File size: 2,569 Bytes
48d0896
2562c34
 
ff4f833
 
 
 
 
48d0896
ff4f833
 
 
 
 
 
2562c34
ff4f833
2562c34
 
ff4f833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c36713
79852eb
 
 
8c36713
 
2562c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79852eb
ff4f833
 
 
8c36713
ff4f833
a446c93
ff4f833
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: Sentiment-Analysis-Model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Sentiment-Analysis-Model

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6227
- F1 Score: 0.7304

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1 Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.7461        | 0.5   | 500   | 0.7528          | 0.6523   |
| 0.6845        | 1.0   | 1000  | 0.6425          | 0.7132   |
| 0.5729        | 1.5   | 1500  | 0.6463          | 0.7415   |
| 0.5674        | 2.0   | 2000  | 0.6227          | 0.7304   |
| 0.41          | 2.5   | 2500  | 0.9091          | 0.7335   |
| 0.4017        | 3.0   | 3000  | 0.8304          | 0.7360   |
| 0.2691        | 3.5   | 3500  | 1.2177          | 0.7202   |
| 0.3128        | 4.0   | 4000  | 1.1197          | 0.7376   |
| 0.197         | 4.5   | 4500  | 1.2951          | 0.7341   |
| 0.1887        | 5.0   | 5000  | 1.4508          | 0.7239   |
| 0.11          | 5.5   | 5500  | 1.5447          | 0.7203   |
| 0.1462        | 6.0   | 6000  | 1.4909          | 0.7383   |
| 0.0907        | 6.5   | 6500  | 1.4809          | 0.7332   |
| 0.089         | 7.0   | 7000  | 1.7191          | 0.7244   |
| 0.0613        | 7.5   | 7500  | 1.7725          | 0.7294   |
| 0.0665        | 8.0   | 8000  | 1.8083          | 0.7290   |
| 0.0458        | 8.5   | 8500  | 1.8297          | 0.7346   |
| 0.0395        | 9.0   | 9000  | 1.8853          | 0.7304   |
| 0.0287        | 9.5   | 9500  | 1.9684          | 0.7273   |
| 0.0204        | 10.0  | 10000 | 1.9919          | 0.7308   |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3