RSPRIMES1234
commited on
Upload 4 files
Browse files- example_use.py +5 -0
- model.h5 +3 -0
- model.py +91 -0
- requirements.txt +3 -0
example_use.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from model import load_model
|
2 |
+
|
3 |
+
melody_generator = load_model("path/to/model.h5", "path/to/mapping.json")
|
4 |
+
seed = "60 _ 60 _ 67 _ 67 _ 69 _ 69 _ 67 _ _"
|
5 |
+
melody = melody_generator.generate_melody(seed, 500, 64, 0.3)
|
model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e397acef2daf0f3f21fcc40297263423c5fa8148b324bdc985422ad293fb053
|
3 |
+
size 3802272
|
model.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow.keras as keras
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
class MelodyGenerator:
|
7 |
+
"""
|
8 |
+
This class represents a melody generator. It uses a pre-trained model to generate new melodies based on a given seed.
|
9 |
+
"""
|
10 |
+
|
11 |
+
def __init__(self, model_path="model.h5", mapping_path="mapping.json", sequence_length=64):
|
12 |
+
"""
|
13 |
+
Initializes the MelodyGenerator object.
|
14 |
+
|
15 |
+
:param model_path: Path to the trained model (default: "model.h5").
|
16 |
+
:param mapping_path: Path to the mapping file for symbols to integers (default: "mapping.json").
|
17 |
+
:param sequence_length: The length of input sequences for the model (default: 64).
|
18 |
+
"""
|
19 |
+
self.model = keras.models.load_model(model_path) # Load the pre-trained model
|
20 |
+
self.sequence_length = sequence_length # Store the sequence length
|
21 |
+
|
22 |
+
# Load the mappings from symbols (e.g., "60", "r", "_") to integers
|
23 |
+
with open(mapping_path, "r") as fp:
|
24 |
+
self._mappings = json.load(fp)
|
25 |
+
|
26 |
+
# Initialize the seed with the start symbol "/" repeated for the sequence length
|
27 |
+
self._start_symbols = ["/"] * sequence_length
|
28 |
+
|
29 |
+
def generate_melody(self, seed, num_steps, max_sequence_length, temperature):
|
30 |
+
"""
|
31 |
+
Generates a melody based on the given seed.
|
32 |
+
|
33 |
+
:param seed: Initial sequence of musical symbols (e.g., "60 _ _ r").
|
34 |
+
:param num_steps: Number of steps (time units) to generate.
|
35 |
+
:param max_sequence_length: Maximum length of the input sequence for the model.
|
36 |
+
:param temperature: Controls the randomness of the generated melody. Higher temperature -> more random.
|
37 |
+
:return: The generated melody as a list of symbols.
|
38 |
+
"""
|
39 |
+
seed = seed.split() # Split the seed into individual symbols
|
40 |
+
melody = seed # Initialize the melody with the seed
|
41 |
+
seed = self._start_symbols + seed # Prepend start symbols to the seed
|
42 |
+
|
43 |
+
# Convert seed symbols to their corresponding integer representation
|
44 |
+
seed = [self._mappings[symbol] for symbol in seed]
|
45 |
+
|
46 |
+
# Generate melody step by step
|
47 |
+
for _ in range(num_steps):
|
48 |
+
seed = seed[-max_sequence_length:] # Keep only the last max_sequence_length elements
|
49 |
+
onehot_seed = keras.utils.to_categorical(seed, num_classes=len(self._mappings)) # One-hot encode the seed
|
50 |
+
onehot_seed = onehot_seed[np.newaxis, ...] # Add a batch dimension
|
51 |
+
|
52 |
+
# Predict probabilities for the next symbol
|
53 |
+
probabilities = self.model.predict(onehot_seed)[0]
|
54 |
+
|
55 |
+
# Sample the next symbol based on temperature
|
56 |
+
output_int = self._sample_with_temperature(probabilities, temperature)
|
57 |
+
seed.append(output_int) # Add the new symbol to the seed
|
58 |
+
|
59 |
+
# Convert the integer back to its symbol representation
|
60 |
+
output_symbol = [k for k, v in self._mappings.items() if v == output_int][0]
|
61 |
+
|
62 |
+
# Check for end of sequence symbol
|
63 |
+
if output_symbol == "/":
|
64 |
+
break
|
65 |
+
|
66 |
+
melody.append(output_symbol)
|
67 |
+
|
68 |
+
return melody # Return the generated melody
|
69 |
+
|
70 |
+
def _sample_with_temperature(self, probabilities, temperature):
|
71 |
+
"""
|
72 |
+
Samples an index from the given probabilities with temperature adjustment.
|
73 |
+
|
74 |
+
:param probabilities: List of probabilities for each symbol.
|
75 |
+
:param temperature: The temperature for sampling.
|
76 |
+
:return: The sampled index.
|
77 |
+
"""
|
78 |
+
# Adjust probabilities with temperature
|
79 |
+
predictions = np.log(probabilities) / temperature
|
80 |
+
probabilities = np.exp(predictions) / np.sum(np.exp(predictions))
|
81 |
+
|
82 |
+
# Sample an index from the adjusted probabilities
|
83 |
+
choices = range(len(probabilities))
|
84 |
+
index = np.random.choice(choices, p=probabilities)
|
85 |
+
|
86 |
+
return index # Return the sampled index
|
87 |
+
|
88 |
+
|
89 |
+
# Helper function to load a MelodyGenerator instance
|
90 |
+
def load_model(model_path="model.h5", mapping_path="mapping.json"):
|
91 |
+
return MelodyGenerator(model_path, mapping_path)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow==2.6.0
|
2 |
+
music21==7.1.0
|
3 |
+
numpy==1.19.5
|