xingzhang commited on
Commit
7442c3d
1 Parent(s): 5c13d28
LICENSE ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tongyi Qianwen RESEARCH LICENSE AGREEMENT
2
+
3
+ Tongyi Qianwen Release Date: November 30, 2023
4
+
5
+ By clicking to agree or by using or distributing any portion or element of the Tongyi Qianwen Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
6
+
7
+ 1. Definitions
8
+ a. This Tongyi Qianwen RESEARCH LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
9
+ b. "We"(or "Us") shall mean Alibaba Cloud.
10
+ c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
11
+ d. "Third Parties" shall mean individuals or legal entities that are not under common control with Us or You.
12
+ e. "Tongyi Qianwen" shall mean the large language models, and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Us.
13
+ f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Tongyi Qianwen and Documentation (and any portion thereof) made available under this Agreement.
14
+ g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
15
+ h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation,
16
+ and conversions to other media types.
17
+ i. "Non-Commercial" shall mean for research or evaluation purposes only.
18
+
19
+ 2. Grant of Rights
20
+ a. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Alibaba Cloud's intellectual property or other rights owned by Us embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials FOR NON-COMMERCIAL PURPOSES ONLY.
21
+ b. If you are commercially using the Materials, You shall request a license from Us.
22
+
23
+ 3. Redistribution
24
+ You may reproduce and distribute copies of the Materials or derivative works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
25
+ a. You shall give any other recipients of the Materials or derivative works a copy of this Agreement;
26
+ b. You shall cause any modified files to carry prominent notices stating that You changed the files;
27
+ c. You shall retain in all copies of the Materials that You distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "Tongyi Qianwen is licensed under the Tongyi Qianwen RESEARCH LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved."; and
28
+ d. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such derivative works as a whole, provided Your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
29
+
30
+ 4. Rules of use
31
+ a. The Materials may be subject to export controls or restrictions in China, the United States or other countries or regions. You shall comply with applicable laws and regulations in your use of the Materials.
32
+ b. You can not use the Materials or any output therefrom to improve any other large language model (excluding Tongyi Qianwen or derivative works thereof).
33
+
34
+ 5. Intellectual Property
35
+ a. We retain ownership of all intellectual property rights in and to the Materials and derivatives made by or for Us. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by you, you are and will be the owner of such derivative works and modifications.
36
+ b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of Us, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
37
+ c. If you commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against Us or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by you, then all licences granted to you under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
38
+
39
+ 6. Disclaimer of Warranty and Limitation of Liability
40
+ a. We are not obligated to support, update, provide training for, or develop any further version of the Tongyi Qianwen Materials or to grant any license thereto.
41
+ b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
42
+ c. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, NO MATTER HOW IT’S CAUSED.
43
+ d. You will defend, indemnify and hold harmless Us from and against any claim by any third party arising out of or related to your use or distribution of the Materials.
44
+
45
+ 7. Survival and Termination.
46
+ a. The term of this Agreement shall commence upon your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
47
+ b. We may terminate this Agreement if you breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, you must delete and cease use of the Materials. Sections 6 and 8 shall survive the termination of this Agreement.
48
+
49
+ 8. Governing Law and Jurisdiction.
50
+ a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
51
+ b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
52
+
53
+ 9. Other Terms and Conditions.
54
+ a. Any arrangements, understandings, or agreements regarding the Material not stated herein are separate from and independent of the terms and conditions of this Agreement. You shall request a seperate license from Us, if You use the Materials in ways not expressly agreed to in this Agreement.
55
+ b. We shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.
NOTICE ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ------------- LICENSE FOR NVIDIA Megatron-LM code --------------
2
+
3
+ Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
4
+
5
+ Redistribution and use in source and binary forms, with or without
6
+ modification, are permitted provided that the following conditions
7
+ are met:
8
+ * Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+ * Redistributions in binary form must reproduce the above copyright
11
+ notice, this list of conditions and the following disclaimer in the
12
+ documentation and/or other materials provided with the distribution.
13
+ * Neither the name of NVIDIA CORPORATION nor the names of its
14
+ contributors may be used to endorse or promote products derived
15
+ from this software without specific prior written permission.
16
+
17
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
18
+ EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20
+ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
21
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
25
+ OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
+
29
+
30
+ ------------- LICENSE FOR OpenAI tiktoken code --------------
31
+
32
+ MIT License
33
+
34
+ Copyright (c) 2022 OpenAI, Shantanu Jain
35
+
36
+ Permission is hereby granted, free of charge, to any person obtaining a copy
37
+ of this software and associated documentation files (the "Software"), to deal
38
+ in the Software without restriction, including without limitation the rights
39
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
40
+ copies of the Software, and to permit persons to whom the Software is
41
+ furnished to do so, subject to the following conditions:
42
+
43
+ The above copyright notice and this permission notice shall be included in all
44
+ copies or substantial portions of the Software.
45
+
46
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
47
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
48
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
49
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
50
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
51
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
52
+ SOFTWARE.
53
+
54
+ ------------- LICENSE FOR stanford_alpaca code --------------
55
+
56
+ Apache License
57
+ Version 2.0, January 2004
58
+ http://www.apache.org/licenses/
59
+
60
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
61
+
62
+ 1. Definitions.
63
+
64
+ "License" shall mean the terms and conditions for use, reproduction,
65
+ and distribution as defined by Sections 1 through 9 of this document.
66
+
67
+ "Licensor" shall mean the copyright owner or entity authorized by
68
+ the copyright owner that is granting the License.
69
+
70
+ "Legal Entity" shall mean the union of the acting entity and all
71
+ other entities that control, are controlled by, or are under common
72
+ control with that entity. For the purposes of this definition,
73
+ "control" means (i) the power, direct or indirect, to cause the
74
+ direction or management of such entity, whether by contract or
75
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
76
+ outstanding shares, or (iii) beneficial ownership of such entity.
77
+
78
+ "You" (or "Your") shall mean an individual or Legal Entity
79
+ exercising permissions granted by this License.
80
+
81
+ "Source" form shall mean the preferred form for making modifications,
82
+ including but not limited to software source code, documentation
83
+ source, and configuration files.
84
+
85
+ "Object" form shall mean any form resulting from mechanical
86
+ transformation or translation of a Source form, including but
87
+ not limited to compiled object code, generated documentation,
88
+ and conversions to other media types.
89
+
90
+ "Work" shall mean the work of authorship, whether in Source or
91
+ Object form, made available under the License, as indicated by a
92
+ copyright notice that is included in or attached to the work
93
+ (an example is provided in the Appendix below).
94
+
95
+ "Derivative Works" shall mean any work, whether in Source or Object
96
+ form, that is based on (or derived from) the Work and for which the
97
+ editorial revisions, annotations, elaborations, or other modifications
98
+ represent, as a whole, an original work of authorship. For the purposes
99
+ of this License, Derivative Works shall not include works that remain
100
+ separable from, or merely link (or bind by name) to the interfaces of,
101
+ the Work and Derivative Works thereof.
102
+
103
+ "Contribution" shall mean any work of authorship, including
104
+ the original version of the Work and any modifications or additions
105
+ to that Work or Derivative Works thereof, that is intentionally
106
+ submitted to Licensor for inclusion in the Work by the copyright owner
107
+ or by an individual or Legal Entity authorized to submit on behalf of
108
+ the copyright owner. For the purposes of this definition, "submitted"
109
+ means any form of electronic, verbal, or written communication sent
110
+ to the Licensor or its representatives, including but not limited to
111
+ communication on electronic mailing lists, source code control systems,
112
+ and issue tracking systems that are managed by, or on behalf of, the
113
+ Licensor for the purpose of discussing and improving the Work, but
114
+ excluding communication that is conspicuously marked or otherwise
115
+ designated in writing by the copyright owner as "Not a Contribution."
116
+
117
+ "Contributor" shall mean Licensor and any individual or Legal Entity
118
+ on behalf of whom a Contribution has been received by Licensor and
119
+ subsequently incorporated within the Work.
120
+
121
+ 2. Grant of Copyright License. Subject to the terms and conditions of
122
+ this License, each Contributor hereby grants to You a perpetual,
123
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
124
+ copyright license to reproduce, prepare Derivative Works of,
125
+ publicly display, publicly perform, sublicense, and distribute the
126
+ Work and such Derivative Works in Source or Object form.
127
+
128
+ 3. Grant of Patent License. Subject to the terms and conditions of
129
+ this License, each Contributor hereby grants to You a perpetual,
130
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
131
+ (except as stated in this section) patent license to make, have made,
132
+ use, offer to sell, sell, import, and otherwise transfer the Work,
133
+ where such license applies only to those patent claims licensable
134
+ by such Contributor that are necessarily infringed by their
135
+ Contribution(s) alone or by combination of their Contribution(s)
136
+ with the Work to which such Contribution(s) was submitted. If You
137
+ institute patent litigation against any entity (including a
138
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
139
+ or a Contribution incorporated within the Work constitutes direct
140
+ or contributory patent infringement, then any patent licenses
141
+ granted to You under this License for that Work shall terminate
142
+ as of the date such litigation is filed.
143
+
144
+ 4. Redistribution. You may reproduce and distribute copies of the
145
+ Work or Derivative Works thereof in any medium, with or without
146
+ modifications, and in Source or Object form, provided that You
147
+ meet the following conditions:
148
+
149
+ (a) You must give any other recipients of the Work or
150
+ Derivative Works a copy of this License; and
151
+
152
+ (b) You must cause any modified files to carry prominent notices
153
+ stating that You changed the files; and
154
+
155
+ (c) You must retain, in the Source form of any Derivative Works
156
+ that You distribute, all copyright, patent, trademark, and
157
+ attribution notices from the Source form of the Work,
158
+ excluding those notices that do not pertain to any part of
159
+ the Derivative Works; and
160
+
161
+ (d) If the Work includes a "NOTICE" text file as part of its
162
+ distribution, then any Derivative Works that You distribute must
163
+ include a readable copy of the attribution notices contained
164
+ within such NOTICE file, excluding those notices that do not
165
+ pertain to any part of the Derivative Works, in at least one
166
+ of the following places: within a NOTICE text file distributed
167
+ as part of the Derivative Works; within the Source form or
168
+ documentation, if provided along with the Derivative Works; or,
169
+ within a display generated by the Derivative Works, if and
170
+ wherever such third-party notices normally appear. The contents
171
+ of the NOTICE file are for informational purposes only and
172
+ do not modify the License. You may add Your own attribution
173
+ notices within Derivative Works that You distribute, alongside
174
+ or as an addendum to the NOTICE text from the Work, provided
175
+ that such additional attribution notices cannot be construed
176
+ as modifying the License.
177
+
178
+ You may add Your own copyright statement to Your modifications and
179
+ may provide additional or different license terms and conditions
180
+ for use, reproduction, or distribution of Your modifications, or
181
+ for any such Derivative Works as a whole, provided Your use,
182
+ reproduction, and distribution of the Work otherwise complies with
183
+ the conditions stated in this License.
184
+
185
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
186
+ any Contribution intentionally submitted for inclusion in the Work
187
+ by You to the Licensor shall be under the terms and conditions of
188
+ this License, without any additional terms or conditions.
189
+ Notwithstanding the above, nothing herein shall supersede or modify
190
+ the terms of any separate license agreement you may have executed
191
+ with Licensor regarding such Contributions.
192
+
193
+ 6. Trademarks. This License does not grant permission to use the trade
194
+ names, trademarks, service marks, or product names of the Licensor,
195
+ except as required for reasonable and customary use in describing the
196
+ origin of the Work and reproducing the content of the NOTICE file.
197
+
198
+ 7. Disclaimer of Warranty. Unless required by applicable law or
199
+ agreed to in writing, Licensor provides the Work (and each
200
+ Contributor provides its Contributions) on an "AS IS" BASIS,
201
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
202
+ implied, including, without limitation, any warranties or conditions
203
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
204
+ PARTICULAR PURPOSE. You are solely responsible for determining the
205
+ appropriateness of using or redistributing the Work and assume any
206
+ risks associated with Your exercise of permissions under this License.
207
+
208
+ 8. Limitation of Liability. In no event and under no legal theory,
209
+ whether in tort (including negligence), contract, or otherwise,
210
+ unless required by applicable law (such as deliberate and grossly
211
+ negligent acts) or agreed to in writing, shall any Contributor be
212
+ liable to You for damages, including any direct, indirect, special,
213
+ incidental, or consequential damages of any character arising as a
214
+ result of this License or out of the use or inability to use the
215
+ Work (including but not limited to damages for loss of goodwill,
216
+ work stoppage, computer failure or malfunction, or any and all
217
+ other commercial damages or losses), even if such Contributor
218
+ has been advised of the possibility of such damages.
219
+
220
+ 9. Accepting Warranty or Additional Liability. While redistributing
221
+ the Work or Derivative Works thereof, You may choose to offer,
222
+ and charge a fee for, acceptance of support, warranty, indemnity,
223
+ or other liability obligations and/or rights consistent with this
224
+ License. However, in accepting such obligations, You may act only
225
+ on Your own behalf and on Your sole responsibility, not on behalf
226
+ of any other Contributor, and only if You agree to indemnify,
227
+ defend, and hold each Contributor harmless for any liability
228
+ incurred by, or claims asserted against, such Contributor by reason
229
+ of your accepting any such warranty or additional liability.
230
+
231
+ END OF TERMS AND CONDITIONS
232
+
233
+ APPENDIX: How to apply the Apache License to your work.
234
+
235
+ To apply the Apache License to your work, attach the following
236
+ boilerplate notice, with the fields enclosed by brackets "[]"
237
+ replaced with your own identifying information. (Don't include
238
+ the brackets!) The text should be enclosed in the appropriate
239
+ comment syntax for the file format. We also recommend that a
240
+ file or class name and description of purpose be included on the
241
+ same "printed page" as the copyright notice for easier
242
+ identification within third-party archives.
243
+
244
+ Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
245
+
246
+ Licensed under the Apache License, Version 2.0 (the "License");
247
+ you may not use this file except in compliance with the License.
248
+ You may obtain a copy of the License at
249
+
250
+ http://www.apache.org/licenses/LICENSE-2.0
251
+
252
+ Unless required by applicable law or agreed to in writing, software
253
+ distributed under the License is distributed on an "AS IS" BASIS,
254
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
255
+ See the License for the specific language governing permissions and
256
+ limitations under the License.
257
+
258
+ ------------- LICENSE FOR PanQiWei AutoGPTQ code --------------
259
+
260
+ MIT License
261
+
262
+ Copyright (c) 2023 潘其威(William)
263
+
264
+ Permission is hereby granted, free of charge, to any person obtaining a copy
265
+ of this software and associated documentation files (the "Software"), to deal
266
+ in the Software without restriction, including without limitation the rights
267
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
268
+ copies of the Software, and to permit persons to whom the Software is
269
+ furnished to do so, subject to the following conditions:
270
+
271
+ The above copyright notice and this permission notice shall be included in all
272
+ copies or substantial portions of the Software.
273
+
274
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
275
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
276
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
277
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
278
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
279
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
280
+ SOFTWARE.
README.md ADDED
@@ -0,0 +1,438 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ - en
5
+ tags:
6
+ - qwen
7
+ pipeline_tag: text-generation
8
+ inference: false
9
+ ---
10
+
11
+ # Qwen-1.8B-Chat-Int8
12
+
13
+ <p align="center">
14
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo_qwen.jpg" width="400"/>
15
+ <p>
16
+ <br>
17
+
18
+ <p align="center">
19
+ 🤗 <a href="https://huggingface.co/Qwen">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://modelscope.cn/organization/qwen">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://arxiv.org/abs/2309.16609">Paper</a> &nbsp&nbsp | &nbsp&nbsp🖥️ <a href="https://www.modelscope.cn/studios/qwen/Qwen-1_8B-Chat-Demo/summary">Demo</a>
20
+ <br>
21
+ <a href="assets/wechat.png">WeChat (微信)</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://discord.gg/z3GAxXZ9Ce">Discord</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://dashscope.aliyun.com">API</a>
22
+ </p>
23
+ <br>
24
+
25
+ ## 介绍(Introduction)
26
+
27
+
28
+ **通义千问-1.8B(Qwen-1.8B)**是阿里云研发的通义千问大模型系列的18亿参数规模的模型。Qwen-1.8B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-1.8B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-1.8B-Chat。本仓库为Qwen-1.8B-Chat的Int8量化模型的仓库。
29
+
30
+ 通义千问-1.8B(Qwen-1.8B)主要有以下特点:
31
+ 1. **低成本部署**:提供int8和int4量化版本,推理最低仅需不到2GB显存,生成2048 tokens仅需3GB显存占用。微调最低仅需6GB。
32
+ 2. **大规模高质量训练语料**:使用超过2.2万亿tokens的数据进行预训练,包含高质量中、英、多语言、代码、数学等数据,涵盖通用及专业领域的训练语料。通过大量对比实验对预训练语料分布进行了优化。
33
+ 3. **优秀的性能**:Qwen-1.8B支持8192上下文长度,在多个中英文下游评测任务上(涵盖常识推理、代码、数学、翻译等),效果显著超越现有的相近规模开源模型,具体评测结果请详见下文。
34
+ 4. **覆盖更全面的词表**:相比目前以中英词表为主的开源模型,Qwen-1.8B使用了约15万大小的词表。该词表对多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强和扩展。
35
+ 5. **系统指令跟随**:Qwen-1.8B-Chat可以通过调整系统指令,实现**角色扮演**,**语言风格迁移**,**任务设定**,和**行为设定**等能力。
36
+
37
+
38
+ 如果您想了解更多关于通义千问1.8B开源模型的细节,我们建议您参阅[GitHub代码库](https://github.com/QwenLM/Qwen)。
39
+
40
+ **Qwen-1.8B** is the 1.8B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen-1.8B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-1.8B, we release Qwen-1.8B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. This repository is the one for Qwen-1.8B-Chat-int8.
41
+
42
+ The features of Qwen-1.8B include:
43
+ 1. **Low-cost deployment**: We provide int4 and int8 quantized versions, the minimum memory requirment for inference is less than 2GB, generating 2048 tokens only 3GB of memory usage. The minimum memory requirment of finetuning is only 6GB.
44
+ 2. **Large-scale high-quality training corpora**: It is pretrained on over 2.2 trillion tokens, including Chinese, English, multilingual texts, code, and mathematics, covering general and professional fields. The distribution of the pre-training corpus has been optimized through a large number of ablation experiments.
45
+ 3. **Good performance**: It supports 8192 context length and significantly surpasses existing open-source models of similar scale on multiple Chinese and English downstream evaluation tasks (including commonsense, reasoning, code, mathematics, etc.), and even surpasses some larger-scale models in several benchmarks. See below for specific evaluation results.
46
+ 4. **More comprehensive vocabulary coverage**: Compared with other open-source models based on Chinese and English vocabularies, Qwen-1.8B uses a vocabulary of over 150K tokens. This vocabulary is more friendly to multiple languages, enabling users to directly further enhance the capability for certain languages without expanding the vocabulary.
47
+ 5. **System prompt**: Qwen-1.8B-Chat can realize roly playing, language style transfer, task setting, and behavior setting by using system prompt.
48
+
49
+ For more details about the open-source model of Qwen-1.8B-chat int8, please refer to the [GitHub](https://github.com/QwenLM/Qwen) code repository.
50
+
51
+
52
+
53
+
54
+ <br>
55
+
56
+ ## 要求(Requirements)
57
+
58
+ * python 3.8及以上版本
59
+ * pytorch 2.0及以上版本
60
+ * 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)
61
+ * python 3.8 and above
62
+ * pytorch 2.0 and above
63
+ * CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)
64
+
65
+ ## 依赖项(Dependency)
66
+
67
+ 运行Qwen-1.8B-Chat-Int8,请确保满足上述要求,再执行以下pip命令安装依赖库。如安装`auto-gptq`遇到问题,我们建议您到官方[repo](https://github.com/PanQiWei/AutoGPTQ)搜索合适的预编译wheel。
68
+
69
+ To run Qwen-1.8B-Chat-Int8, please make sure you meet the above requirements, and then execute the following pip commands to install the dependent libraries. If you meet problems installing `auto-gptq`, we advise you to check out the official [repo](https://github.com/PanQiWei/AutoGPTQ) to find a pre-build wheel.
70
+
71
+ ```bash
72
+ pip install transformers==4.32.0 accelerate tiktoken einops scipy transformers_stream_generator==0.0.4 peft deepspeed
73
+ pip install auto-gptq optimum
74
+ ```
75
+
76
+ 另外,推荐安装`flash-attention`库(**当前已支持flash attention 2**),以实现更高的效率和更低的显存占用。
77
+
78
+ In addition, it is recommended to install the `flash-attention` library (**we support flash attention 2 now.**) for higher efficiency and lower memory usage.
79
+
80
+ ```bash
81
+ git clone https://github.com/Dao-AILab/flash-attention
82
+ cd flash-attention && pip install .
83
+ # 下方安装可选,安装可能比较缓慢。
84
+ # pip install csrc/layer_norm
85
+ # pip install csrc/rotary
86
+ ```
87
+ <br>
88
+
89
+ ## 快速使用(Quickstart)
90
+
91
+ 下面我们展示了一个使用Qwen-1.8B-Chat-Int8模型,进行多轮对话交互的样例:
92
+
93
+ We show an example of multi-turn interaction with Qwen-1.8B-Chat-Int8 in the following code:
94
+
95
+ ```python
96
+ model = AutoModelForCausalLM.from_pretrained(
97
+ "Qwen/Qwen-1_8B-Chat-Int8",
98
+ device_map="auto",
99
+ trust_remote_code=True
100
+ ).eval()
101
+ response, history = model.chat(tokenizer, "你好", history=None)
102
+ print(response)
103
+ # 你好!很高兴为你提供帮助。
104
+
105
+ # Qwen-1.8B-Chat现在可以通过调整系统指令(System Prompt),实现角色扮演,语言风格迁移,任务设定,行为设定等能力。
106
+ # Qwen-1.8B-Chat can realize roly playing, language style transfer, task setting, and behavior setting by system prompt.
107
+ response, _ = model.chat(tokenizer, "你好呀", history=None, system="请用二次元可爱语气和我说话")
108
+ print(response)
109
+ # 你好啊!我是一只可爱的二次元猫咪哦,不知道你有什么问题需要我帮忙解答吗?
110
+
111
+ response, _ = model.chat(tokenizer, "My colleague works diligently", history=None, system="You will write beautiful compliments according to needs")
112
+ print(response)
113
+ # Your colleague is an outstanding worker! Their dedication and hard work are truly inspiring. They always go above and beyond to ensure that
114
+ # their tasks are completed on time and to the highest standard. I am lucky to have them as a colleague, and I know I can count on them to handle any challenge that comes their way.
115
+ ```
116
+
117
+ 关于更多的使用说明,请参考我们的[GitHub repo](https://github.com/QwenLM/Qwen)获取更多信息。
118
+
119
+ For more information, please refer to our [GitHub repo](https://github.com/QwenLM/Qwen) for more information.
120
+
121
+ ## Tokenizer
122
+
123
+ > 注:作为术语的“tokenization”在中文中尚无共识的概念对应,本文档采用英文表达以利说明。
124
+
125
+ 基于tiktoken的分词器有别于其他分词器,比如sentencepiece分词器。尤其在微调阶段,需要特别注意特殊token的使用。关于tokenizer的更多信息,以及微调时涉及的相关使用,请参阅[文档](https://github.com/QwenLM/Qwen/blob/main/tokenization_note_zh.md)。
126
+
127
+ Our tokenizer based on tiktoken is different from other tokenizers, e.g., sentencepiece tokenizer. You need to pay attention to special tokens, especially in finetuning. For more detailed information on the tokenizer and related use in fine-tuning, please refer to the [documentation](https://github.com/QwenLM/Qwen/blob/main/tokenization_note.md).
128
+
129
+ ## 量化 (Quantization)
130
+
131
+ ### 用法 (Usage)
132
+
133
+ **请注意:我们更新量化方案为基于[AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ)的量化,提供Qwen-1.8B-Chat的Int8化模型[点击这里](https://huggingface.co/Qwen/Qwen-1_8B-Chat-Int8)。相比此前方案,该方案在模型评测效果几乎无损,且存储需求更低,推理速度更优。**
134
+
135
+ **Note: we provide a new solution based on [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), and release an Int8 quantized model for Qwen-1.8B-Chat [Click here](https://huggingface.co/Qwen/Qwen-1_8B-Chat-Int8), which achieves nearly lossless model effects but improved performance on both memory costs and inference speed, in comparison with the previous solution.**
136
+
137
+ 以下我们提供示例说明如何使用Int8量化模型。在开始使用前,请先保证满足要求(如torch 2.0及以上,transformers版本为4.32.0及以上,等等),并安装所需安装包:
138
+
139
+ Here we demonstrate how to use our provided quantized models for inference. Before you start, make sure you meet the requirements of auto-gptq (e.g., torch 2.0 and above, transformers 4.32.0 and above, etc.) and install the required packages:
140
+
141
+ ```bash
142
+ pip install auto-gptq optimum
143
+ ```
144
+
145
+ 如安装`auto-gptq`遇到问题,我们建议您到官方[repo](https://github.com/PanQiWei/AutoGPTQ)搜索合适的预编译wheel。
146
+
147
+ 随后即可使用和上述一致的用法调用量化模型:
148
+
149
+ If you meet problems installing `auto-gptq`, we advise you to check out the official [repo](https://github.com/PanQiWei/AutoGPTQ) to find a pre-build wheel.
150
+
151
+ Then you can load the quantized model easily and run inference as same as usual:
152
+
153
+ ```python
154
+ model = AutoModelForCausalLM.from_pretrained(
155
+ "Qwen/Qwen-1_8B-Chat-Int8",
156
+ device_map="auto",
157
+ trust_remote_code=True
158
+ ).eval()
159
+ response, history = model.chat(tokenizer, "你好", history=None)
160
+ ```
161
+
162
+ ### 效果评测
163
+
164
+ 我们使用原始模型的FP32和BF16精度,以及量化过的Int8和Int4模型在基准评测上做了测试,结果如下所示:
165
+
166
+ We illustrate the model performance of both FP32, BF16, Int8 and Int4 models on the benchmark. Results are shown below:
167
+
168
+ | Quantization | MMLU | CEval (val) | GSM8K | Humaneval |
169
+ |--------------|:----:|:-----------:|:-----:|:---------:|
170
+ | FP32 | 43.4 | 57.0 | 33.0 | 26.8 |
171
+ | BF16 | 43.3 | 55.6 | 33.7 | 26.2 |
172
+ | Int8 | 43.1 | 55.8 | 33.0 | 27.4 |
173
+ | Int4 | 42.9 | 52.8 | 31.2 | 25.0 |
174
+
175
+ ### 推理速度 (Inference Speed)
176
+
177
+ 我们测算了FP32、BF16精度和Int8、Int4量化模型生成2048和8192个token的平均推理速度。如图所示:
178
+
179
+ We measured the average inference speed of generating 2048 and 8192 tokens under FP32, BF16 precision and Int8, Int4 quantization level, respectively.
180
+
181
+ | Quantization | FlashAttn | Speed (2048 tokens) | Speed (8192 tokens) |
182
+ |--------------| :-------: |:-------------------:|:-------------------:|
183
+ | FP32 | v2 | 52.96 | 47.35 |
184
+ | BF16 | v2 | 54.09 | 54.04 |
185
+ | Int8 | v2 | 55.56 | 55.62 |
186
+ | Int4 | v2 | 71.07 | 76.45 |
187
+ | FP32 | v1 | 52.00 | 45.80 |
188
+ | BF16 | v1 | 51.70 | 55.04 |
189
+ | Int8 | v1 | 53.16 | 53.33 |
190
+ | Int4 | v1 | 69.82 | 67.44 |
191
+ | FP32 | Disabled | 52.28 | 44.95 |
192
+ | BF16 | Disabled | 48.17 | 45.01 |
193
+ | Int8 | Disabled | 52.16 | 52.99 |
194
+ | Int4 | Disabled | 68.37 | 65.94 |
195
+
196
+ 具体而言,我们记录在长度为1的上下文的条件下生成8192个token的性能。评测运行于单张A100-SXM4-80G GPU,使用PyTorch 2.0.1和CUDA 11.4。推理速度是生成8192个token的速度均值。
197
+
198
+ In detail, the setting of profiling is generating 8192 new tokens with 1 context token. The profiling runs on a single A100-SXM4-80G GPU with PyTorch 2.0.1 and CUDA 11.4. The inference speed is averaged over the generated 8192 tokens.
199
+
200
+ ### 显存使用 (GPU Memory Usage)
201
+
202
+ 我们测算了FP32、BF16精度和Int8、Int4量化模型生成2048个及8192个token(单个token作为输入)的峰值显存占用情况。结果如下所示:
203
+
204
+ We also profile the peak GPU memory usage for generating 2048 tokens and 8192 tokens (with single token as context) under FP32, BF16 or Int8, Int4 quantization level, respectively. The results are shown below.
205
+
206
+ | Quantization Level | Peak Usage for Encoding 2048 Tokens | Peak Usage for Generating 8192 Tokens |
207
+ |--------------------|:-----------------------------------:|:-------------------------------------:|
208
+ | FP32 | 8.45GB | 13.06GB |
209
+ | BF16 | 4.23GB | 6.48GB |
210
+ | Int8 | 3.48GB | 5.34GB |
211
+ | Int4 | 2.91GB | 4.80GB |
212
+
213
+ 上述性能测算使用[此脚本](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py)完成。
214
+
215
+ The above speed and memory profiling are conducted using [this script](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py).
216
+ <br>
217
+
218
+ ## 模型细节(Model)
219
+
220
+ 与Qwen-1.8B预训练模型相同,Qwen-1.8B-Chat模型规模基本情况如下所示
221
+
222
+ The details of the model architecture of Qwen-1.8B-Chat are listed as follows
223
+
224
+ | Hyperparameter | Value |
225
+ |:----------------|:------:|
226
+ | n_layers | 24 |
227
+ | n_heads | 16 |
228
+ | d_model | 2048 |
229
+ | vocab size | 151851 |
230
+ | sequence length | 8192 |
231
+
232
+ 在位置编码、FFN激活函数和normalization的实现方式上,我们也采用了目前最流行的做法,
233
+ 即RoPE相对位置编码、SwiGLU激活函数、RMSNorm(可选安装flash-attention加速)。
234
+
235
+ 在分词器方面,相比目前主流开源模型以中英词表为主,Qwen-1.8B-Chat使用了约15万token大小的词表。
236
+ 该词表在GPT-4使用的BPE词表`cl100k_base`基础上,对中文、多语言进行了优化,在对中、英、代码数据的高效编解码的基础上,对部分多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强。
237
+ 词表对数字按单个数字位切分。调用较为高效的[tiktoken分词库](https://github.com/openai/tiktoken)进行分词。
238
+
239
+ For position encoding, FFN activation function, and normalization calculation methods, we adopt the prevalent practices, i.e., RoPE relative position encoding, SwiGLU for activation function, and RMSNorm for normalization (optional installation of flash-attention for acceleration).
240
+
241
+ For tokenization, compared to the current mainstream open-source models based on Chinese and English vocabularies, Qwen-1.8B-Chat uses a vocabulary of over 150K tokens.
242
+ It first considers efficient encoding of Chinese, English, and code data, and is also more friendly to multilingual languages, enabling users to directly enhance the capability of some languages without expanding the vocabulary.
243
+ It segments numbers by single digit, and calls the [tiktoken](https://github.com/openai/tiktoken) tokenizer library for efficient tokenization.
244
+
245
+ ## 评测效果(Evaluation)
246
+
247
+ 对于Qwen-1.8B-Chat模型,我们同样评测了常规的中文理解(C-Eval)、英文理解(MMLU)、代码(HumanEval)和数学(GSM8K)等权威任务,同时包含了长序列任务的评测结果。由于Qwen-1.8B-Chat模型经过对齐后,激发了较强的外部系统调用能力,我们还进行了工具使用能力方面的评测。
248
+
249
+ 提示:由于硬件和框架造成的舍入误差,复现结果如有波动属于正常现象。
250
+
251
+ For Qwen-1.8B-Chat, we also evaluate the model on C-Eval, MMLU, HumanEval, GSM8K, etc., as well as the benchmark evaluation for long-context understanding, and tool usage.
252
+
253
+ Note: Due to rounding errors caused by hardware and framework, differences in reproduced results are possible.
254
+
255
+ ### 中文评测(Chinese Evaluation)
256
+
257
+ #### C-Eval
258
+
259
+ 在[C-Eval](https://arxiv.org/abs/2305.08322)验证集上,我们评价了Qwen-1.8B-Chat模型的zero-shot准确率
260
+
261
+ We demonstrate the zero-shot accuracy of Qwen-1.8B-Chat on C-Eval validation set
262
+
263
+ | Model | Avg. Acc. |
264
+ |:------------------------:|:---------:|
265
+ | **Qwen-7B-Chat** | 54.2 |
266
+ | InternLM-7B-Chat | 53.2 |
267
+ | **Qwen-1.8B-Chat** | 55.6 |
268
+ | ChatGLM2-6B-Chat | 50.7 |
269
+ | Baichuan-13B-Chat | 50.4 |
270
+ | Chinese-Alpaca-Plus-13B | 43.3 |
271
+ | Chinese-Alpaca-2-7B | 41.3 |
272
+ | LLaMA2-13B-Chat | 40.6 |
273
+ | LLaMA2-7B-Chat | 31.9 |
274
+ | OpenLLaMA-Chinese-3B | 24.4 |
275
+ | Firefly-Bloom-1B4 | 23.6 |
276
+ | OpenBuddy-3B | 23.5 |
277
+ | RedPajama-INCITE-Chat-3B | 18.3 |
278
+
279
+ C-Eval测试集上,Qwen-1.8B-Chat模型的zero-shot准确率结果如下:
280
+
281
+ The zero-shot accuracy of Qwen-1.8B-Chat on C-Eval testing set is provided below:
282
+
283
+ | Model | Avg. | STEM | Social Sciences | Humanities | Others |
284
+ | :---------------------: | :------: | :--: | :-------------: | :--------: | :----: |
285
+ | **Qwen-7B-Chat** | 54.6 | 47.8 | 67.6 | 59.3 | 50.6 |
286
+ | Baichuan-13B-Chat | 51.5 | 43.7 | 64.6 | 56.2 | 49.2 |
287
+ | ChatGLM2-6B-Chat | 50.1 | 46.4 | 60.4 | 50.6 | 46.9 |
288
+ | **Qwen-1.8B-Chat** | 53.8 | 48.4 | 68.0 | 56.5 | 48.3 |
289
+ | Chinese-Alpaca-Plus-13B | 41.5 | 36.6 | 49.7 | 43.1 | 41.2 |
290
+ | Chinese-Alpaca-2-7B | 40.3 | - | - | - | - |
291
+
292
+ ### 英文评测(English Evaluation)
293
+
294
+ #### MMLU
295
+
296
+ [MMLU](https://arxiv.org/abs/2009.03300)评测集上,Qwen-1.8B-Chat模型的zero-shot准确率如下,效果同样在同类对齐模型中同样表现较优。
297
+
298
+ The zero-shot accuracy of Qwen-1.8B-Chat on MMLU is provided below.
299
+ The performance of Qwen-1.8B-Chat still on the top between other human-aligned models with comparable size.
300
+
301
+ | Model | Avg. Acc. |
302
+ |:------------------------:|:---------:|
303
+ | **Qwen-7B-Chat** | 53.9 |
304
+ | ChatGLM2-12B-Chat | 52.1 |
305
+ | Baichuan-13B-Chat | 52.1 |
306
+ | InternLM-7B-Chat | 50.8 |
307
+ | LLaMA2-7B-Chat | 47.0 |
308
+ | ChatGLM2-6B-Chat | 45.5 |
309
+ | **Qwen-1.8B-Chat** | 43.3 |
310
+ | OpenLLaMA-Chinese-3B | 25.7 |
311
+ | OpenBuddy-3B | 25.5 |
312
+ | RedPajama-INCITE-Chat-3B | 25.5 |
313
+ | Firefly-Bloom-1B4 | 23.8 |
314
+
315
+ ### 代码评测(Coding Evaluation)
316
+
317
+ Qwen-1.8B-Chat在[HumanEval](https://github.com/openai/human-eval)的zero-shot Pass@1效果如下
318
+
319
+ The zero-shot Pass@1 of Qwen-1.8B-Chat on [HumanEval](https://github.com/openai/human-eval) is demonstrated below
320
+
321
+ | Model | Pass@1 |
322
+ |:------------------------:|:------:|
323
+ | **Qwen-7B-Chat** | 24.4 |
324
+ | LLaMA2-13B-Chat | 18.9 |
325
+ | Baichuan-13B-Chat | 16.5 |
326
+ | InternLM-7B-Chat | 14.0 |
327
+ | LLaMA2-7B-Chat | 12.2 |
328
+ | **Qwen-1.8B-Chat** | 26.2 |
329
+ | OpenBuddy-3B | 10.4 |
330
+ | RedPajama-INCITE-Chat-3B | 6.1 |
331
+ | OpenLLaMA-Chinese-3B | 4.9 |
332
+ | Firefly-Bloom-1B4 | 0.6 |
333
+
334
+ ### 数学评测(Mathematics Evaluation)
335
+
336
+ 在评测数学能力的[GSM8K](https://github.com/openai/grade-school-math)上,Qwen-1.8B-Chat的准确率结果如下
337
+
338
+ The accuracy of Qwen-1.8B-Chat on GSM8K is shown below
339
+
340
+ | Model | Zero-shot Acc. | 4-shot Acc. |
341
+ |:------------------------:|:--------------:|:-----------:|
342
+ | **Qwen-7B-Chat** | 41.1 | 43.5 |
343
+ | ChatGLM2-12B-Chat | - | 38.1 |
344
+ | Baichuan-13B-Chat | - | 36.3 |
345
+ | InternLM-7B-Chat | 32.6 | 34.5 |
346
+ | LLaMA2-13B-Chat | 29.4 | 36.7 |
347
+ | **Qwen-1.8B-Chat** | 33.7 | 30.2 |
348
+ | LLaMA2-7B-Chat | 20.4 | 28.2 |
349
+ | ChatGLM2-6B-Chat | - | 28.0 |
350
+ | OpenBuddy-3B | 10.6 | 12.6 |
351
+ | OpenLLaMA-Chinese-3B | 2.6 | 3.0 |
352
+ | RedPajama-INCITE-Chat-3B | 2.5 | 2.5 |
353
+ | Firefly-Bloom-1B4 | 2.4 | 1.8 |
354
+
355
+ ### 工具使用能力的评测(Tool Usage)
356
+
357
+ #### ReAct Prompting
358
+
359
+ 千问支持通过 [ReAct Prompting](https://arxiv.org/abs/2210.03629) 调用插件/工具/API。ReAct 也是 [LangChain](https://python.langchain.com/) 框架采用的主要方式之一。在我们开源的、用于评估工具使用能力的评测基准上,千问的表现如下:
360
+
361
+ Qwen-1.8B-Chat supports calling plugins/tools/APIs through [ReAct Prompting](https://arxiv.org/abs/2210.03629). ReAct is also one of the main approaches used by the [LangChain](https://python.langchain.com/) framework. In our evaluation benchmark for assessing tool usage capabilities, Qwen-1.8B-Chat's performance is as follows:
362
+
363
+ | Model | Tool Selection (Acc.↑) | Tool Input (Rouge-L↑) | False Positive Error”↓ |
364
+ |:------------------:|:----------------------:|:---------------------:|:----------------------:|
365
+ | GPT-4 | 95% | **0.90** | 15% |
366
+ | GPT-3.5 | 85% | 0.88 | 75% |
367
+ | **Qwen-7B-Chat** | **99%** | 0.89 | **9.7%** |
368
+ | **Qwen-1.8B-Chat** | 92% | 0.89 | 19.3% |
369
+
370
+ > 评测基准中出现的插件均没有出现在千问的训练集中。该基准评估了模型在多个候选插件中选择正确插件的准确率、传入插件的参数的合理性、以及假阳率。假阳率(False Positive)定义:在处理不该调用插件的请求时,错误地调用了插件。
371
+
372
+ > The plugins that appear in the evaluation set do not appear in the training set of Qwen-1.8B-Chat. This benchmark evaluates the accuracy of the model in selecting the correct plugin from multiple candidate plugins, the rationality of the parameters passed into the plugin, and the false positive rate. False Positive: Incorrectly invoking a plugin when it should not have been called when responding to a query.
373
+
374
+ 关于 ReAct Prompting 的 prompt 怎么写、怎么使用,请参考 [ReAct 样例说明](examples/react_prompt.md)。使用工具能使模型更好地完成任务。基于千问的工具使用能力,我们能实现下图所展示的效果:
375
+
376
+ For how to write and use prompts for ReAct Prompting, please refer to [the ReAct examples](examples/react_prompt.md). The use of tools can enable the model to better perform tasks, as shown in the following figures:
377
+
378
+ ![](assets/react_showcase_001.png)
379
+ ![](assets/react_showcase_002.png)
380
+
381
+ #### Huggingface Agent
382
+
383
+ 千问还具备作为 [HuggingFace Agent](https://huggingface.co/docs/transformers/transformers_agents) 的能力。它在 Huggingface 提供的run模式评测基准上的表现如下:
384
+
385
+ Qwen-1.8B-Chat also has the capability to be used as a [HuggingFace Agent](https://huggingface.co/docs/transformers/transformers_agents). Its performance on the run-mode benchmark provided by HuggingFace is as follows:
386
+
387
+ | Model | Tool Selection↑ | Tool Used↑ | Code↑ |
388
+ |:------------------:|:---------------:|:----------:|:---------:|
389
+ | GPT-4 | **100** | **100** | **97.41** |
390
+ | GPT-3.5 | 95.37 | 96.30 | 87.04 |
391
+ | StarCoder-15.5B | 87.04 | 87.96 | 68.89 |
392
+ | **Qwen-7B-chat** | 90.74 | 92.59 | 74.07 |
393
+ | **Qwen-1.8B-chat** | 85.16 | 85.19 | 61.11 |
394
+ <br>
395
+
396
+ ## 评测复现(Reproduction)
397
+
398
+ 我们提供了评测脚本,方便��家复现模型效果,详见[链接](https://github.com/QwenLM/Qwen/tree/main/eval)。提示:由于硬件和框架造成的舍入误差,复现结果如有小幅波动属于正常现象。
399
+
400
+ We have provided evaluation scripts to reproduce the performance of our model, details as [link](https://github.com/QwenLM/Qwen/tree/main/eval).
401
+ <br>
402
+
403
+ ## FAQ
404
+
405
+ 如遇到问题,敬请查阅[FAQ](https://github.com/QwenLM/Qwen/blob/main/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。
406
+
407
+ If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen/blob/main/FAQ.md) and the issues first to search a solution before you launch a new issue.
408
+ <br>
409
+
410
+ ## 引用 (Citation)
411
+
412
+ 如果你觉得我们的工作对你有帮助,欢迎引用!
413
+
414
+ If you find our work helpful, feel free to give us a cite.
415
+
416
+ ```
417
+ @article{qwen,
418
+ title={Qwen Technical Report},
419
+ author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu},
420
+ journal={arXiv preprint arXiv:2309.16609},
421
+ year={2023}
422
+ }
423
+ ```
424
+ <br>
425
+
426
+ ## 使用协议(License Agreement)
427
+
428
+ 我们的代码和模型权重对学术研究完全开放。请查看[LICENSE](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20RESEARCH%20LICENSE%20AGREEMENT)文件了解具体的开源协议细节。如需商用,请联系我们。
429
+
430
+ Our code and checkpoints are open to research purpose. Check the [LICENSE](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20RESEARCH%20LICENSE%20AGREEMENT) for more details about the license. For commercial use, please contact us.
431
+ <br>
432
+
433
+ ## 联系我们(Contact Us)
434
+
435
+ 如果你想给我们的研发团队和产品团队留言,欢迎加入我们的微信群、钉钉群以及Discord!同时,也欢迎通过邮件([email protected])联系我们。
436
+
437
+ If you are interested to leave a message to either our research team or product team, join our Discord or WeChat groups! Also, feel free to send an email to [email protected].
438
+
assets/logo.jpg ADDED
assets/qwen_tokenizer.png ADDED
assets/react_showcase_001.png ADDED
assets/react_showcase_002.png ADDED
assets/wechat.png ADDED
config.json CHANGED
@@ -46,4 +46,4 @@
46
  "use_flash_attn": "auto",
47
  "use_logn_attn": true,
48
  "vocab_size": 151936
49
- }
 
46
  "use_flash_attn": "auto",
47
  "use_logn_attn": true,
48
  "vocab_size": 151936
49
+ }
examples/react_prompt.md ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ReAct Prompting 示例
2
+
3
+ 本文档将介绍如何用 ReAct Prompting 技术命令千问使用工具。
4
+
5
+ 本文档主要基本的原理概念介绍,并在文末附上了一些具体实现相关的 FAQ,但不含被调用插件的实际实现。如果您更喜欢一边调试实际可执行的代码、一边理解原理,可以转而阅读整合了 LangChain 常用工具的这个 [ipython notebook](https://github.com/QwenLM/Qwen-7B/blob/main/examples/langchain_tooluse.ipynb)。
6
+
7
+ 此外,本文档和前述的 ipython notebook 都仅介绍单轮对话的实现。如果想了解多轮对话下的实现,可参见 [react_demo.py](https://github.com/QwenLM/Qwen-7B/blob/main/examples/react_demo.py)。
8
+
9
+ ## 准备工作一:样例问题、样例工具
10
+
11
+ 假设我们有如下的一个适合用工具处理的 query,以及有夸克搜索、通义万相文生图这两个工具:
12
+
13
+ ```py
14
+ query = '现在给我画个五彩斑斓的黑。'
15
+
16
+ TOOLS = [
17
+ {
18
+ 'name_for_human':
19
+ '夸克搜索',
20
+ 'name_for_model':
21
+ 'quark_search',
22
+ 'description_for_model':
23
+ '夸克搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。',
24
+ 'parameters': [{
25
+ 'name': 'search_query',
26
+ 'description': '搜索关键词或短语',
27
+ 'required': True,
28
+ 'schema': {
29
+ 'type': 'string'
30
+ },
31
+ }],
32
+ },
33
+ {
34
+ 'name_for_human':
35
+ '通义万相',
36
+ 'name_for_model':
37
+ 'image_gen',
38
+ 'description_for_model':
39
+ '通义万相是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL',
40
+ 'parameters': [{
41
+ 'name': 'query',
42
+ 'description': '中文关键词,描述了希望图像具有什么内容',
43
+ 'required': True,
44
+ 'schema': {
45
+ 'type': 'string'
46
+ },
47
+ }],
48
+ },
49
+ ]
50
+ ```
51
+
52
+ ## 准备工作二:ReAct 模版
53
+
54
+ 我们将使用如下的 ReAct prompt 模版来激发千问使用工具的能力。
55
+
56
+ ```py
57
+ TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters} Format the arguments as a JSON object."""
58
+
59
+ REACT_PROMPT = """Answer the following questions as best you can. You have access to the following tools:
60
+
61
+ {tool_descs}
62
+
63
+ Use the following format:
64
+
65
+ Question: the input question you must answer
66
+ Thought: you should always think about what to do
67
+ Action: the action to take, should be one of [{tool_names}]
68
+ Action Input: the input to the action
69
+ Observation: the result of the action
70
+ ... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
71
+ Thought: I now know the final answer
72
+ Final Answer: the final answer to the original input question
73
+
74
+ Begin!
75
+
76
+ Question: {query}"""
77
+ ```
78
+
79
+ ## 步骤一:让千问判断要调用什么工具、生成工具入参
80
+
81
+ 首先我们需要根据 ReAct prompt 模版、query、工具的信息构建 prompt:
82
+
83
+ ```py
84
+ tool_descs = []
85
+ tool_names = []
86
+ for info in TOOLS:
87
+ tool_descs.append(
88
+ TOOL_DESC.format(
89
+ name_for_model=info['name_for_model'],
90
+ name_for_human=info['name_for_human'],
91
+ description_for_model=info['description_for_model'],
92
+ parameters=json.dumps(
93
+ info['parameters'], ensure_ascii=False),
94
+ )
95
+ )
96
+ tool_names.append(info['name_for_model'])
97
+ tool_descs = '\n\n'.join(tool_descs)
98
+ tool_names = ','.join(tool_names)
99
+
100
+ prompt = REACT_PROMPT.format(tool_descs=tool_descs, tool_names=tool_names, query=query)
101
+ print(prompt)
102
+ ```
103
+
104
+ 打印出来的、构建好的 prompt 如下:
105
+
106
+ ```
107
+ Answer the following questions as best you can. You have access to the following tools:
108
+
109
+ quark_search: Call this tool to interact with the 夸克搜索 API. What is the 夸克搜索 API useful for? 夸克搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。 Parameters: [{"name": "search_query", "description": "搜索关键词或短语", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
110
+
111
+ image_gen: Call this tool to interact with the 通义万相 API. What is the 通义万相 API useful for? 通义万相是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL Parameters: [{"name": "query", "description": "中文关键词,描述了希望图像具有什么内容", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
112
+
113
+ Use the following format:
114
+
115
+ Question: the input question you must answer
116
+ Thought: you should always think about what to do
117
+ Action: the action to take, should be one of [quark_search,image_gen]
118
+ Action Input: the input to the action
119
+ Observation: the result of the action
120
+ ... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
121
+ Thought: I now know the final answer
122
+ Final Answer: the final answer to the original input question
123
+
124
+ Begin!
125
+
126
+ Question: 现在给我画个五彩斑斓的黑。
127
+ ```
128
+
129
+ 将这个 prompt 送入千问,并记得设置 "Observation" 为 stop word (见本文末尾的 FAQ)—— 即让千问在预测到要生成的下一个词是 "Observation" 时马上停止生成 —— 则千问在得到这个 prompt 后会生成如下的结果:
130
+
131
+ ![](../assets/react_tutorial_001.png)
132
+
133
+ ```
134
+ Thought: 我应该使用通义万相API来生成一张五彩斑斓的黑的图片。
135
+ Action: image_gen
136
+ Action Input: {"query": "五彩斑斓的黑"}
137
+ ```
138
+
139
+ 在得到这个结果后,调用千问的开发者可以通过简单的解析提取出 `{"query": "五彩斑斓的黑"}` 并基于这个解析结果调用文生图服务 —— 这部分逻辑需要开发者自行实现,或者也可以使用千问商业版,商业版本将内部集成相关逻辑。
140
+
141
+ ## 步骤二:让千问根据插件返回结果继续作答
142
+
143
+ 让我们假设文生图插件返回了如下结果:
144
+
145
+ ```
146
+ {"status_code": 200, "request_id": "3d894da2-0e26-9b7c-bd90-102e5250ae03", "code": null, "message": "", "output": {"task_id": "2befaa09-a8b3-4740-ada9-4d00c2758b05", "task_status": "SUCCEEDED", "results": [{"url": "https://dashscope-result-sh.oss-cn-shanghai.aliyuncs.com/1e5e2015/20230801/1509/6b26bb83-469e-4c70-bff4-a9edd1e584f3-1.png"}], "task_metrics": {"TOTAL": 1, "SUCCEEDED": 1, "FAILED": 0}}, "usage": {"image_count": 1}}
147
+ ```
148
+
149
+ ![](../assets/wanx_colorful_black.png)
150
+
151
+ 接下来,我们可以将之前首次请求千问时用的 prompt 和 调用文生图插件的结果拼接成如下的新 prompt:
152
+
153
+ ```
154
+ Answer the following questions as best you can. You have access to the following tools:
155
+
156
+ quark_search: Call this tool to interact with the 夸克搜索 API. What is the 夸克搜索 API useful for? 夸克搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。 Parameters: [{"name": "search_query", "description": "搜索关键词或短语", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
157
+
158
+ image_gen: Call this tool to interact with the 通义万相 API. What is the 通义万相 API useful for? 通义万相是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL Parameters: [{"name": "query", "description": "中文关键词,描述了希望图像具有什么内容", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
159
+
160
+ Use the following format:
161
+
162
+ Question: the input question you must answer
163
+ Thought: you should always think about what to do
164
+ Action: the action to take, should be one of [quark_search,image_gen]
165
+ Action Input: the input to the action
166
+ Observation: the result of the action
167
+ ... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
168
+ Thought: I now know the final answer
169
+ Final Answer: the final answer to the original input question
170
+
171
+ Begin!
172
+
173
+ Question: 现在给我画个五彩斑斓的黑。
174
+ Thought: 我应该使用通义万相API来生成一张五彩斑斓的黑的图片。
175
+ Action: image_gen
176
+ Action Input: {"query": "五彩斑斓的黑"}
177
+ Observation: {"status_code": 200, "request_id": "3d894da2-0e26-9b7c-bd90-102e5250ae03", "code": null, "message": "", "output": {"task_id": "2befaa09-a8b3-4740-ada9-4d00c2758b05", "task_status": "SUCCEEDED", "results": [{"url": "https://dashscope-result-sh.oss-cn-shanghai.aliyuncs.com/1e5e2015/20230801/1509/6b26bb83-469e-4c70-bff4-a9edd1e584f3-1.png"}], "task_metrics": {"TOTAL": 1, "SUCCEEDED": 1, "FAILED": 0}}, "usage": {"image_count": 1}}
178
+ ```
179
+
180
+ 用这个新的拼接了文生图插件结果的新 prompt 去调用千问,将得到如下的最终回复:
181
+
182
+ ![](../assets/react_tutorial_002.png)
183
+
184
+ ```
185
+ Thought: 我已经成功使用通义万相API生成了一张五彩斑斓的黑的图片。
186
+ Final Answer: 我已经成功使用通义万相API生成了一张五彩斑斓的黑的图片https://dashscope-result-sh.oss-cn-shanghai.aliyuncs.com/1e5e2015/20230801/1509/6b26bb83-469e-4c70-bff4-a9edd1e584f3-1.png。
187
+ ```
188
+
189
+ 虽然对于文生图来说,这个第二次调用千问的步骤显得多余。但是对于搜索插件、代码执行插件、计算器插件等别的插件来说,这个第二次调用千问的步骤给了千问提炼、总结插件返回结果的机会。
190
+
191
+ ## FAQ
192
+
193
+ **怎么配置 "Observation" 这个 stop word?**
194
+
195
+ 通过 chat 接口的 stop_words_ids 指定:
196
+ ```py
197
+ react_stop_words = [
198
+ # tokenizer.encode('Observation'), # [37763, 367]
199
+ tokenizer.encode('Observation:'), # [37763, 367, 25]
200
+ tokenizer.encode('Observation:\n'), # [37763, 367, 510]
201
+ ]
202
+ response, history = model.chat(
203
+ tokenizer, query, history,
204
+ stop_words_ids=react_stop_words # 此接口用于增加 stop words
205
+ )
206
+ ```
207
+
208
+ 如果报错称不存在 stop_words_ids 此参数,可能是因为您用了老的代码,请重新执行 from_pretrained 拉取新的代码和模型。
209
+
210
+ 需要注意的是,当前的 tokenizer 对 `\n` 有一系列较复杂的聚合操作。比如例子中的`:\n`这两个字符便被聚合成了一个 token。因此配置 stop words 需要非常细致地预估 tokenizer 的行为。
211
+
212
+ **对 top_p 等推理参数有调参建议吗?**
213
+
214
+ 通常来讲,较低的 top_p 会有更高的准确度,但会牺牲回答的多样性、且更易出现重复某个词句的现象。
215
+
216
+ 可以按如下方式调整 top_p 为 0.5:
217
+ ```py
218
+ model.generation_config.top_p = 0.5
219
+ ```
220
+
221
+ 特别的,可以用如下方式关闭 top-p sampling,改用 greedy sampling,效果上相当于 top_p=0 或 temperature=0:
222
+ ```py
223
+ model.generation_config.do_sample = False # greedy decoding
224
+ ```
225
+
226
+ 此外,我们在 `model.chat()` 接口也提供了调整 top_p 等参数的接口。
227
+
228
+ **有解析Action、Action Input的参考代码吗?**
229
+
230
+ 有的,可以参考:
231
+ ```py
232
+ def parse_latest_plugin_call(text: str) -> Tuple[str, str]:
233
+ i = text.rfind('\nAction:')
234
+ j = text.rfind('\nAction Input:')
235
+ k = text.rfind('\nObservation:')
236
+ if 0 <= i < j: # If the text has `Action` and `Action input`,
237
+ if k < j: # but does not contain `Observation`,
238
+ # then it is likely that `Observation` is ommited by the LLM,
239
+ # because the output text may have discarded the stop word.
240
+ text = text.rstrip() + '\nObservation:' # Add it back.
241
+ k = text.rfind('\nObservation:')
242
+ if 0 <= i < j < k:
243
+ plugin_name = text[i + len('\nAction:'):j].strip()
244
+ plugin_args = text[j + len('\nAction Input:'):k].strip()
245
+ return plugin_name, plugin_args
246
+ return '', ''
247
+ ```
248
+
249
+ 此外,如果输出的 Action Input 内容是一段表示 JSON 对象的文本,我们建议使用 `json5` 包的 `json5.loads(...)` 方法加载。
modeling_qwen.py CHANGED
@@ -13,7 +13,6 @@ import torch
13
  import torch.nn.functional as F
14
  import torch.utils.checkpoint
15
  import warnings
16
- from torch.cuda.amp import autocast
17
 
18
  from torch.nn import CrossEntropyLoss
19
  from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
@@ -79,9 +78,10 @@ We detect you have activated flash attention support, but running model computat
79
  apply_rotary_emb_func = None
80
  rms_norm = None
81
  flash_attn_unpadded_func = None
 
82
 
83
  def _import_flash_attn():
84
- global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
85
  try:
86
  from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
87
  apply_rotary_emb_func = __apply_rotary_emb_func
@@ -102,14 +102,18 @@ def _import_flash_attn():
102
 
103
  try:
104
  import flash_attn
 
105
  if not hasattr(flash_attn, '__version__'):
106
  from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
107
  else:
108
  if int(flash_attn.__version__.split(".")[0]) >= 2:
 
 
109
  from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
110
  else:
111
  from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
112
  flash_attn_unpadded_func = __flash_attn_unpadded_func
 
113
  except ImportError:
114
  logger.warn(
115
  "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
@@ -182,6 +186,11 @@ class FlashSelfAttention(torch.nn.Module):
182
  seqlen_k = k.shape[1]
183
  seqlen_out = seqlen_q
184
 
 
 
 
 
 
185
  q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
186
  cu_seqlens_q = torch.arange(
187
  0,
@@ -311,7 +320,7 @@ class QWenAttention(nn.Module):
311
  warnings.warn("Failed to import KV cache kernels.")
312
  self.cache_kernels = None
313
 
314
- def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None):
315
  device = query.device
316
  if self.use_cache_quantization:
317
  qk, qk_scale, qk_zero = key
@@ -336,26 +345,13 @@ class QWenAttention(nn.Module):
336
  size_temp = value[0].size(-1)
337
  else:
338
  size_temp = value.size(-1)
339
- attn_weights = attn_weights / torch.full(
340
- [],
341
- size_temp ** 0.5,
342
- dtype=attn_weights.dtype,
343
- device=attn_weights.device,
344
- )
345
- if self.use_cache_quantization:
346
- query_length, key_length = query.size(-2), key[0].size(-2)
347
- else:
348
- query_length, key_length = query.size(-2), key.size(-2)
349
- causal_mask = registered_causal_mask[
350
- :, :, key_length - query_length : key_length, :key_length
351
- ]
352
  mask_value = torch.finfo(attn_weights.dtype).min
353
- mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
354
- attn_weights.device
355
- )
356
- attn_weights = torch.where(
357
- causal_mask, attn_weights.to(attn_weights.dtype), mask_value
358
- )
359
 
360
  if attention_mask is not None:
361
  attn_weights = attn_weights + attention_mask
@@ -482,7 +478,8 @@ class QWenAttention(nn.Module):
482
  else:
483
  present = None
484
 
485
- if self.use_logn_attn and not self.training:
 
486
  if self.use_cache_quantization:
487
  seq_start = key[0].size(2) - query.size(1)
488
  seq_end = key[0].size(2)
@@ -501,15 +498,19 @@ class QWenAttention(nn.Module):
501
  q, k, v = query, key, value
502
  attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
503
  else:
504
- registered_causal_mask = torch.tril(
505
- torch.ones((key.size(1), key.size(1)), dtype=torch.bool, device=key.device)
506
- ).view(1, 1, key.size(1), key.size(1))
 
 
 
 
507
  query = query.permute(0, 2, 1, 3)
508
  if not self.use_cache_quantization:
509
  key = key.permute(0, 2, 1, 3)
510
  value = value.permute(0, 2, 1, 3)
511
  if (
512
- registered_causal_mask is None
513
  and self.use_flash_attn
514
  and flash_attn_unpadded_func is not None
515
  and not self.is_fp32
@@ -518,13 +519,12 @@ class QWenAttention(nn.Module):
518
  raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
519
 
520
  if not self.use_cache_quantization and SUPPORT_TORCH2:
521
- causal_mask = registered_causal_mask[
522
- :, :, key.size(-2) - query.size(-2): key.size(-2), :key.size(-2)
523
- ]
524
  if attention_mask is not None:
525
  attention_mask = attention_mask.expand(
526
  -1, -1, causal_mask.size(2), -1
527
- ).masked_fill(~causal_mask, torch.finfo(query.dtype).min)
 
 
528
  else:
529
  attention_mask = causal_mask
530
  attn_output = F.scaled_dot_product_attention(
@@ -533,7 +533,7 @@ class QWenAttention(nn.Module):
533
  attn_weight = None
534
  else:
535
  attn_output, attn_weight = self._attn(
536
- query, key, value, registered_causal_mask, attention_mask, head_mask
537
  )
538
  context_layer = self._merge_heads(
539
  attn_output, self.num_heads, self.head_dim
@@ -549,6 +549,8 @@ class QWenAttention(nn.Module):
549
  and not self.is_fp32
550
  ):
551
  raise ValueError("Cannot output attentions while using flash-attn")
 
 
552
  else:
553
  outputs += (attn_weight,)
554
 
@@ -574,6 +576,7 @@ class QWenMLP(nn.Module):
574
  output = self.c_proj(intermediate_parallel)
575
  return output
576
 
 
577
  class QWenBlock(nn.Module):
578
  def __init__(self, config):
579
  super().__init__()
@@ -642,6 +645,7 @@ class QWenPreTrainedModel(PreTrainedModel):
642
  is_parallelizable = False
643
  supports_gradient_checkpointing = True
644
  _no_split_modules = ["QWenBlock"]
 
645
 
646
  def __init__(self, *inputs, **kwargs):
647
  super().__init__(*inputs, **kwargs)
@@ -933,11 +937,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
933
  assert (
934
  config.bf16 + config.fp16 + config.fp32 <= 1
935
  ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
936
- logger.warn(
937
- "Warning: please make sure that you are using the latest codes and checkpoints, "
938
- "especially if you used Qwen-7B before 09.25.2023."
939
- "请使用最新模型和代码,尤其如果你在9月25日前已经开始使用Qwen-7B,千万注意不要使用错误代码和模型。"
940
- )
941
 
942
  autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
943
 
@@ -990,7 +989,6 @@ class QWenLMHeadModel(QWenPreTrainedModel):
990
  self.lm_head.half()
991
  self.post_init()
992
 
993
-
994
  def get_output_embeddings(self):
995
  return self.lm_head
996
 
@@ -1000,22 +998,13 @@ class QWenLMHeadModel(QWenPreTrainedModel):
1000
  def prepare_inputs_for_generation(
1001
  self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
1002
  ):
1003
- token_type_ids = kwargs.get("token_type_ids", None)
1004
  if past_key_values:
1005
  input_ids = input_ids[:, -1].unsqueeze(-1)
1006
- if token_type_ids is not None:
1007
- token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
1008
 
1009
- attention_mask = kwargs.get("attention_mask", None)
1010
- position_ids = kwargs.get("position_ids", None)
1011
-
1012
- if attention_mask is not None and position_ids is None:
1013
- position_ids = attention_mask.long().cumsum(-1) - 1
1014
- position_ids.masked_fill_(attention_mask == 0, 1)
1015
- if past_key_values:
1016
- position_ids = position_ids[:, -1].unsqueeze(-1)
1017
  else:
1018
- position_ids = None
1019
 
1020
  if inputs_embeds is not None and past_key_values is None:
1021
  model_inputs = {"inputs_embeds": inputs_embeds}
@@ -1026,9 +1015,7 @@ class QWenLMHeadModel(QWenPreTrainedModel):
1026
  {
1027
  "past_key_values": past_key_values,
1028
  "use_cache": kwargs.get("use_cache"),
1029
- "position_ids": position_ids,
1030
  "attention_mask": attention_mask,
1031
- "token_type_ids": token_type_ids,
1032
  }
1033
  )
1034
  return model_inputs
@@ -1299,8 +1286,7 @@ class RotaryEmbedding(torch.nn.Module):
1299
  self._ntk_alpha_cached = 1.0
1300
  self._ntk_alpha_cached_list = [1.0]
1301
 
1302
- def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
1303
- seqlen = max_seq_len + offset
1304
  if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1305
  base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1306
  self.inv_freq = 1.0 / (
@@ -1323,10 +1309,10 @@ class RotaryEmbedding(torch.nn.Module):
1323
  cos, sin = emb.cos(), emb.sin()
1324
  self._rotary_pos_emb_cache = [cos, sin]
1325
 
1326
- def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
1327
- self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
1328
  cos, sin = self._rotary_pos_emb_cache
1329
- return [cos[:, offset : offset + max_seq_len], sin[:, offset : offset + max_seq_len]]
1330
 
1331
 
1332
  def _rotate_half(x):
@@ -1338,21 +1324,28 @@ def _rotate_half(x):
1338
 
1339
 
1340
  def apply_rotary_pos_emb(t, freqs):
 
 
 
 
 
 
 
 
 
1341
  cos, sin = freqs
 
1342
  if apply_rotary_emb_func is not None and t.is_cuda:
1343
- t_ = t.float()
1344
- cos = cos.squeeze(0).squeeze(1)[:, : cos.shape[-1] // 2]
1345
- sin = sin.squeeze(0).squeeze(1)[:, : sin.shape[-1] // 2]
1346
- output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
1347
- return output
 
1348
  else:
1349
- rot_dim = freqs[0].shape[-1]
1350
- cos, sin = freqs
1351
- t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
1352
- t_ = t_.float()
1353
- t_pass_ = t_pass_.float()
1354
- t_ = (t_ * cos) + (_rotate_half(t_) * sin)
1355
- return torch.cat((t_, t_pass_), dim=-1).type_as(t)
1356
 
1357
 
1358
  class RMSNorm(torch.nn.Module):
 
13
  import torch.nn.functional as F
14
  import torch.utils.checkpoint
15
  import warnings
 
16
 
17
  from torch.nn import CrossEntropyLoss
18
  from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
 
78
  apply_rotary_emb_func = None
79
  rms_norm = None
80
  flash_attn_unpadded_func = None
81
+ flash_attn_func = None
82
 
83
  def _import_flash_attn():
84
+ global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func, flash_attn_func
85
  try:
86
  from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
87
  apply_rotary_emb_func = __apply_rotary_emb_func
 
102
 
103
  try:
104
  import flash_attn
105
+ _flash_attn_func = None
106
  if not hasattr(flash_attn, '__version__'):
107
  from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
108
  else:
109
  if int(flash_attn.__version__.split(".")[0]) >= 2:
110
+ if int(flash_attn.__version__.split(".")[1]) >= 1:
111
+ from flash_attn.flash_attn_interface import flash_attn_func as _flash_attn_func
112
  from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
113
  else:
114
  from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
115
  flash_attn_unpadded_func = __flash_attn_unpadded_func
116
+ flash_attn_func = _flash_attn_func
117
  except ImportError:
118
  logger.warn(
119
  "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
 
186
  seqlen_k = k.shape[1]
187
  seqlen_out = seqlen_q
188
 
189
+ if flash_attn_func is not None and batch_size == 1:
190
+ dropout_p = self.dropout_p if self.training else 0
191
+ output = flash_attn_func(q, k, v, dropout_p, softmax_scale=self.softmax_scale, causal=self.causal)
192
+ return output
193
+
194
  q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
195
  cu_seqlens_q = torch.arange(
196
  0,
 
320
  warnings.warn("Failed to import KV cache kernels.")
321
  self.cache_kernels = None
322
 
323
+ def _attn(self, query, key, value, causal_mask=None, attention_mask=None, head_mask=None):
324
  device = query.device
325
  if self.use_cache_quantization:
326
  qk, qk_scale, qk_zero = key
 
345
  size_temp = value[0].size(-1)
346
  else:
347
  size_temp = value.size(-1)
348
+ attn_weights = attn_weights / (size_temp ** 0.5)
349
+
 
 
 
 
 
 
 
 
 
 
 
350
  mask_value = torch.finfo(attn_weights.dtype).min
351
+ if causal_mask is not None:
352
+ attn_weights = torch.where(
353
+ causal_mask, attn_weights.to(attn_weights.dtype), mask_value
354
+ )
 
 
355
 
356
  if attention_mask is not None:
357
  attn_weights = attn_weights + attention_mask
 
478
  else:
479
  present = None
480
 
481
+ key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
482
+ if key_size > self.seq_length and self.use_logn_attn and not self.training:
483
  if self.use_cache_quantization:
484
  seq_start = key[0].size(2) - query.size(1)
485
  seq_end = key[0].size(2)
 
498
  q, k, v = query, key, value
499
  attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
500
  else:
501
+ key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
502
+ if query.size(1) == key_size:
503
+ causal_mask = torch.tril(
504
+ torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)
505
+ ).view(1, 1, key_size, key_size)
506
+ else:
507
+ causal_mask = None
508
  query = query.permute(0, 2, 1, 3)
509
  if not self.use_cache_quantization:
510
  key = key.permute(0, 2, 1, 3)
511
  value = value.permute(0, 2, 1, 3)
512
  if (
513
+ causal_mask is None
514
  and self.use_flash_attn
515
  and flash_attn_unpadded_func is not None
516
  and not self.is_fp32
 
519
  raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
520
 
521
  if not self.use_cache_quantization and SUPPORT_TORCH2:
 
 
 
522
  if attention_mask is not None:
523
  attention_mask = attention_mask.expand(
524
  -1, -1, causal_mask.size(2), -1
525
+ )
526
+ if causal_mask is not None:
527
+ attention_mask.masked_fill(~causal_mask, torch.finfo(query.dtype).min)
528
  else:
529
  attention_mask = causal_mask
530
  attn_output = F.scaled_dot_product_attention(
 
533
  attn_weight = None
534
  else:
535
  attn_output, attn_weight = self._attn(
536
+ query, key, value, causal_mask, attention_mask, head_mask
537
  )
538
  context_layer = self._merge_heads(
539
  attn_output, self.num_heads, self.head_dim
 
549
  and not self.is_fp32
550
  ):
551
  raise ValueError("Cannot output attentions while using flash-attn")
552
+ elif not self.use_cache_quantization and SUPPORT_TORCH2:
553
+ raise ValueError("Cannot output attentions while using scaled_dot_product_attention")
554
  else:
555
  outputs += (attn_weight,)
556
 
 
576
  output = self.c_proj(intermediate_parallel)
577
  return output
578
 
579
+
580
  class QWenBlock(nn.Module):
581
  def __init__(self, config):
582
  super().__init__()
 
645
  is_parallelizable = False
646
  supports_gradient_checkpointing = True
647
  _no_split_modules = ["QWenBlock"]
648
+ _skip_keys_device_placement = "past_key_values"
649
 
650
  def __init__(self, *inputs, **kwargs):
651
  super().__init__(*inputs, **kwargs)
 
937
  assert (
938
  config.bf16 + config.fp16 + config.fp32 <= 1
939
  ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
 
 
 
 
 
940
 
941
  autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
942
 
 
989
  self.lm_head.half()
990
  self.post_init()
991
 
 
992
  def get_output_embeddings(self):
993
  return self.lm_head
994
 
 
998
  def prepare_inputs_for_generation(
999
  self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
1000
  ):
 
1001
  if past_key_values:
1002
  input_ids = input_ids[:, -1].unsqueeze(-1)
 
 
1003
 
1004
+ if input_ids.size(0) == 1:
1005
+ attention_mask = None
 
 
 
 
 
 
1006
  else:
1007
+ attention_mask = kwargs.get("attention_mask", None)
1008
 
1009
  if inputs_embeds is not None and past_key_values is None:
1010
  model_inputs = {"inputs_embeds": inputs_embeds}
 
1015
  {
1016
  "past_key_values": past_key_values,
1017
  "use_cache": kwargs.get("use_cache"),
 
1018
  "attention_mask": attention_mask,
 
1019
  }
1020
  )
1021
  return model_inputs
 
1286
  self._ntk_alpha_cached = 1.0
1287
  self._ntk_alpha_cached_list = [1.0]
1288
 
1289
+ def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
 
1290
  if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1291
  base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1292
  self.inv_freq = 1.0 / (
 
1309
  cos, sin = emb.cos(), emb.sin()
1310
  self._rotary_pos_emb_cache = [cos, sin]
1311
 
1312
+ def forward(self, max_seq_len, ntk_alpha=1.0):
1313
+ self.update_rotary_pos_emb_cache(max_seq_len, ntk_alpha)
1314
  cos, sin = self._rotary_pos_emb_cache
1315
+ return [cos[:, :max_seq_len], sin[:, :max_seq_len]]
1316
 
1317
 
1318
  def _rotate_half(x):
 
1324
 
1325
 
1326
  def apply_rotary_pos_emb(t, freqs):
1327
+ """ Apply rotary embedding to the first rotary_dim of the iput
1328
+
1329
+ Arguments:
1330
+ t (tensor(batch_size, seq_len, n_head, head_dim)):
1331
+ the input embedding/hidden states
1332
+ freqs (list[tensor(1, seq_len, 1, rotary_dim), tensor(1, seq_len, 1, rotary_dim)]):
1333
+ the cached cos/sin position embeddings
1334
+ """
1335
+ rot_dim = freqs[0].shape[-1]
1336
  cos, sin = freqs
1337
+ t_float = t.float()
1338
  if apply_rotary_emb_func is not None and t.is_cuda:
1339
+ # apply_rotary_emb in flash_attn requires cos/sin to be of
1340
+ # shape (seqlen, rotary_dim / 2) and apply rotary embedding
1341
+ # to the first rotary_dim of the input
1342
+ cos = cos.squeeze(0).squeeze(1)[:, : rot_dim // 2]
1343
+ sin = sin.squeeze(0).squeeze(1)[:, : rot_dim // 2]
1344
+ return apply_rotary_emb_func(t_float, cos, sin).type_as(t)
1345
  else:
1346
+ t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
1347
+ t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
1348
+ return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
 
 
 
 
1349
 
1350
 
1351
  class RMSNorm(torch.nn.Module):
quantize_config.json CHANGED
@@ -8,4 +8,4 @@
8
  "true_sequential": true,
9
  "model_name_or_path": null,
10
  "model_file_base_name": "model"
11
- }
 
8
  "true_sequential": true,
9
  "model_name_or_path": null,
10
  "model_file_base_name": "model"
11
+ }