File size: 3,270 Bytes
3378fa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- json
model-index:
- name: root/cproject_updated/conv_200k_14b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: /root/cproject_updated/Qwen2.5-7B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: false
load_in_8bit: false
load_in_4bit: false
strict: false
auto_resume_from_checkpoints: true
datasets:
- path: json
data_files: /root/cproject_updated/judge_1k_axolotl.jsonl
ds_type: json
type: completion
shuffle_merged_datasets: true
dataset_prepared_path: /root/cproject_updated/prnew142
val_set_size: 0.05
output_dir: /root/cproject_updated/conv_200k_14b
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
adam_beta1: 0.99
adam_beta2: 0.99
max_grad_norm: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
eval_steps: 26
saves_per_epoch: 1
deepspeed: /sky_workdir/axolotl/deepspeed_configs/zero3_bf16.json
auto_resume_from_checkpoints: false
wandb_project: corruption_model_rm
wandb_entity:
wandb_watch:
wandb_name: rm-test-v1-7b-adammax2
wandb_log_model:
```
</details><br>
# root/cproject_updated/conv_200k_14b
This model was trained from scratch on the json dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5430
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use paged_adamw_8bit with betas=(0.99,0.99) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7452 | 1.0 | 26 | 0.7888 |
| 0.6347 | 2.0 | 52 | 0.6729 |
| 0.6479 | 3.0 | 78 | 0.5560 |
| 0.3729 | 4.0 | 104 | 0.5430 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
|