File size: 3,270 Bytes
3378fa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- json
model-index:
- name: root/cproject_updated/conv_200k_14b
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml
base_model: /root/cproject_updated/Qwen2.5-7B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true

plugins:
  - axolotl.integrations.liger.LigerPlugin

liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: false

load_in_8bit: false
load_in_4bit: false
strict: false

auto_resume_from_checkpoints: true

datasets:
  - path: json
    data_files: /root/cproject_updated/judge_1k_axolotl.jsonl
    ds_type: json
    type: completion

shuffle_merged_datasets: true
dataset_prepared_path: /root/cproject_updated/prnew142
val_set_size: 0.05
output_dir: /root/cproject_updated/conv_200k_14b
sequence_len: 8192
sample_packing: true
eval_sample_packing: false

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine

learning_rate: 1e-5
adam_beta1: 0.99
adam_beta2: 0.99
max_grad_norm: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true

logging_steps: 1
flash_attention: true
warmup_steps: 10
eval_steps: 26
saves_per_epoch: 1

deepspeed: /sky_workdir/axolotl/deepspeed_configs/zero3_bf16.json

auto_resume_from_checkpoints: false
wandb_project: corruption_model_rm
wandb_entity:
wandb_watch:
wandb_name: rm-test-v1-7b-adammax2
wandb_log_model:
```

</details><br>

# root/cproject_updated/conv_200k_14b

This model was trained from scratch on the json dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5430

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use paged_adamw_8bit with betas=(0.99,0.99) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7452        | 1.0   | 26   | 0.7888          |
| 0.6347        | 2.0   | 52   | 0.6729          |
| 0.6479        | 3.0   | 78   | 0.5560          |
| 0.3729        | 4.0   | 104  | 0.5430          |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0