233770822338466,
1344
+ "learning_rate": 4.1028514743832e-06,
1345
+ "loss": 0.8313,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.5804988662131519,
1350
+ "grad_norm": 0.2829777666494022,
1351
+ "learning_rate": 4.093559974371725e-06,
1352
+ "loss": 0.8378,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.5835222978080121,
1357
+ "grad_norm": 0.1699407087734907,
1358
+ "learning_rate": 4.084231248855113e-06,
1359
+ "loss": 0.8208,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.5865457294028723,
1364
+ "grad_norm": 0.17498689950665328,
1365
+ "learning_rate": 4.074865515752068e-06,
1366
+ "loss": 0.838,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.5895691609977324,
1371
+ "grad_norm": 0.2475691965670073,
1372
+ "learning_rate": 4.065462993845785e-06,
1373
+ "loss": 0.849,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.5925925925925926,
1378
+ "grad_norm": 0.24997313540826083,
1379
+ "learning_rate": 4.056023902778846e-06,
1380
+ "loss": 0.8229,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.5956160241874527,
1385
+ "grad_norm": 0.19976933217581305,
1386
+ "learning_rate": 4.046548463048089e-06,
1387
+ "loss": 0.8301,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.5986394557823129,
1392
+ "grad_norm": 0.24028559185538167,
1393
+ "learning_rate": 4.037036895999453e-06,
1394
+ "loss": 0.8462,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.6016628873771731,
1399
+ "grad_norm": 0.27335949880058813,
1400
+ "learning_rate": 4.0274894238228115e-06,
1401
+ "loss": 0.8364,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.6046863189720333,
1406
+ "grad_norm": 0.18909543268493909,
1407
+ "learning_rate": 4.017906269546778e-06,
1408
+ "loss": 0.8083,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.6077097505668935,
1413
+ "grad_norm": 0.20724602824279856,
1414
+ "learning_rate": 4.0082876570335025e-06,
1415
+ "loss": 0.8193,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.6107331821617535,
1420
+ "grad_norm": 0.26651899455610345,
1421
+ "learning_rate": 3.9986338109734354e-06,
1422
+ "loss": 0.8299,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.6137566137566137,
1427
+ "grad_norm": 0.20515478118259406,
1428
+ "learning_rate": 3.988944956880082e-06,
1429
+ "loss": 0.8323,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.6167800453514739,
1434
+ "grad_norm": 0.1823781343576012,
1435
+ "learning_rate": 3.979221321084734e-06,
1436
+ "loss": 0.8224,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.6198034769463341,
1441
+ "grad_norm": 0.19460227890197035,
1442
+ "learning_rate": 3.969463130731183e-06,
1443
+ "loss": 0.8243,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.6228269085411943,
1448
+ "grad_norm": 0.25256274653870814,
1449
+ "learning_rate": 3.959670613770414e-06,
1450
+ "loss": 0.834,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.6258503401360545,
1455
+ "grad_norm": 0.2099371278262912,
1456
+ "learning_rate": 3.949843998955279e-06,
1457
+ "loss": 0.8001,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.6288737717309146,
1462
+ "grad_norm": 0.18831071399800087,
1463
+ "learning_rate": 3.939983515835157e-06,
1464
+ "loss": 0.846,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.6318972033257747,
1469
+ "grad_norm": 0.20326222391630303,
1470
+ "learning_rate": 3.9300893947505865e-06,
1471
+ "loss": 0.813,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.6349206349206349,
1476
+ "grad_norm": 0.28946931059014386,
1477
+ "learning_rate": 3.92016186682789e-06,
1478
+ "loss": 0.8252,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.6379440665154951,
1483
+ "grad_norm": 0.20146394091804065,
1484
+ "learning_rate": 3.9102011639737715e-06,
1485
+ "loss": 0.8273,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.6409674981103552,
1490
+ "grad_norm": 0.16554710439809656,
1491
+ "learning_rate": 3.900207518869901e-06,
1492
+ "loss": 0.8294,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.6439909297052154,
1497
+ "grad_norm": 0.19154551239872575,
1498
+ "learning_rate": 3.890181164967476e-06,
1499
+ "loss": 0.8331,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.6470143613000756,
1504
+ "grad_norm": 0.2863695398034112,
1505
+ "learning_rate": 3.880122336481774e-06,
1506
+ "loss": 0.8156,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.6500377928949358,
1511
+ "grad_norm": 0.21052777788511692,
1512
+ "learning_rate": 3.870031268386676e-06,
1513
+ "loss": 0.7963,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.6530612244897959,
1518
+ "grad_norm": 0.1566104119157067,
1519
+ "learning_rate": 3.859908196409177e-06,
1520
+ "loss": 0.8247,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.656084656084656,
1525
+ "grad_norm": 0.17376065755010325,
1526
+ "learning_rate": 3.849753357023885e-06,
1527
+ "loss": 0.8412,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.6591080876795162,
1532
+ "grad_norm": 0.2775570184417396,
1533
+ "learning_rate": 3.839566987447492e-06,
1534
+ "loss": 0.8444,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.6621315192743764,
1539
+ "grad_norm": 0.3002446727716999,
1540
+ "learning_rate": 3.829349325633233e-06,
1541
+ "loss": 0.8353,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.6651549508692366,
1546
+ "grad_norm": 0.17501583537193782,
1547
+ "learning_rate": 3.819100610265332e-06,
1548
+ "loss": 0.8406,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.6681783824640968,
1553
+ "grad_norm": 0.16018543435725524,
1554
+ "learning_rate": 3.8088210807534185e-06,
1555
+ "loss": 0.8143,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.671201814058957,
1560
+ "grad_norm": 0.26632239617155334,
1561
+ "learning_rate": 3.7985109772269435e-06,
1562
+ "loss": 0.8099,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.674225245653817,
1567
+ "grad_norm": 0.2502372675648549,
1568
+ "learning_rate": 3.7881705405295623e-06,
1569
+ "loss": 0.828,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.6772486772486772,
1574
+ "grad_norm": 0.21825897588135384,
1575
+ "learning_rate": 3.777800012213514e-06,
1576
+ "loss": 0.8246,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.6802721088435374,
1581
+ "grad_norm": 0.27497686942905814,
1582
+ "learning_rate": 3.767399634533976e-06,
1583
+ "loss": 0.8131,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.6832955404383976,
1588
+ "grad_norm": 0.22856597196018685,
1589
+ "learning_rate": 3.756969650443408e-06,
1590
+ "loss": 0.8098,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.6863189720332578,
1595
+ "grad_norm": 0.21059170940590144,
1596
+ "learning_rate": 3.7465103035858718e-06,
1597
+ "loss": 0.8187,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.6893424036281179,
1602
+ "grad_norm": 0.2289160214691356,
1603
+ "learning_rate": 3.7360218382913426e-06,
1604
+ "loss": 0.8265,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.6923658352229781,
1609
+ "grad_norm": 0.22771294742249917,
1610
+ "learning_rate": 3.7255044995700024e-06,
1611
+ "loss": 0.8063,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.6953892668178382,
1616
+ "grad_norm": 0.220912987205476,
1617
+ "learning_rate": 3.714958533106515e-06,
1618
+ "loss": 0.8141,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.6984126984126984,
1623
+ "grad_norm": 0.2331093248404988,
1624
+ "learning_rate": 3.7043841852542884e-06,
1625
+ "loss": 0.7967,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.7014361300075586,
1630
+ "grad_norm": 0.24044315675315245,
1631
+ "learning_rate": 3.6937817030297164e-06,
1632
+ "loss": 0.8202,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.7044595616024187,
1637
+ "grad_norm": 0.17808063026487772,
1638
+ "learning_rate": 3.6831513341064128e-06,
1639
+ "loss": 0.824,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.7074829931972789,
1644
+ "grad_norm": 0.1686282272216412,
1645
+ "learning_rate": 3.672493326809422e-06,
1646
+ "loss": 0.8265,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.7105064247921391,
1651
+ "grad_norm": 0.2620354561369418,
1652
+ "learning_rate": 3.661807930109422e-06,
1653
+ "loss": 0.8156,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.7135298563869993,
1658
+ "grad_norm": 0.325482330440253,
1659
+ "learning_rate": 3.651095393616904e-06,
1660
+ "loss": 0.828,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.7165532879818595,
1665
+ "grad_norm": 0.15080114640909387,
1666
+ "learning_rate": 3.6403559675763457e-06,
1667
+ "loss": 0.7995,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.7195767195767195,
1672
+ "grad_norm": 0.14745127928311055,
1673
+ "learning_rate": 3.629589902860363e-06,
1674
+ "loss": 0.8087,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.7226001511715797,
1679
+ "grad_norm": 0.2799111726866219,
1680
+ "learning_rate": 3.6187974509638496e-06,
1681
+ "loss": 0.8176,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.7256235827664399,
1686
+ "grad_norm": 0.2502547915239206,
1687
+ "learning_rate": 3.607978863998104e-06,
1688
+ "loss": 0.8064,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.7286470143613001,
1693
+ "grad_norm": 0.13777657856560566,
1694
+ "learning_rate": 3.5971343946849374e-06,
1695
+ "loss": 0.8178,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.7316704459561603,
1700
+ "grad_norm": 0.1385328283480905,
1701
+ "learning_rate": 3.586264296350775e-06,
1702
+ "loss": 0.8027,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.7346938775510204,
1707
+ "grad_norm": 0.17341004642304678,
1708
+ "learning_rate": 3.57536882292073e-06,
1709
+ "loss": 0.8096,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.7377173091458806,
1714
+ "grad_norm": 0.3691916406878038,
1715
+ "learning_rate": 3.564448228912682e-06,
1716
+ "loss": 0.8338,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.7407407407407407,
1721
+ "grad_norm": 0.21689653213933718,
1722
+ "learning_rate": 3.5535027694313233e-06,
1723
+ "loss": 0.7977,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.7437641723356009,
1728
+ "grad_norm": 0.16595312089208156,
1729
+ "learning_rate": 3.5425327001622034e-06,
1730
+ "loss": 0.7987,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.7467876039304611,
1735
+ "grad_norm": 0.21979225164562236,
1736
+ "learning_rate": 3.5315382773657563e-06,
1737
+ "loss": 0.8181,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.7498110355253212,
1742
+ "grad_norm": 0.31450056661452935,
1743
+ "learning_rate": 3.520519757871313e-06,
1744
+ "loss": 0.8128,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.7528344671201814,
1749
+ "grad_norm": 0.155403218509628,
1750
+ "learning_rate": 3.5094773990711024e-06,
1751
+ "loss": 0.807,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.7558578987150416,
1756
+ "grad_norm": 0.14490425331756726,
1757
+ "learning_rate": 3.4984114589142388e-06,
1758
+ "loss": 0.7883,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.7588813303099018,
1763
+ "grad_norm": 0.21380341083079393,
1764
+ "learning_rate": 3.4873221959006973e-06,
1765
+ "loss": 0.8162,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.7619047619047619,
1770
+ "grad_norm": 0.35920542267660566,
1771
+ "learning_rate": 3.476209869075273e-06,
1772
+ "loss": 0.7852,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.764928193499622,
1777
+ "grad_norm": 0.14693329979199346,
1778
+ "learning_rate": 3.4650747380215296e-06,
1779
+ "loss": 0.8164,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.7679516250944822,
1784
+ "grad_norm": 0.2613621433404773,
1785
+ "learning_rate": 3.4539170628557383e-06,
1786
+ "loss": 0.8083,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.7709750566893424,
1791
+ "grad_norm": 0.3665112092678806,
1792
+ "learning_rate": 3.442737104220801e-06,
1793
+ "loss": 0.8181,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.7739984882842026,
1798
+ "grad_norm": 0.16067983638579006,
1799
+ "learning_rate": 3.4315351232801597e-06,
1800
+ "loss": 0.8162,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.7770219198790628,
1805
+ "grad_norm": 0.24580578582443013,
1806
+ "learning_rate": 3.4203113817116955e-06,
1807
+ "loss": 0.8199,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.780045351473923,
1812
+ "grad_norm": 0.331248956918326,
1813
+ "learning_rate": 3.409066141701618e-06,
1814
+ "loss": 0.7913,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.783068783068783,
1819
+ "grad_norm": 0.16426278470075412,
1820
+ "learning_rate": 3.3977996659383396e-06,
1821
+ "loss": 0.8166,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.7860922146636432,
1826
+ "grad_norm": 0.2057865252683302,
1827
+ "learning_rate": 3.386512217606339e-06,
1828
+ "loss": 0.8018,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.7891156462585034,
1833
+ "grad_norm": 0.3793459602253602,
1834
+ "learning_rate": 3.3752040603800148e-06,
1835
+ "loss": 0.8243,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.7921390778533636,
1840
+ "grad_norm": 0.14811638555402215,
1841
+ "learning_rate": 3.3638754584175222e-06,
1842
+ "loss": 0.8144,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.7951625094482238,
1847
+ "grad_norm": 0.3237839618432774,
1848
+ "learning_rate": 3.352526676354606e-06,
1849
+ "loss": 0.7933,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.7981859410430839,
1854
+ "grad_norm": 0.21169351866452582,
1855
+ "learning_rate": 3.3411579792984178e-06,
1856
+ "loss": 0.8125,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.8012093726379441,
1861
+ "grad_norm": 0.14502913140221696,
1862
+ "learning_rate": 3.3297696328213215e-06,
1863
+ "loss": 0.7919,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.8042328042328042,
1868
+ "grad_norm": 0.130046065883626,
1869
+ "learning_rate": 3.318361902954692e-06,
1870
+ "loss": 0.7925,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.8072562358276644,
1875
+ "grad_norm": 0.1806023890937921,
1876
+ "learning_rate": 3.3069350561826997e-06,
1877
+ "loss": 0.7977,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.8102796674225246,
1882
+ "grad_norm": 0.3661239179855748,
1883
+ "learning_rate": 3.295489359436083e-06,
1884
+ "loss": 0.8121,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.8133030990173847,
1889
+ "grad_norm": 0.15684544823299335,
1890
+ "learning_rate": 3.2840250800859185e-06,
1891
+ "loss": 0.8439,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.8163265306122449,
1896
+ "grad_norm": 0.1442117724504863,
1897
+ "learning_rate": 3.272542485937369e-06,
1898
+ "loss": 0.8205,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.8193499622071051,
1903
+ "grad_norm": 0.1630144971387636,
1904
+ "learning_rate": 3.2610418452234315e-06,
1905
+ "loss": 0.8116,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.8223733938019653,
1910
+ "grad_norm": 0.2272302138625313,
1911
+ "learning_rate": 3.249523426598669e-06,
1912
+ "loss": 0.7889,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.8253968253968254,
1917
+ "grad_norm": 0.2630488611954438,
1918
+ "learning_rate": 3.2379874991329374e-06,
1919
+ "loss": 0.8101,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.8284202569916855,
1924
+ "grad_norm": 0.1636882510390679,
1925
+ "learning_rate": 3.2264343323050985e-06,
1926
+ "loss": 0.8067,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.8314436885865457,
1931
+ "grad_norm": 0.1800718434777349,
1932
+ "learning_rate": 3.214864195996723e-06,
1933
+ "loss": 0.8267,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.8344671201814059,
1938
+ "grad_norm": 0.27772170659214646,
1939
+ "learning_rate": 3.2032773604857915e-06,
1940
+ "loss": 0.8021,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.8374905517762661,
1945
+ "grad_norm": 0.2524388193093376,
1946
+ "learning_rate": 3.1916740964403736e-06,
1947
+ "loss": 0.8067,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.8405139833711263,
1952
+ "grad_norm": 0.18970600852145528,
1953
+ "learning_rate": 3.1800546749123108e-06,
1954
+ "loss": 0.8073,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.8435374149659864,
1959
+ "grad_norm": 0.19923073362072904,
1960
+ "learning_rate": 3.168419367330883e-06,
1961
+ "loss": 0.799,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.8465608465608465,
1966
+ "grad_norm": 0.25436094223895794,
1967
+ "learning_rate": 3.1567684454964674e-06,
1968
+ "loss": 0.8041,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.8495842781557067,
1973
+ "grad_norm": 0.21128266721448266,
1974
+ "learning_rate": 3.14510218157419e-06,
1975
+ "loss": 0.8113,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.8526077097505669,
1980
+ "grad_norm": 0.22163072880133364,
1981
+ "learning_rate": 3.133420848087566e-06,
1982
+ "loss": 0.7889,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.8556311413454271,
1987
+ "grad_norm": 0.22883591781527274,
1988
+ "learning_rate": 3.121724717912138e-06,
1989
+ "loss": 0.7917,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.8586545729402872,
1994
+ "grad_norm": 0.2032672012417271,
1995
+ "learning_rate": 3.110014064269094e-06,
1996
+ "loss": 0.8032,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.8616780045351474,
2001
+ "grad_norm": 0.1740199158625731,
2002
+ "learning_rate": 3.0982891607188948e-06,
2003
+ "loss": 0.7827,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.8647014361300076,
2008
+ "grad_norm": 0.18106353392739202,
2009
+ "learning_rate": 3.0865502811548755e-06,
2010
+ "loss": 0.7896,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.8677248677248677,
2015
+ "grad_norm": 0.2292881686201471,
2016
+ "learning_rate": 3.0747976997968513e-06,
2017
+ "loss": 0.8159,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.8707482993197279,
2022
+ "grad_norm": 0.27476966438745903,
2023
+ "learning_rate": 3.0630316911847112e-06,
2024
+ "loss": 0.7938,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.873771730914588,
2029
+ "grad_norm": 0.21250803524552264,
2030
+ "learning_rate": 3.051252530172003e-06,
2031
+ "loss": 0.7912,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.8767951625094482,
2036
+ "grad_norm": 0.20109882386036412,
2037
+ "learning_rate": 3.039460491919516e-06,
2038
+ "loss": 0.8005,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.8798185941043084,
2043
+ "grad_norm": 0.22987450725486983,
2044
+ "learning_rate": 3.0276558518888496e-06,
2045
+ "loss": 0.8081,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.8828420256991686,
2050
+ "grad_norm": 0.20495650915854588,
2051
+ "learning_rate": 3.015838885835981e-06,
2052
+ "loss": 0.8115,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.8858654572940288,
2057
+ "grad_norm": 0.17141615072214778,
2058
+ "learning_rate": 3.0040098698048232e-06,
2059
+ "loss": 0.7813,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.8888888888888888,
2064
+ "grad_norm": 0.18881546824196338,
2065
+ "learning_rate": 2.992169080120776e-06,
2066
+ "loss": 0.8113,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.891912320483749,
2071
+ "grad_norm": 0.20261508334609984,
2072
+ "learning_rate": 2.9803167933842712e-06,
2073
+ "loss": 0.7993,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.8949357520786092,
2078
+ "grad_norm": 0.2637865639683421,
2079
+ "learning_rate": 2.9684532864643123e-06,
2080
+ "loss": 0.8025,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.8979591836734694,
2085
+ "grad_norm": 0.20588016874386464,
2086
+ "learning_rate": 2.9565788364920034e-06,
2087
+ "loss": 0.7869,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.9009826152683296,
2092
+ "grad_norm": 0.1838418464531271,
2093
+ "learning_rate": 2.944693720854081e-06,
2094
+ "loss": 0.7976,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.9040060468631897,
2099
+ "grad_norm": 0.2238627689541774,
2100
+ "learning_rate": 2.932798217186429e-06,
2101
+ "loss": 0.7886,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.9070294784580499,
2106
+ "grad_norm": 0.2223361558094008,
2107
+ "learning_rate": 2.920892603367596e-06,
2108
+ "loss": 0.8163,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.91005291005291,
2113
+ "grad_norm": 0.1664138917818463,
2114
+ "learning_rate": 2.908977157512305e-06,
2115
+ "loss": 0.7859,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.9130763416477702,
2120
+ "grad_norm": 0.218098712406248,
2121
+ "learning_rate": 2.897052157964952e-06,
2122
+ "loss": 0.818,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.9160997732426304,
2127
+ "grad_norm": 0.25476932805817953,
2128
+ "learning_rate": 2.8851178832931076e-06,
2129
+ "loss": 0.7936,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.9191232048374905,
2134
+ "grad_norm": 0.20454797870655053,
2135
+ "learning_rate": 2.8731746122810105e-06,
2136
+ "loss": 0.8009,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.9221466364323507,
2141
+ "grad_norm": 0.2171163509058848,
2142
+ "learning_rate": 2.8612226239230536e-06,
2143
+ "loss": 0.8012,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.9251700680272109,
2148
+ "grad_norm": 0.3201406418230194,
2149
+ "learning_rate": 2.8492621974172653e-06,
2150
+ "loss": 0.8347,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.9281934996220711,
2155
+ "grad_norm": 0.20044446217181253,
2156
+ "learning_rate": 2.8372936121587895e-06,
2157
+ "loss": 0.8066,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.9312169312169312,
2162
+ "grad_norm": 0.16283549638272465,
2163
+ "learning_rate": 2.8253171477333585e-06,
2164
+ "loss": 0.8049,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.9342403628117913,
2169
+ "grad_norm": 0.20912249423273097,
2170
+ "learning_rate": 2.813333083910761e-06,
2171
+ "loss": 0.8112,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.9372637944066515,
2176
+ "grad_norm": 0.28501513792396893,
2177
+ "learning_rate": 2.8013417006383078e-06,
2178
+ "loss": 0.8033,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.9402872260015117,
2183
+ "grad_norm": 0.17569005132324075,
2184
+ "learning_rate": 2.7893432780342928e-06,
2185
+ "loss": 0.7905,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.9433106575963719,
2190
+ "grad_norm": 0.1707451012967817,
2191
+ "learning_rate": 2.7773380963814454e-06,
2192
+ "loss": 0.7992,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.9463340891912321,
2197
+ "grad_norm": 0.23658188962283105,
2198
+ "learning_rate": 2.76532643612039e-06,
2199
+ "loss": 0.7959,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.9493575207860923,
2204
+ "grad_norm": 0.2417426081720488,
2205
+ "learning_rate": 2.7533085778430884e-06,
2206
+ "loss": 0.7719,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.9523809523809523,
2211
+ "grad_norm": 0.21779534491141914,
2212
+ "learning_rate": 2.7412848022862883e-06,
2213
+ "loss": 0.8148,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.9554043839758125,
2218
+ "grad_norm": 0.1937439406511132,
2219
+ "learning_rate": 2.729255390324966e-06,
2220
+ "loss": 0.8099,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.9584278155706727,
2225
+ "grad_norm": 0.22418232835047394,
2226
+ "learning_rate": 2.717220622965762e-06,
2227
+ "loss": 0.8029,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.9614512471655329,
2232
+ "grad_norm": 0.24163066601859826,
2233
+ "learning_rate": 2.7051807813404213e-06,
2234
+ "loss": 0.8069,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.9644746787603931,
2239
+ "grad_norm": 0.17718761833134763,
2240
+ "learning_rate": 2.6931361466992225e-06,
2241
+ "loss": 0.7964,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.9674981103552532,
2246
+ "grad_norm": 0.21359305838545312,
2247
+ "learning_rate": 2.6810870004044065e-06,
2248
+ "loss": 0.7777,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.9705215419501134,
2253
+ "grad_norm": 0.2951108231827231,
2254
+ "learning_rate": 2.6690336239236097e-06,
2255
+ "loss": 0.7654,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.9735449735449735,
2260
+ "grad_norm": 0.17887426724913263,
2261
+ "learning_rate": 2.6569762988232838e-06,
2262
+ "loss": 0.8021,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.9765684051398337,
2267
+ "grad_norm": 0.16446650801438847,
2268
+ "learning_rate": 2.644915306762121e-06,
2269
+ "loss": 0.7996,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.9795918367346939,
2274
+ "grad_norm": 0.18349619699553313,
2275
+ "learning_rate": 2.632850929484472e-06,
2276
+ "loss": 0.769,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.982615268329554,
2281
+ "grad_norm": 0.23290485597057656,
2282
+ "learning_rate": 2.620783448813768e-06,
2283
+ "loss": 0.8104,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.9856386999244142,
2288
+ "grad_norm": 0.21697778026585082,
2289
+ "learning_rate": 2.6087131466459344e-06,
2290
+ "loss": 0.7919,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 0.9886621315192744,
2295
+ "grad_norm": 0.18436604515216662,
2296
+ "learning_rate": 2.5966403049428056e-06,
2297
+ "loss": 0.7819,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 0.9916855631141346,
2302
+ "grad_norm": 0.1916879714375915,
2303
+ "learning_rate": 2.5845652057255414e-06,
2304
+ "loss": 0.7565,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 0.9947089947089947,
2309
+ "grad_norm": 0.2338419771871179,
2310
+ "learning_rate": 2.572488131068037e-06,
2311
+ "loss": 0.8002,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 0.9977324263038548,
2316
+ "grad_norm": 0.19973120898443514,
2317
+ "learning_rate": 2.560409363090331e-06,
2318
+ "loss": 0.8019,
2319
+ "step": 330
2320
+ }
2321
+ ],
2322
+ "logging_steps": 1,
2323
+ "max_steps": 660,
2324
+ "num_input_tokens_seen": 0,
2325
+ "num_train_epochs": 2,
2326
+ "save_steps": 330,
2327
+ "stateful_callbacks": {
2328
+ "TrainerControl": {
2329
+ "args": {
2330
+ "should_epoch_stop": false,
2331
+ "should_evaluate": false,
2332
+ "should_log": false,
2333
+ "should_save": true,
2334
+ "should_training_stop": false
2335
+ },
2336
+ "attributes": {}
2337
+ }
2338
+ },
2339
+ "total_flos": 1.219445850938278e+18,
2340
+ "train_batch_size": 6,
2341
+ "trial_name": null,
2342
+ "trial_params": null
2343
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df8dc356c79e92fd1dfe01156e2711a4d4a4aa39d1d0df2b0c7689e3a6050337
3
+ size 8312
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)