--- library_name: transformers license: mit language: - en metrics: - accuracy --- # Model Card for Logic2Vision Logic2Vision is a [LLaVA-1.5-13B](https://huggingface.co/llava-hf/llava-1.5-13b-hf) model finetuned on [VisReas dataset](https://arxiv.org/abs/2403.10534) for complex visual reasoning tasks. ![results](https://huggingface.co/RE-N-Y/logic2vision/resolve/main/Code2Vision.png) ## Model Details ### Model Description Logic2Vision is a [LLaVA-1.5-13B](https://huggingface.co/llava-hf/llava-1.5-13b-hf) model finetuned on [VisReas dataset](https://arxiv.org/abs/2403.10534) for complex visual reasoning tasks. The model has been finetuned using LoRA to generate python pseudocode outputs to solve a complex visual reasoning tasks. - **Developed by:** Sangwu Lee and Syeda Akter - **Model type:** Multimodal (Text + Image) - **Language(s) (NLP):** English - **License:** MIT - **Finetuned from model:** [LLaVA-1.5-13B](https://huggingface.co/llava-hf/llava-1.5-13b-hf) ### Model Sources - **Repository:** TBD - **Paper:** [VisReas dataset](https://arxiv.org/abs/2403.10534) ## Uses The inference method is identical to [LLaVA-1.5-13B](https://huggingface.co/llava-hf/llava-1.5-13b-hf). ```python import torch from transformers import AutoProcessor, LlavaForConditionalGeneration from PIL import Image image = Image.open("") image = image.convert("RGB") question = "What material attribute do the stove, the oven behind the white and dirty wall and the tea_kettle have in common?" codes = """ selected_wall = select(wall) filtered_wall = filter(selected_wall, ['white', 'dirty']) related_oven = relate(oven, behind, o, filtered_wall) selected_stove = select(stove) selected_tea_kettle = select(tea_kettle) materials = query_material(related_oven, selected_stove, selected_tea_kettle) material = common(materials) """ prompt = """ USER: Executes the code and logs the results step-by-step to provide an answer to the question. Question {question} Code {codes} ASSISTANT: Log """ prompt = prompt.format(question=question, codes=codes) model = LlavaForConditionalGeneration.from_pretrained("RE-N-Y/logic2vision", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True) processor = AutoProcessor.from_pretrained("RE-N-Y/logic2vision") processor.tokenizer.pad_token = processor.tokenizer.eos_token processor.tokenizer.padding_side = "left" prompts = processor(images=image, text=prompt, return_tensors="pt") generate_ids = model.generate(**inputs, max_new_tokens=256) processor.batch_decode(generate_ids, skip_special_tokens=True) ``` ## Bias, Risks, and Limitations The model has been mostly trained on VisReas dataset which is generated from [Visual Genome](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html) dataset. Furthermore, since the VLM was mostly finetuned to solve visual reasoning tasks by "generating python pseudocode" outputs provided by the user. Hence, it may struggle to adopt to different prompt styles and code formats. ## Training / Evaluation Details The model has been finetuned using 2 A6000 GPUs on CMU LTI's Babel cluster. The model has been finetuned using LoRA (`r=8, alpha=16, dropout=0.05, task_type="CAUSAL_LM"`). LoRA modules were attached to `["q_proj", "v_proj"]`. We use DDP for distributed training and BF16 to speed up training. For more details, check [our paper](https://arxiv.org/abs/2403.10534)! ### Results ![results](https://huggingface.co/RE-N-Y/logic2vision/resolve/main/results.png) ## Citation **BibTeX:** ``` @misc{akter2024visreas, title={VISREAS: Complex Visual Reasoning with Unanswerable Questions}, author={Syeda Nahida Akter and Sangwu Lee and Yingshan Chang and Yonatan Bisk and Eric Nyberg}, year={2024}, eprint={2403.10534}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## Model Card Authors - Sangwu Lee - [Google Scholar](https://scholar.google.com/citations?user=FBJeGpAAAAAJ) - [Github](https://github.com/RE-N-Y) - [LinkedIn](https://www.linkedin.com/in/sangwulee/) - Syeda Akter - [Google Scholar](https://scholar.google.com/citations?hl=en&user=tZFFHYcAAAAJ) - [Github](https://github.com/snat1505027) - [LinkedIn](https://www.linkedin.com/in/syeda-nahida-akter-989770114/)