RMHalak commited on
Commit
5842882
·
verified ·
1 Parent(s): b38692b

Task: SequenceClassification

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: facebook/opt-6.7b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "facebook/opt-6.7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": [
18
+ "score",
19
+ "classifier",
20
+ "score"
21
+ ],
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "fc1",
28
+ "fc2",
29
+ "k_proj",
30
+ "q_proj",
31
+ "out_proj",
32
+ "v_proj"
33
+ ],
34
+ "task_type": "SEQ_CLS",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27242ced345b45768279c9e62dfaf41805467fbba343b86ede00c0984c7296f6
3
+ size 37826552
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "</s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "</s>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "1": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "2": {
14
+ "content": "</s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ }
21
+ },
22
+ "bos_token": "</s>",
23
+ "clean_up_tokenization_spaces": true,
24
+ "eos_token": "</s>",
25
+ "errors": "replace",
26
+ "model_max_length": 1000000000000000019884624838656,
27
+ "pad_token": "</s>",
28
+ "tokenizer_class": "GPT2Tokenizer",
29
+ "unk_token": "</s>"
30
+ }
trainer_state-opt-fp16-QLORA-super_glue-cb-sequence_classification.json ADDED
@@ -0,0 +1,722 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "eval_steps": 1,
6
+ "global_step": 40,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.25,
13
+ "grad_norm": 22.375,
14
+ "learning_rate": 2.5e-05,
15
+ "loss": 1.3311,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.25,
20
+ "eval_accuracy": 0.3548387096774194,
21
+ "eval_f1": 0.2145748987854251,
22
+ "eval_loss": 1.257245421409607,
23
+ "eval_runtime": 1.4238,
24
+ "eval_samples_per_second": 43.545,
25
+ "eval_steps_per_second": 2.809,
26
+ "step": 1
27
+ },
28
+ {
29
+ "epoch": 0.5,
30
+ "grad_norm": 23.125,
31
+ "learning_rate": 5e-05,
32
+ "loss": 1.3826,
33
+ "step": 2
34
+ },
35
+ {
36
+ "epoch": 0.5,
37
+ "eval_accuracy": 0.3709677419354839,
38
+ "eval_f1": 0.18930041152263377,
39
+ "eval_loss": 1.2128275632858276,
40
+ "eval_runtime": 1.4194,
41
+ "eval_samples_per_second": 43.681,
42
+ "eval_steps_per_second": 2.818,
43
+ "step": 2
44
+ },
45
+ {
46
+ "epoch": 0.75,
47
+ "grad_norm": 21.375,
48
+ "learning_rate": 4.868421052631579e-05,
49
+ "loss": 1.1411,
50
+ "step": 3
51
+ },
52
+ {
53
+ "epoch": 0.75,
54
+ "eval_accuracy": 0.43548387096774194,
55
+ "eval_f1": 0.20689655172413793,
56
+ "eval_loss": 1.1111390590667725,
57
+ "eval_runtime": 1.3732,
58
+ "eval_samples_per_second": 45.15,
59
+ "eval_steps_per_second": 2.913,
60
+ "step": 3
61
+ },
62
+ {
63
+ "epoch": 1.0,
64
+ "grad_norm": 19.125,
65
+ "learning_rate": 4.736842105263158e-05,
66
+ "loss": 1.0967,
67
+ "step": 4
68
+ },
69
+ {
70
+ "epoch": 1.0,
71
+ "eval_accuracy": 0.45161290322580644,
72
+ "eval_f1": 0.20740740740740746,
73
+ "eval_loss": 1.0505292415618896,
74
+ "eval_runtime": 1.4197,
75
+ "eval_samples_per_second": 43.671,
76
+ "eval_steps_per_second": 2.817,
77
+ "step": 4
78
+ },
79
+ {
80
+ "epoch": 1.25,
81
+ "grad_norm": 16.75,
82
+ "learning_rate": 4.605263157894737e-05,
83
+ "loss": 1.0499,
84
+ "step": 5
85
+ },
86
+ {
87
+ "epoch": 1.25,
88
+ "eval_accuracy": 0.46774193548387094,
89
+ "eval_f1": 0.23196004993757802,
90
+ "eval_loss": 1.023846983909607,
91
+ "eval_runtime": 1.4198,
92
+ "eval_samples_per_second": 43.669,
93
+ "eval_steps_per_second": 2.817,
94
+ "step": 5
95
+ },
96
+ {
97
+ "epoch": 1.5,
98
+ "grad_norm": 13.25,
99
+ "learning_rate": 4.473684210526316e-05,
100
+ "loss": 0.9663,
101
+ "step": 6
102
+ },
103
+ {
104
+ "epoch": 1.5,
105
+ "eval_accuracy": 0.46774193548387094,
106
+ "eval_f1": 0.23196004993757802,
107
+ "eval_loss": 1.0119235515594482,
108
+ "eval_runtime": 1.4209,
109
+ "eval_samples_per_second": 43.633,
110
+ "eval_steps_per_second": 2.815,
111
+ "step": 6
112
+ },
113
+ {
114
+ "epoch": 1.75,
115
+ "grad_norm": 14.625,
116
+ "learning_rate": 4.342105263157895e-05,
117
+ "loss": 1.0378,
118
+ "step": 7
119
+ },
120
+ {
121
+ "epoch": 1.75,
122
+ "eval_accuracy": 0.46774193548387094,
123
+ "eval_f1": 0.21245421245421245,
124
+ "eval_loss": 1.0040794610977173,
125
+ "eval_runtime": 1.4206,
126
+ "eval_samples_per_second": 43.643,
127
+ "eval_steps_per_second": 2.816,
128
+ "step": 7
129
+ },
130
+ {
131
+ "epoch": 2.0,
132
+ "grad_norm": 15.125,
133
+ "learning_rate": 4.210526315789474e-05,
134
+ "loss": 0.9995,
135
+ "step": 8
136
+ },
137
+ {
138
+ "epoch": 2.0,
139
+ "eval_accuracy": 0.46774193548387094,
140
+ "eval_f1": 0.23196004993757802,
141
+ "eval_loss": 0.9963457584381104,
142
+ "eval_runtime": 1.4208,
143
+ "eval_samples_per_second": 43.638,
144
+ "eval_steps_per_second": 2.815,
145
+ "step": 8
146
+ },
147
+ {
148
+ "epoch": 2.25,
149
+ "grad_norm": 6.09375,
150
+ "learning_rate": 4.078947368421053e-05,
151
+ "loss": 0.8568,
152
+ "step": 9
153
+ },
154
+ {
155
+ "epoch": 2.25,
156
+ "eval_accuracy": 0.46774193548387094,
157
+ "eval_f1": 0.21245421245421245,
158
+ "eval_loss": 0.9923135042190552,
159
+ "eval_runtime": 1.4203,
160
+ "eval_samples_per_second": 43.652,
161
+ "eval_steps_per_second": 2.816,
162
+ "step": 9
163
+ },
164
+ {
165
+ "epoch": 2.5,
166
+ "grad_norm": 8.6875,
167
+ "learning_rate": 3.9473684210526316e-05,
168
+ "loss": 0.9505,
169
+ "step": 10
170
+ },
171
+ {
172
+ "epoch": 2.5,
173
+ "eval_accuracy": 0.4838709677419355,
174
+ "eval_f1": 0.25513196480938416,
175
+ "eval_loss": 0.9838079810142517,
176
+ "eval_runtime": 1.4208,
177
+ "eval_samples_per_second": 43.636,
178
+ "eval_steps_per_second": 2.815,
179
+ "step": 10
180
+ },
181
+ {
182
+ "epoch": 2.75,
183
+ "grad_norm": 12.0,
184
+ "learning_rate": 3.815789473684211e-05,
185
+ "loss": 1.0523,
186
+ "step": 11
187
+ },
188
+ {
189
+ "epoch": 2.75,
190
+ "eval_accuracy": 0.4838709677419355,
191
+ "eval_f1": 0.26990838618745594,
192
+ "eval_loss": 0.9715851545333862,
193
+ "eval_runtime": 1.4206,
194
+ "eval_samples_per_second": 43.644,
195
+ "eval_steps_per_second": 2.816,
196
+ "step": 11
197
+ },
198
+ {
199
+ "epoch": 3.0,
200
+ "grad_norm": 9.25,
201
+ "learning_rate": 3.6842105263157895e-05,
202
+ "loss": 0.8034,
203
+ "step": 12
204
+ },
205
+ {
206
+ "epoch": 3.0,
207
+ "eval_accuracy": 0.5,
208
+ "eval_f1": 0.3108974358974359,
209
+ "eval_loss": 0.9636703133583069,
210
+ "eval_runtime": 1.4203,
211
+ "eval_samples_per_second": 43.653,
212
+ "eval_steps_per_second": 2.816,
213
+ "step": 12
214
+ },
215
+ {
216
+ "epoch": 3.25,
217
+ "grad_norm": 7.15625,
218
+ "learning_rate": 3.5526315789473684e-05,
219
+ "loss": 0.8381,
220
+ "step": 13
221
+ },
222
+ {
223
+ "epoch": 3.25,
224
+ "eval_accuracy": 0.5,
225
+ "eval_f1": 0.3108974358974359,
226
+ "eval_loss": 0.9614336490631104,
227
+ "eval_runtime": 1.4203,
228
+ "eval_samples_per_second": 43.652,
229
+ "eval_steps_per_second": 2.816,
230
+ "step": 13
231
+ },
232
+ {
233
+ "epoch": 3.5,
234
+ "grad_norm": 5.65625,
235
+ "learning_rate": 3.421052631578947e-05,
236
+ "loss": 0.9831,
237
+ "step": 14
238
+ },
239
+ {
240
+ "epoch": 3.5,
241
+ "eval_accuracy": 0.4838709677419355,
242
+ "eval_f1": 0.293480615118042,
243
+ "eval_loss": 0.9595750570297241,
244
+ "eval_runtime": 1.3701,
245
+ "eval_samples_per_second": 45.253,
246
+ "eval_steps_per_second": 2.92,
247
+ "step": 14
248
+ },
249
+ {
250
+ "epoch": 3.75,
251
+ "grad_norm": 4.21875,
252
+ "learning_rate": 3.289473684210527e-05,
253
+ "loss": 0.7901,
254
+ "step": 15
255
+ },
256
+ {
257
+ "epoch": 3.75,
258
+ "eval_accuracy": 0.4838709677419355,
259
+ "eval_f1": 0.293480615118042,
260
+ "eval_loss": 0.9619613289833069,
261
+ "eval_runtime": 1.4199,
262
+ "eval_samples_per_second": 43.667,
263
+ "eval_steps_per_second": 2.817,
264
+ "step": 15
265
+ },
266
+ {
267
+ "epoch": 4.0,
268
+ "grad_norm": 6.65625,
269
+ "learning_rate": 3.157894736842105e-05,
270
+ "loss": 0.7296,
271
+ "step": 16
272
+ },
273
+ {
274
+ "epoch": 4.0,
275
+ "eval_accuracy": 0.4838709677419355,
276
+ "eval_f1": 0.293480615118042,
277
+ "eval_loss": 0.9658597111701965,
278
+ "eval_runtime": 1.4204,
279
+ "eval_samples_per_second": 43.65,
280
+ "eval_steps_per_second": 2.816,
281
+ "step": 16
282
+ },
283
+ {
284
+ "epoch": 4.25,
285
+ "grad_norm": 8.25,
286
+ "learning_rate": 3.0263157894736844e-05,
287
+ "loss": 0.7682,
288
+ "step": 17
289
+ },
290
+ {
291
+ "epoch": 4.25,
292
+ "eval_accuracy": 0.4838709677419355,
293
+ "eval_f1": 0.293480615118042,
294
+ "eval_loss": 0.9644736051559448,
295
+ "eval_runtime": 1.4189,
296
+ "eval_samples_per_second": 43.695,
297
+ "eval_steps_per_second": 2.819,
298
+ "step": 17
299
+ },
300
+ {
301
+ "epoch": 4.5,
302
+ "grad_norm": 6.71875,
303
+ "learning_rate": 2.8947368421052634e-05,
304
+ "loss": 0.88,
305
+ "step": 18
306
+ },
307
+ {
308
+ "epoch": 4.5,
309
+ "eval_accuracy": 0.4838709677419355,
310
+ "eval_f1": 0.293480615118042,
311
+ "eval_loss": 0.9645444750785828,
312
+ "eval_runtime": 1.419,
313
+ "eval_samples_per_second": 43.694,
314
+ "eval_steps_per_second": 2.819,
315
+ "step": 18
316
+ },
317
+ {
318
+ "epoch": 4.75,
319
+ "grad_norm": 3.921875,
320
+ "learning_rate": 2.7631578947368426e-05,
321
+ "loss": 0.8078,
322
+ "step": 19
323
+ },
324
+ {
325
+ "epoch": 4.75,
326
+ "eval_accuracy": 0.4838709677419355,
327
+ "eval_f1": 0.293480615118042,
328
+ "eval_loss": 0.961181640625,
329
+ "eval_runtime": 1.4194,
330
+ "eval_samples_per_second": 43.679,
331
+ "eval_steps_per_second": 2.818,
332
+ "step": 19
333
+ },
334
+ {
335
+ "epoch": 5.0,
336
+ "grad_norm": 5.09375,
337
+ "learning_rate": 2.6315789473684212e-05,
338
+ "loss": 0.7689,
339
+ "step": 20
340
+ },
341
+ {
342
+ "epoch": 5.0,
343
+ "eval_accuracy": 0.4838709677419355,
344
+ "eval_f1": 0.293480615118042,
345
+ "eval_loss": 0.9596459269523621,
346
+ "eval_runtime": 1.419,
347
+ "eval_samples_per_second": 43.692,
348
+ "eval_steps_per_second": 2.819,
349
+ "step": 20
350
+ },
351
+ {
352
+ "epoch": 5.25,
353
+ "grad_norm": 10.0,
354
+ "learning_rate": 2.5e-05,
355
+ "loss": 1.0543,
356
+ "step": 21
357
+ },
358
+ {
359
+ "epoch": 5.25,
360
+ "eval_accuracy": 0.4838709677419355,
361
+ "eval_f1": 0.293480615118042,
362
+ "eval_loss": 0.9581180810928345,
363
+ "eval_runtime": 1.4191,
364
+ "eval_samples_per_second": 43.691,
365
+ "eval_steps_per_second": 2.819,
366
+ "step": 21
367
+ },
368
+ {
369
+ "epoch": 5.5,
370
+ "grad_norm": 3.515625,
371
+ "learning_rate": 2.368421052631579e-05,
372
+ "loss": 0.7845,
373
+ "step": 22
374
+ },
375
+ {
376
+ "epoch": 5.5,
377
+ "eval_accuracy": 0.4838709677419355,
378
+ "eval_f1": 0.293480615118042,
379
+ "eval_loss": 0.9573659300804138,
380
+ "eval_runtime": 1.4193,
381
+ "eval_samples_per_second": 43.684,
382
+ "eval_steps_per_second": 2.818,
383
+ "step": 22
384
+ },
385
+ {
386
+ "epoch": 5.75,
387
+ "grad_norm": 2.765625,
388
+ "learning_rate": 2.236842105263158e-05,
389
+ "loss": 0.7907,
390
+ "step": 23
391
+ },
392
+ {
393
+ "epoch": 5.75,
394
+ "eval_accuracy": 0.4838709677419355,
395
+ "eval_f1": 0.293480615118042,
396
+ "eval_loss": 0.9584291577339172,
397
+ "eval_runtime": 1.4194,
398
+ "eval_samples_per_second": 43.681,
399
+ "eval_steps_per_second": 2.818,
400
+ "step": 23
401
+ },
402
+ {
403
+ "epoch": 6.0,
404
+ "grad_norm": 3.15625,
405
+ "learning_rate": 2.105263157894737e-05,
406
+ "loss": 0.7345,
407
+ "step": 24
408
+ },
409
+ {
410
+ "epoch": 6.0,
411
+ "eval_accuracy": 0.4838709677419355,
412
+ "eval_f1": 0.293480615118042,
413
+ "eval_loss": 0.9615005850791931,
414
+ "eval_runtime": 1.4194,
415
+ "eval_samples_per_second": 43.679,
416
+ "eval_steps_per_second": 2.818,
417
+ "step": 24
418
+ },
419
+ {
420
+ "epoch": 6.25,
421
+ "grad_norm": 4.25,
422
+ "learning_rate": 1.9736842105263158e-05,
423
+ "loss": 0.7753,
424
+ "step": 25
425
+ },
426
+ {
427
+ "epoch": 6.25,
428
+ "eval_accuracy": 0.4838709677419355,
429
+ "eval_f1": 0.293480615118042,
430
+ "eval_loss": 0.965796709060669,
431
+ "eval_runtime": 1.4191,
432
+ "eval_samples_per_second": 43.689,
433
+ "eval_steps_per_second": 2.819,
434
+ "step": 25
435
+ },
436
+ {
437
+ "epoch": 6.5,
438
+ "grad_norm": 4.3125,
439
+ "learning_rate": 1.8421052631578947e-05,
440
+ "loss": 0.7508,
441
+ "step": 26
442
+ },
443
+ {
444
+ "epoch": 6.5,
445
+ "eval_accuracy": 0.4838709677419355,
446
+ "eval_f1": 0.293480615118042,
447
+ "eval_loss": 0.9699903726577759,
448
+ "eval_runtime": 1.4192,
449
+ "eval_samples_per_second": 43.688,
450
+ "eval_steps_per_second": 2.819,
451
+ "step": 26
452
+ },
453
+ {
454
+ "epoch": 6.75,
455
+ "grad_norm": 3.359375,
456
+ "learning_rate": 1.7105263157894737e-05,
457
+ "loss": 0.7477,
458
+ "step": 27
459
+ },
460
+ {
461
+ "epoch": 6.75,
462
+ "eval_accuracy": 0.4838709677419355,
463
+ "eval_f1": 0.293480615118042,
464
+ "eval_loss": 0.9734280705451965,
465
+ "eval_runtime": 1.4193,
466
+ "eval_samples_per_second": 43.684,
467
+ "eval_steps_per_second": 2.818,
468
+ "step": 27
469
+ },
470
+ {
471
+ "epoch": 7.0,
472
+ "grad_norm": 4.71875,
473
+ "learning_rate": 1.5789473684210526e-05,
474
+ "loss": 0.9474,
475
+ "step": 28
476
+ },
477
+ {
478
+ "epoch": 7.0,
479
+ "eval_accuracy": 0.4838709677419355,
480
+ "eval_f1": 0.293480615118042,
481
+ "eval_loss": 0.9768341779708862,
482
+ "eval_runtime": 1.4192,
483
+ "eval_samples_per_second": 43.687,
484
+ "eval_steps_per_second": 2.819,
485
+ "step": 28
486
+ },
487
+ {
488
+ "epoch": 7.25,
489
+ "grad_norm": 5.125,
490
+ "learning_rate": 1.4473684210526317e-05,
491
+ "loss": 0.9033,
492
+ "step": 29
493
+ },
494
+ {
495
+ "epoch": 7.25,
496
+ "eval_accuracy": 0.4838709677419355,
497
+ "eval_f1": 0.293480615118042,
498
+ "eval_loss": 0.9821304678916931,
499
+ "eval_runtime": 1.4191,
500
+ "eval_samples_per_second": 43.691,
501
+ "eval_steps_per_second": 2.819,
502
+ "step": 29
503
+ },
504
+ {
505
+ "epoch": 7.5,
506
+ "grad_norm": 3.859375,
507
+ "learning_rate": 1.3157894736842106e-05,
508
+ "loss": 0.7329,
509
+ "step": 30
510
+ },
511
+ {
512
+ "epoch": 7.5,
513
+ "eval_accuracy": 0.4838709677419355,
514
+ "eval_f1": 0.293480615118042,
515
+ "eval_loss": 0.9849578142166138,
516
+ "eval_runtime": 1.4195,
517
+ "eval_samples_per_second": 43.677,
518
+ "eval_steps_per_second": 2.818,
519
+ "step": 30
520
+ },
521
+ {
522
+ "epoch": 7.75,
523
+ "grad_norm": 3.625,
524
+ "learning_rate": 1.1842105263157895e-05,
525
+ "loss": 0.7054,
526
+ "step": 31
527
+ },
528
+ {
529
+ "epoch": 7.75,
530
+ "eval_accuracy": 0.4838709677419355,
531
+ "eval_f1": 0.293480615118042,
532
+ "eval_loss": 0.9871038794517517,
533
+ "eval_runtime": 1.4195,
534
+ "eval_samples_per_second": 43.677,
535
+ "eval_steps_per_second": 2.818,
536
+ "step": 31
537
+ },
538
+ {
539
+ "epoch": 8.0,
540
+ "grad_norm": 9.6875,
541
+ "learning_rate": 1.0526315789473684e-05,
542
+ "loss": 0.9037,
543
+ "step": 32
544
+ },
545
+ {
546
+ "epoch": 8.0,
547
+ "eval_accuracy": 0.4838709677419355,
548
+ "eval_f1": 0.293480615118042,
549
+ "eval_loss": 0.986328125,
550
+ "eval_runtime": 1.3698,
551
+ "eval_samples_per_second": 45.261,
552
+ "eval_steps_per_second": 2.92,
553
+ "step": 32
554
+ },
555
+ {
556
+ "epoch": 8.25,
557
+ "grad_norm": 4.0,
558
+ "learning_rate": 9.210526315789474e-06,
559
+ "loss": 0.8046,
560
+ "step": 33
561
+ },
562
+ {
563
+ "epoch": 8.25,
564
+ "eval_accuracy": 0.4838709677419355,
565
+ "eval_f1": 0.293480615118042,
566
+ "eval_loss": 0.9895294904708862,
567
+ "eval_runtime": 1.421,
568
+ "eval_samples_per_second": 43.632,
569
+ "eval_steps_per_second": 2.815,
570
+ "step": 33
571
+ },
572
+ {
573
+ "epoch": 8.5,
574
+ "grad_norm": 2.359375,
575
+ "learning_rate": 7.894736842105263e-06,
576
+ "loss": 0.7161,
577
+ "step": 34
578
+ },
579
+ {
580
+ "epoch": 8.5,
581
+ "eval_accuracy": 0.4838709677419355,
582
+ "eval_f1": 0.293480615118042,
583
+ "eval_loss": 0.9918173551559448,
584
+ "eval_runtime": 1.3694,
585
+ "eval_samples_per_second": 45.274,
586
+ "eval_steps_per_second": 2.921,
587
+ "step": 34
588
+ },
589
+ {
590
+ "epoch": 8.75,
591
+ "grad_norm": 7.8125,
592
+ "learning_rate": 6.578947368421053e-06,
593
+ "loss": 0.8239,
594
+ "step": 35
595
+ },
596
+ {
597
+ "epoch": 8.75,
598
+ "eval_accuracy": 0.4838709677419355,
599
+ "eval_f1": 0.293480615118042,
600
+ "eval_loss": 0.9916952848434448,
601
+ "eval_runtime": 1.4202,
602
+ "eval_samples_per_second": 43.657,
603
+ "eval_steps_per_second": 2.817,
604
+ "step": 35
605
+ },
606
+ {
607
+ "epoch": 9.0,
608
+ "grad_norm": 4.375,
609
+ "learning_rate": 5.263157894736842e-06,
610
+ "loss": 0.8111,
611
+ "step": 36
612
+ },
613
+ {
614
+ "epoch": 9.0,
615
+ "eval_accuracy": 0.4838709677419355,
616
+ "eval_f1": 0.293480615118042,
617
+ "eval_loss": 0.9914905428886414,
618
+ "eval_runtime": 1.4189,
619
+ "eval_samples_per_second": 43.695,
620
+ "eval_steps_per_second": 2.819,
621
+ "step": 36
622
+ },
623
+ {
624
+ "epoch": 9.25,
625
+ "grad_norm": 3.78125,
626
+ "learning_rate": 3.9473684210526315e-06,
627
+ "loss": 0.9011,
628
+ "step": 37
629
+ },
630
+ {
631
+ "epoch": 9.25,
632
+ "eval_accuracy": 0.4838709677419355,
633
+ "eval_f1": 0.293480615118042,
634
+ "eval_loss": 0.9921599626541138,
635
+ "eval_runtime": 1.4188,
636
+ "eval_samples_per_second": 43.7,
637
+ "eval_steps_per_second": 2.819,
638
+ "step": 37
639
+ },
640
+ {
641
+ "epoch": 9.5,
642
+ "grad_norm": 2.90625,
643
+ "learning_rate": 2.631578947368421e-06,
644
+ "loss": 0.8858,
645
+ "step": 38
646
+ },
647
+ {
648
+ "epoch": 9.5,
649
+ "eval_accuracy": 0.4838709677419355,
650
+ "eval_f1": 0.293480615118042,
651
+ "eval_loss": 0.9920575618743896,
652
+ "eval_runtime": 1.4203,
653
+ "eval_samples_per_second": 43.653,
654
+ "eval_steps_per_second": 2.816,
655
+ "step": 38
656
+ },
657
+ {
658
+ "epoch": 9.75,
659
+ "grad_norm": 3.765625,
660
+ "learning_rate": 1.3157894736842106e-06,
661
+ "loss": 0.822,
662
+ "step": 39
663
+ },
664
+ {
665
+ "epoch": 9.75,
666
+ "eval_accuracy": 0.4838709677419355,
667
+ "eval_f1": 0.293480615118042,
668
+ "eval_loss": 0.9910297989845276,
669
+ "eval_runtime": 1.4201,
670
+ "eval_samples_per_second": 43.658,
671
+ "eval_steps_per_second": 2.817,
672
+ "step": 39
673
+ },
674
+ {
675
+ "epoch": 10.0,
676
+ "grad_norm": 3.203125,
677
+ "learning_rate": 0.0,
678
+ "loss": 0.7812,
679
+ "step": 40
680
+ },
681
+ {
682
+ "epoch": 10.0,
683
+ "eval_accuracy": 0.4838709677419355,
684
+ "eval_f1": 0.293480615118042,
685
+ "eval_loss": 0.9894664883613586,
686
+ "eval_runtime": 1.4198,
687
+ "eval_samples_per_second": 43.668,
688
+ "eval_steps_per_second": 2.817,
689
+ "step": 40
690
+ },
691
+ {
692
+ "epoch": 10.0,
693
+ "step": 40,
694
+ "total_flos": 1.4174270733156352e+16,
695
+ "train_loss": 0.8902546644210816,
696
+ "train_runtime": 176.2791,
697
+ "train_samples_per_second": 13.842,
698
+ "train_steps_per_second": 0.227
699
+ }
700
+ ],
701
+ "logging_steps": 1,
702
+ "max_steps": 40,
703
+ "num_input_tokens_seen": 0,
704
+ "num_train_epochs": 10,
705
+ "save_steps": 500,
706
+ "stateful_callbacks": {
707
+ "TrainerControl": {
708
+ "args": {
709
+ "should_epoch_stop": false,
710
+ "should_evaluate": false,
711
+ "should_log": false,
712
+ "should_save": false,
713
+ "should_training_stop": false
714
+ },
715
+ "attributes": {}
716
+ }
717
+ },
718
+ "total_flos": 1.4174270733156352e+16,
719
+ "train_batch_size": 4,
720
+ "trial_name": null,
721
+ "trial_params": null
722
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02d7dfc1a5b8b4914415cbfd026790f7e606430bef215fdb07e0b937792ed753
3
+ size 5112
vocab.json ADDED
The diff for this file is too large to render. See raw diff