--- library_name: transformers tags: - generated_from_trainer datasets: - json model-index: - name: root/cproject_updated/conv_200k_14b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: /root/cproject_updated/Qwen2.5-7B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: false load_in_8bit: false load_in_4bit: false strict: false auto_resume_from_checkpoints: true datasets: - path: json data_files: /root/cproject_updated/judge_1k_axolotl.jsonl ds_type: json type: completion shuffle_merged_datasets: true dataset_prepared_path: /root/cproject_updated/prnew142 val_set_size: 0.05 output_dir: /root/cproject_updated/conv_200k_14b sequence_len: 8192 sample_packing: true eval_sample_packing: false gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 4 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 1e-5 adam_beta1: 0.99 adam_beta2: 0.99 max_grad_norm: 0.0002 train_on_inputs: false group_by_length: false bf16: auto gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true logging_steps: 1 flash_attention: true warmup_steps: 10 eval_steps: 26 saves_per_epoch: 1 deepspeed: /sky_workdir/axolotl/deepspeed_configs/zero3_bf16.json auto_resume_from_checkpoints: false wandb_project: corruption_model_rm wandb_entity: wandb_watch: wandb_name: rm-test-v1-7b-adammax2 wandb_log_model: ```

# root/cproject_updated/conv_200k_14b This model was trained from scratch on the json dataset. It achieves the following results on the evaluation set: - Loss: 0.5430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Use paged_adamw_8bit with betas=(0.99,0.99) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7452 | 1.0 | 26 | 0.7888 | | 0.6347 | 2.0 | 52 | 0.6729 | | 0.6479 | 3.0 | 78 | 0.5560 | | 0.3729 | 4.0 | 104 | 0.5430 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0