zhiyuan8 commited on
Commit
c1a12af
·
verified ·
1 Parent(s): 7b9d21d

Add files using upload-large-folder tool

Browse files
README.md CHANGED
@@ -1,3 +1,59 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ARWKV-7B-GATE-MLP (Preview 0.1)
2
+
3
+ <img src="./figures/architecture.png" alt="ARWKV Hybrid Architecture" width="30%">
4
+
5
+ *Preview version with RWKV-7 time mixing and Transformer MLP*
6
+
7
+ ## 📌 Overview
8
+
9
+ **ALL YOU NEED IS RWKV**
10
+
11
+ This is an **early preview** of our 7B parameter hybrid RNN-Transformer model, trained on 2k context length through 3-stage knowledge distillation from Qwen2.5-7B-Instruct. While being a foundational version, it demonstrates:
12
+
13
+ - ✅ RWKV-7's efficient recurrence mechanism
14
+ - ✅ No self-attention, fully O(n)
15
+ - ✅ Constant VRAM usage
16
+ - ✅ Single-GPU trainability
17
+
18
+ **Roadmap Notice**: We will soon open-source different enhanced versions with:
19
+ - 🚀 16k+ context capability
20
+ - 🧮 Math-specific improvements
21
+ - 📚 RL enhanced reasoning model
22
+
23
+ ## How to use
24
+ ```shell
25
+ pip3 install --upgrade rwkv-fla transformers
26
+ ```
27
+
28
+ ```python
29
+ from transformers import AutoModelForCausalLM, AutoTokenizer
30
+
31
+
32
+ model = AutoModelForCausalLM.from_pretrained(
33
+ "RWKV-Red-Team/ARWKV-7B-Preview-0.1",
34
+ device_map="auto",
35
+ torch_dtype=torch.float16,
36
+ trust_remote_code=True,
37
+ )
38
+ tokenizer = AutoTokenizer.from_pretrained(
39
+ "RWKV-Red-Team/ARWKV-7B-Preview-0.1"
40
+ )
41
+ ```
42
+
43
+ ## 🔑 Key Features
44
+ | Component | Specification | Note |
45
+ |-----------|---------------|------|
46
+ | Architecture | RWKV-7 TimeMix + SwiGLU | Hybrid design |
47
+ | Context Window | 2048 training CTX | *Preview limitation* |
48
+ | Training Tokens | 40M | Distillation-focused |
49
+ | Precision | FP16 inference recommended | 15%↑ vs BF16 |
50
+
51
+ ## 🏗️ Architecture Highlights
52
+ ### Core Modification Flow
53
+ ```diff
54
+ Qwen2.5 Decoder Layer:
55
+ - Grouped Query Attention
56
+ + RWKV-7 Time Mixing (Eq.3)
57
+ - RoPE Positional Encoding
58
+ + State Recurrence
59
+ = Hybrid Layer Output
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RwkvHybridForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_rwkv_hybrid.RwkvHybridConfig",
7
+ "AutoModelForCausalLM": "modeling_rwkv_hybrid.RwkvHybridForCausalLM"
8
+ },
9
+ "attention_dropout": 0.0,
10
+ "bos_token_id": 151643,
11
+ "eos_token_id": 151645,
12
+ "head_size": 64,
13
+ "head_size_divisor": 8,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 3584,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 18944,
18
+ "max_position_embeddings": 32768,
19
+ "max_window_layers": 28,
20
+ "model_type": "rwkv_hybrid",
21
+ "num_attention_heads": 28,
22
+ "num_hidden_layers": 28,
23
+ "num_key_value_heads": 4,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_scaling": null,
26
+ "rope_theta": 1000000.0,
27
+ "sliding_window": null,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "float16",
30
+ "transformers_version": "4.49.0.dev0",
31
+ "use_cache": true,
32
+ "use_sliding_window": false,
33
+ "vocab_size": 152064,
34
+ "wkv_has_gate": true,
35
+ "wkv_has_group_norm": false,
36
+ "wkv_version": 7
37
+ }
configuration_rwkv_hybrid.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 RWKV team. All rights reserved.
3
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """RwkvHybrid model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.modeling_rope_utils import rope_config_validation
20
+ from transformers.utils import logging
21
+ from typing import Optional, Union, List
22
+
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ class RwkvHybridConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`RwkvHybridModel`]. It is used to instantiate a
30
+ RwkvHybrid model according to the specified arguments, defining the model architecture. Instantiating a configuration
31
+ with the defaults will yield a similar configuration to that of
32
+ RwkvHybrid-7B-beta.
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 151936):
40
+ Vocabulary size of the RwkvHybrid model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`RwkvHybridModel`]
42
+ hidden_size (`int`, *optional*, defaults to 4096):
43
+ Dimension of the hidden representations.
44
+ intermediate_size (`int`, *optional*, defaults to 22016):
45
+ Dimension of the MLP representations.
46
+ num_hidden_layers (`int`, *optional*, defaults to 32):
47
+ Number of hidden layers in the Transformer encoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 32):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ num_key_value_heads (`int`, *optional*, defaults to 32):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
60
+ The maximum sequence length that this model might ever be used with.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
69
+ Whether the model's input and output word embeddings should be tied.
70
+ rope_theta (`float`, *optional*, defaults to 10000.0):
71
+ The base period of the RoPE embeddings.
72
+ rope_scaling (`Dict`, *optional*):
73
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
74
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
75
+ accordingly.
76
+ Expected contents:
77
+ `rope_type` (`str`):
78
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
79
+ 'llama3'], with 'default' being the original RoPE implementation.
80
+ `factor` (`float`, *optional*):
81
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
82
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
83
+ original maximum pre-trained length.
84
+ `original_max_position_embeddings` (`int`, *optional*):
85
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
86
+ pretraining.
87
+ `attention_factor` (`float`, *optional*):
88
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
89
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
90
+ `factor` field to infer the suggested value.
91
+ `beta_fast` (`float`, *optional*):
92
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
93
+ ramp function. If unspecified, it defaults to 32.
94
+ `beta_slow` (`float`, *optional*):
95
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
96
+ ramp function. If unspecified, it defaults to 1.
97
+ `short_factor` (`List[float]`, *optional*):
98
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
99
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
100
+ size divided by the number of attention heads divided by 2
101
+ `long_factor` (`List[float]`, *optional*):
102
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
103
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
104
+ size divided by the number of attention heads divided by 2
105
+ `low_freq_factor` (`float`, *optional*):
106
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
107
+ `high_freq_factor` (`float`, *optional*):
108
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
109
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
110
+ Whether to use sliding window attention.
111
+ sliding_window (`int`, *optional*, defaults to 4096):
112
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
113
+ max_window_layers (`int`, *optional*, defaults to 28):
114
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
115
+ attention_dropout (`float`, *optional*, defaults to 0.0):
116
+ The dropout ratio for the attention probabilities.
117
+ head_size (`int`, *optional*, defaults to 64):
118
+ Dimensionality of each RWKV attention head. Defines the hidden dimension size for RWKV attention mechanisms.
119
+ head_size_divisor (`int`, *optional*, defaults to 8):
120
+ Constraint for head_size initialization, typically set to the square root of head_size. Ensures divisibility
121
+ between hidden_size and head_size.
122
+ wkv_version (`int`, *optional*, defaults to 7):
123
+ Version of RWKV attention implementation. Currently supports:
124
+ - 6: Original implementation requiring `wkv_has_gate=True` and `wkv_use_vfirst=False`
125
+ - 7: Improved version requiring `wkv_use_vfirst=True`
126
+ wkv_has_gate (`bool`, *optional*, defaults to False):
127
+ Whether to include gating mechanism in RWKV attention. Required for version 6.
128
+ wkv_has_group_norm (`bool`, *optional*, defaults to True):
129
+ Whether to apply group normalization in RWKV attention layers.
130
+ wkv_use_vfirst (`bool`, *optional*, defaults to True):
131
+ Whether to prioritize value projection in RWKV attention computation. Required for version 7.
132
+ wkv_layers (`Union[str, List[int]]`, *optional*, defaults to None):
133
+ Specifies which layers use RWKV attention:
134
+ - `"full"` or `None`: All layers use RWKV
135
+ - List of integers: Only specified layers (e.g., `[0,1,2]`) use RWKV attention
136
+
137
+ ```python
138
+ >>> from transformers import RwkvHybridModel, RwkvHybridConfig
139
+
140
+ >>> # Initializing a RwkvHybrid style configuration
141
+ >>> configuration = RwkvHybridConfig()
142
+
143
+ >>> # Initializing a model from the RwkvHybrid-7B style configuration
144
+ >>> model = RwkvHybridModel(configuration)
145
+
146
+ >>> # Accessing the model configuration
147
+ >>> configuration = model.config
148
+ ```"""
149
+
150
+ model_type = "rwkv_hybrid"
151
+ keys_to_ignore_at_inference = ["past_key_values"]
152
+
153
+ # Default tensor parallel plan for base model `RwkvHybrid`
154
+ base_model_tp_plan = {
155
+ "layers.*.self_attn.q_proj": "colwise",
156
+ "layers.*.self_attn.k_proj": "colwise",
157
+ "layers.*.self_attn.v_proj": "colwise",
158
+ "layers.*.self_attn.o_proj": "rowwise",
159
+ "layers.*.mlp.gate_proj": "colwise",
160
+ "layers.*.mlp.up_proj": "colwise",
161
+ "layers.*.mlp.down_proj": "rowwise",
162
+ }
163
+
164
+ def __init__(
165
+ self,
166
+ vocab_size: int = 151936,
167
+ hidden_size: int = 4096,
168
+ intermediate_size: int = 22016,
169
+ num_hidden_layers: int = 32,
170
+ num_attention_heads: int = 32,
171
+ num_key_value_heads: int = 32,
172
+ head_size: int = 64,
173
+ head_size_divisor: int = 8,
174
+ hidden_act: str = "silu",
175
+ max_position_embeddings: int = 32768,
176
+ initializer_range: float = 0.02,
177
+ rms_norm_eps: float = 1e-6,
178
+ use_cache: bool = True,
179
+ tie_word_embeddings: bool = False,
180
+ rope_theta: float = 10000.0,
181
+ rope_scaling: Optional[dict] = None,
182
+ use_sliding_window: bool = False,
183
+ sliding_window: int = 4096,
184
+ max_window_layers: int = 28,
185
+ attention_dropout: float = 0.0,
186
+ wkv_version: int = 7,
187
+ wkv_has_gate: bool = False,
188
+ wkv_has_group_norm: bool = True,
189
+ wkv_use_vfirst: bool = True,
190
+ wkv_layers: Optional[Union[str, List[int]]] = None,
191
+ **kwargs,
192
+ ):
193
+ self.vocab_size = vocab_size
194
+ self.max_position_embeddings = max_position_embeddings
195
+ self.hidden_size = hidden_size
196
+ self.intermediate_size = intermediate_size
197
+ self.num_hidden_layers = num_hidden_layers
198
+ self.num_wkv_heads = hidden_size // head_size
199
+ assert hidden_size % head_size == 0, "hidden_size must be divisible by head_size"
200
+ self.num_attention_heads = num_attention_heads
201
+ self.use_sliding_window = use_sliding_window
202
+ self.sliding_window = sliding_window if use_sliding_window else None
203
+ self.max_window_layers = max_window_layers
204
+ self.head_size = head_size
205
+ self.head_size_divisor = head_size_divisor
206
+ self.wkv_version = wkv_version
207
+
208
+ self.wkv_has_gate = wkv_has_gate
209
+ self.wkv_has_group_norm = wkv_has_group_norm
210
+ self.wkv_use_vfirst = wkv_use_vfirst
211
+
212
+ if self.wkv_version == 7:
213
+ assert self.wkv_use_vfirst, "wkv_use_vfirst must be True for wkv_version 7"
214
+ elif self.wkv_version == 6:
215
+ assert self.wkv_has_gate, "wkv_has_gate must be True for wkv_version 6"
216
+ assert not self.wkv_use_vfirst, "wkv_use_vfirst must be False for wkv_version 6"
217
+ else:
218
+ raise NotImplementedError(f"Unsupported wkv_version: {self.wkv_version}, \
219
+ wkv_version must be 6 or 7")
220
+
221
+ if wkv_layers == "full" or wkv_layers == None:
222
+ self.wkv_layers = list(range(num_hidden_layers))
223
+ elif isinstance(wkv_layers, list):
224
+ if all(isinstance(layer, int) for layer in wkv_layers):
225
+ self.wkv_layers = wkv_layers
226
+ else:
227
+ raise ValueError("All elements in wkv_layers must be integers.")
228
+ else:
229
+ raise TypeError("wkv_layers must be either 'full', None, or a list of integers.")
230
+
231
+ # for backward compatibility
232
+ if num_key_value_heads is None:
233
+ num_key_value_heads = num_attention_heads
234
+
235
+ self.num_key_value_heads = num_key_value_heads
236
+ self.hidden_act = hidden_act
237
+ self.initializer_range = initializer_range
238
+ self.rms_norm_eps = rms_norm_eps
239
+ self.use_cache = use_cache
240
+ self.rope_theta = rope_theta
241
+ self.rope_scaling = rope_scaling
242
+ self.attention_dropout = attention_dropout
243
+ # Validate the correctness of rotary position embeddings parameters
244
+ # BC: if there is a 'type' field, move it to 'rope_type'.
245
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
246
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
247
+ rope_config_validation(self)
248
+
249
+ super().__init__(
250
+ tie_word_embeddings=tie_word_embeddings,
251
+ **kwargs,
252
+ )
figures/architecture.png ADDED
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151645,
5
+ "transformers_version": "4.48.0.dev0"
6
+ }
hybrid_cache.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from typing import Any, Dict, Optional, Union
3
+ from transformers.cache_utils import DynamicCache
4
+
5
+
6
+ class TimeMixState:
7
+ def __init__(self, shift_state: torch.Tensor, wkv_state: torch.Tensor):
8
+ self.shift_state = shift_state
9
+ self.wkv_state = wkv_state
10
+
11
+
12
+ class ChannelMixState:
13
+ def __init__(self, shift_state: torch.Tensor):
14
+ self.shift_state = shift_state
15
+
16
+
17
+ class BlockState:
18
+ def __init__(self, time_mix_state: TimeMixState,
19
+ channel_mix_state: ChannelMixState):
20
+ self.time_mix_state = time_mix_state
21
+ self.channel_mix_state = channel_mix_state
22
+
23
+
24
+ class BlockStateList:
25
+ def __init__(self, shift_states, wkv_states):
26
+ self.wkv_states = wkv_states
27
+ self.shift_states = shift_states
28
+
29
+ @staticmethod
30
+ def create(N, B, C, H, device, dtype):
31
+ result = BlockStateList.empty(N, B, C, H, device, dtype)
32
+ result.wkv_states[:] = 0
33
+ result.wkv_states[:] = 0
34
+ result.shift_states[:] = 0
35
+ return result
36
+
37
+ @staticmethod
38
+ def empty(N, B, C, H, device, dtype):
39
+ wkv_states = torch.empty((N, B, H, C//H, C//H),
40
+ device=device,
41
+ dtype=torch.bfloat16)
42
+ shift_states = torch.empty((N, 2, B, C), device=device, dtype=dtype)
43
+ return BlockStateList(shift_states, wkv_states)
44
+
45
+ def __getitem__(self, layer: int):
46
+ return BlockState(
47
+ TimeMixState(self.shift_states[layer, 0], self.wkv_states[layer]),
48
+ ChannelMixState(self.shift_states[layer, 1]))
49
+
50
+ def __setitem__(self, layer: int, state: BlockState):
51
+ self.shift_states[layer, 0] = state.time_mix_state.shift_state
52
+ self.wkv_states[layer] = state.time_mix_state.wkv_state
53
+ self.shift_states[layer, 1] = state.channel_mix_state.shift_state
54
+
55
+
56
+ class HybridCache(DynamicCache):
57
+ def __init__(self) -> None:
58
+ super().__init__()
59
+ self.rwkv_layers = set()
60
+
61
+ def __repr__(self) -> str:
62
+ rwkv_layers = f"HybridCache(rwkv_layers={self.rwkv_layers})"
63
+ # count the number of key_cache and value_cache
64
+ key_cache_count = sum(len(cache) for cache in self.key_cache)
65
+ value_cache_count = sum(len(cache) for cache in self.value_cache)
66
+ count_info = rwkv_layers + \
67
+ f", key_cache_count={key_cache_count}, value_cache_count={value_cache_count}"
68
+ memories = 0
69
+ seq_length = self.get_seq_length()
70
+ for cache in self.value_cache:
71
+ for data in cache:
72
+ if not isinstance(data, torch.Tensor):
73
+ memories += data.time_mix_state.wkv_state.numel()
74
+ else:
75
+ memories += data.numel()
76
+ count_info += f", memories={memories / 1024/1024}MB, seq_length={seq_length}"
77
+ return count_info
78
+
79
+ def update(self,
80
+ key_states: Union[int, torch.Tensor],
81
+ value_states: Union[torch.Tensor, BlockState],
82
+ layer_idx: int,
83
+ cache_kwargs: Optional[Dict[str, Any]] = None):
84
+ if isinstance(key_states, int) and not isinstance(value_states, torch.Tensor):
85
+ self.rwkv_layers.add(layer_idx)
86
+ if layer_idx >= len(self.key_cache):
87
+ self.key_cache.append([])
88
+ self.value_cache.append([])
89
+
90
+ if len(self.key_cache[layer_idx]) == 0:
91
+ self.key_cache[layer_idx].append(key_states)
92
+ self.value_cache[layer_idx].append(value_states)
93
+ else:
94
+ self.key_cache[layer_idx][0] = self.key_cache[layer_idx][0]+key_states
95
+ self.value_cache[layer_idx][0] = value_states
96
+
97
+ return key_states, value_states
98
+
99
+ return super().update(key_states, value_states, layer_idx, cache_kwargs)
100
+
101
+ def get_seq_length(self, layer_idx: Optional[int] = 0):
102
+ if layer_idx in self.rwkv_layers:
103
+ return self.key_cache[layer_idx][0]
104
+ return super().get_seq_length(layer_idx)
105
+
106
+ def get_max_length(self):
107
+ return super().get_max_length()
108
+
109
+ def reorder_cache(self, beam_idx):
110
+ return super().reorder_cache(beam_idx)
111
+
112
+ def __getitem__(self, item):
113
+ if item in self.rwkv_layers:
114
+ return self.value_cache[item]
115
+ return super().__getitem__(item)
116
+
117
+ def offload_to_cpu(self):
118
+ for cache in self.value_cache:
119
+ for data in cache:
120
+ if isinstance(data, torch.Tensor):
121
+ data.cpu()
122
+ else:
123
+ data.time_mix_state.wkv_state.cpu()
124
+ data.time_mix_state.shift_state.cpu()
125
+
126
+ def offload_to_cuda(self, device: str):
127
+ for cache in self.value_cache:
128
+ for data in cache:
129
+ if isinstance(data, torch.Tensor):
130
+ data.cuda(device)
131
+ else:
132
+ data.time_mix_state.wkv_state.cuda(device)
133
+ data.time_mix_state.shift_state.cuda(device)
134
+
135
+ def offload_to_device(self, device_type: str, device_id: int = 0):
136
+ for cache in self.value_cache:
137
+ for data in cache:
138
+ if isinstance(data, torch.Tensor):
139
+ method = getattr(data, device_type)
140
+ if device_type == 'cpu':
141
+ method()
142
+ else:
143
+ method(device_id)
144
+ else:
145
+ wkv_state_method = getattr(
146
+ data.time_mix_state.wkv_state, device_type)
147
+ shift_state_method = getattr(
148
+ data.time_mix_state.shift_state, device_type)
149
+ if device_type == 'cpu':
150
+ wkv_state_method()
151
+ shift_state_method()
152
+ else:
153
+ wkv_state_method(device_id)
154
+ shift_state_method(device_id)
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8c13c712edc185ad5f3cbb70d1be8cf614ea758d46955d4d0457188c25f419f
3
+ size 4994557640
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b580e7029be7d39e4611398571615478e406e0ecf102a64cf5604d9d9c948a8
3
+ size 4872049040
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3a17bf7ef65b25ca36667d241da976d2b8a92415c50518a97b7bbfc555cc133
3
+ size 4872049096
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ddef2d83f1b62d76e83e7b1c9ee6664de10d03e0a3ba9b0fafb0bd4fb2dc8ab
3
+ size 4989489432
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59ba5eef2db961008887debbe34115f5883d85b0de30da22d213e6dfa1e25791
3
+ size 4812208032
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8876934389ca0245be337ccb042ba0fb39e1172edb1826c915c56107d0c2639
3
+ size 4872049184
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:813be839a70ed5c89a7242e95bd690c954cb1530d7a284b5dce4dd74d76b2c7f
3
+ size 3751921648
model.safetensors.index.json ADDED
@@ -0,0 +1,822 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 33164228608
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00007-of-00007.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00007.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
13
+ "model.layers.0.self_attn.time_mixer.a0": "model-00001-of-00007.safetensors",
14
+ "model.layers.0.self_attn.time_mixer.a1": "model-00001-of-00007.safetensors",
15
+ "model.layers.0.self_attn.time_mixer.a2": "model-00001-of-00007.safetensors",
16
+ "model.layers.0.self_attn.time_mixer.g1": "model-00001-of-00007.safetensors",
17
+ "model.layers.0.self_attn.time_mixer.g2": "model-00001-of-00007.safetensors",
18
+ "model.layers.0.self_attn.time_mixer.k_a": "model-00001-of-00007.safetensors",
19
+ "model.layers.0.self_attn.time_mixer.k_k": "model-00001-of-00007.safetensors",
20
+ "model.layers.0.self_attn.time_mixer.key.weight": "model-00001-of-00007.safetensors",
21
+ "model.layers.0.self_attn.time_mixer.output.weight": "model-00001-of-00007.safetensors",
22
+ "model.layers.0.self_attn.time_mixer.r_k": "model-00001-of-00007.safetensors",
23
+ "model.layers.0.self_attn.time_mixer.receptance.weight": "model-00001-of-00007.safetensors",
24
+ "model.layers.0.self_attn.time_mixer.v0": "model-00001-of-00007.safetensors",
25
+ "model.layers.0.self_attn.time_mixer.v1": "model-00001-of-00007.safetensors",
26
+ "model.layers.0.self_attn.time_mixer.v2": "model-00001-of-00007.safetensors",
27
+ "model.layers.0.self_attn.time_mixer.value.weight": "model-00001-of-00007.safetensors",
28
+ "model.layers.0.self_attn.time_mixer.w0": "model-00001-of-00007.safetensors",
29
+ "model.layers.0.self_attn.time_mixer.w1": "model-00001-of-00007.safetensors",
30
+ "model.layers.0.self_attn.time_mixer.w2": "model-00001-of-00007.safetensors",
31
+ "model.layers.0.self_attn.time_mixer.x_a": "model-00001-of-00007.safetensors",
32
+ "model.layers.0.self_attn.time_mixer.x_g": "model-00001-of-00007.safetensors",
33
+ "model.layers.0.self_attn.time_mixer.x_k": "model-00001-of-00007.safetensors",
34
+ "model.layers.0.self_attn.time_mixer.x_r": "model-00001-of-00007.safetensors",
35
+ "model.layers.0.self_attn.time_mixer.x_v": "model-00001-of-00007.safetensors",
36
+ "model.layers.0.self_attn.time_mixer.x_w": "model-00001-of-00007.safetensors",
37
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
38
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
39
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
40
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
41
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
42
+ "model.layers.1.self_attn.time_mixer.a0": "model-00001-of-00007.safetensors",
43
+ "model.layers.1.self_attn.time_mixer.a1": "model-00001-of-00007.safetensors",
44
+ "model.layers.1.self_attn.time_mixer.a2": "model-00001-of-00007.safetensors",
45
+ "model.layers.1.self_attn.time_mixer.g1": "model-00001-of-00007.safetensors",
46
+ "model.layers.1.self_attn.time_mixer.g2": "model-00001-of-00007.safetensors",
47
+ "model.layers.1.self_attn.time_mixer.k_a": "model-00001-of-00007.safetensors",
48
+ "model.layers.1.self_attn.time_mixer.k_k": "model-00001-of-00007.safetensors",
49
+ "model.layers.1.self_attn.time_mixer.key.weight": "model-00001-of-00007.safetensors",
50
+ "model.layers.1.self_attn.time_mixer.output.weight": "model-00001-of-00007.safetensors",
51
+ "model.layers.1.self_attn.time_mixer.r_k": "model-00001-of-00007.safetensors",
52
+ "model.layers.1.self_attn.time_mixer.receptance.weight": "model-00001-of-00007.safetensors",
53
+ "model.layers.1.self_attn.time_mixer.v0": "model-00001-of-00007.safetensors",
54
+ "model.layers.1.self_attn.time_mixer.v1": "model-00001-of-00007.safetensors",
55
+ "model.layers.1.self_attn.time_mixer.v2": "model-00001-of-00007.safetensors",
56
+ "model.layers.1.self_attn.time_mixer.value.weight": "model-00001-of-00007.safetensors",
57
+ "model.layers.1.self_attn.time_mixer.w0": "model-00001-of-00007.safetensors",
58
+ "model.layers.1.self_attn.time_mixer.w1": "model-00001-of-00007.safetensors",
59
+ "model.layers.1.self_attn.time_mixer.w2": "model-00001-of-00007.safetensors",
60
+ "model.layers.1.self_attn.time_mixer.x_a": "model-00001-of-00007.safetensors",
61
+ "model.layers.1.self_attn.time_mixer.x_g": "model-00001-of-00007.safetensors",
62
+ "model.layers.1.self_attn.time_mixer.x_k": "model-00001-of-00007.safetensors",
63
+ "model.layers.1.self_attn.time_mixer.x_r": "model-00001-of-00007.safetensors",
64
+ "model.layers.1.self_attn.time_mixer.x_v": "model-00001-of-00007.safetensors",
65
+ "model.layers.1.self_attn.time_mixer.x_w": "model-00001-of-00007.safetensors",
66
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
67
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
68
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
69
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
70
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
71
+ "model.layers.10.self_attn.time_mixer.a0": "model-00003-of-00007.safetensors",
72
+ "model.layers.10.self_attn.time_mixer.a1": "model-00003-of-00007.safetensors",
73
+ "model.layers.10.self_attn.time_mixer.a2": "model-00003-of-00007.safetensors",
74
+ "model.layers.10.self_attn.time_mixer.g1": "model-00003-of-00007.safetensors",
75
+ "model.layers.10.self_attn.time_mixer.g2": "model-00003-of-00007.safetensors",
76
+ "model.layers.10.self_attn.time_mixer.k_a": "model-00003-of-00007.safetensors",
77
+ "model.layers.10.self_attn.time_mixer.k_k": "model-00003-of-00007.safetensors",
78
+ "model.layers.10.self_attn.time_mixer.key.weight": "model-00003-of-00007.safetensors",
79
+ "model.layers.10.self_attn.time_mixer.output.weight": "model-00003-of-00007.safetensors",
80
+ "model.layers.10.self_attn.time_mixer.r_k": "model-00003-of-00007.safetensors",
81
+ "model.layers.10.self_attn.time_mixer.receptance.weight": "model-00003-of-00007.safetensors",
82
+ "model.layers.10.self_attn.time_mixer.v0": "model-00003-of-00007.safetensors",
83
+ "model.layers.10.self_attn.time_mixer.v1": "model-00003-of-00007.safetensors",
84
+ "model.layers.10.self_attn.time_mixer.v2": "model-00003-of-00007.safetensors",
85
+ "model.layers.10.self_attn.time_mixer.value.weight": "model-00003-of-00007.safetensors",
86
+ "model.layers.10.self_attn.time_mixer.w0": "model-00003-of-00007.safetensors",
87
+ "model.layers.10.self_attn.time_mixer.w1": "model-00003-of-00007.safetensors",
88
+ "model.layers.10.self_attn.time_mixer.w2": "model-00003-of-00007.safetensors",
89
+ "model.layers.10.self_attn.time_mixer.x_a": "model-00003-of-00007.safetensors",
90
+ "model.layers.10.self_attn.time_mixer.x_g": "model-00003-of-00007.safetensors",
91
+ "model.layers.10.self_attn.time_mixer.x_k": "model-00003-of-00007.safetensors",
92
+ "model.layers.10.self_attn.time_mixer.x_r": "model-00003-of-00007.safetensors",
93
+ "model.layers.10.self_attn.time_mixer.x_v": "model-00003-of-00007.safetensors",
94
+ "model.layers.10.self_attn.time_mixer.x_w": "model-00003-of-00007.safetensors",
95
+ "model.layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
96
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
97
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
98
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
99
+ "model.layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
100
+ "model.layers.11.self_attn.time_mixer.a0": "model-00003-of-00007.safetensors",
101
+ "model.layers.11.self_attn.time_mixer.a1": "model-00003-of-00007.safetensors",
102
+ "model.layers.11.self_attn.time_mixer.a2": "model-00003-of-00007.safetensors",
103
+ "model.layers.11.self_attn.time_mixer.g1": "model-00003-of-00007.safetensors",
104
+ "model.layers.11.self_attn.time_mixer.g2": "model-00003-of-00007.safetensors",
105
+ "model.layers.11.self_attn.time_mixer.k_a": "model-00003-of-00007.safetensors",
106
+ "model.layers.11.self_attn.time_mixer.k_k": "model-00003-of-00007.safetensors",
107
+ "model.layers.11.self_attn.time_mixer.key.weight": "model-00003-of-00007.safetensors",
108
+ "model.layers.11.self_attn.time_mixer.output.weight": "model-00003-of-00007.safetensors",
109
+ "model.layers.11.self_attn.time_mixer.r_k": "model-00003-of-00007.safetensors",
110
+ "model.layers.11.self_attn.time_mixer.receptance.weight": "model-00003-of-00007.safetensors",
111
+ "model.layers.11.self_attn.time_mixer.v0": "model-00003-of-00007.safetensors",
112
+ "model.layers.11.self_attn.time_mixer.v1": "model-00003-of-00007.safetensors",
113
+ "model.layers.11.self_attn.time_mixer.v2": "model-00003-of-00007.safetensors",
114
+ "model.layers.11.self_attn.time_mixer.value.weight": "model-00003-of-00007.safetensors",
115
+ "model.layers.11.self_attn.time_mixer.w0": "model-00003-of-00007.safetensors",
116
+ "model.layers.11.self_attn.time_mixer.w1": "model-00003-of-00007.safetensors",
117
+ "model.layers.11.self_attn.time_mixer.w2": "model-00003-of-00007.safetensors",
118
+ "model.layers.11.self_attn.time_mixer.x_a": "model-00003-of-00007.safetensors",
119
+ "model.layers.11.self_attn.time_mixer.x_g": "model-00003-of-00007.safetensors",
120
+ "model.layers.11.self_attn.time_mixer.x_k": "model-00003-of-00007.safetensors",
121
+ "model.layers.11.self_attn.time_mixer.x_r": "model-00003-of-00007.safetensors",
122
+ "model.layers.11.self_attn.time_mixer.x_v": "model-00003-of-00007.safetensors",
123
+ "model.layers.11.self_attn.time_mixer.x_w": "model-00003-of-00007.safetensors",
124
+ "model.layers.12.input_layernorm.weight": "model-00004-of-00007.safetensors",
125
+ "model.layers.12.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
126
+ "model.layers.12.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
127
+ "model.layers.12.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
128
+ "model.layers.12.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
129
+ "model.layers.12.self_attn.time_mixer.a0": "model-00003-of-00007.safetensors",
130
+ "model.layers.12.self_attn.time_mixer.a1": "model-00003-of-00007.safetensors",
131
+ "model.layers.12.self_attn.time_mixer.a2": "model-00003-of-00007.safetensors",
132
+ "model.layers.12.self_attn.time_mixer.g1": "model-00003-of-00007.safetensors",
133
+ "model.layers.12.self_attn.time_mixer.g2": "model-00003-of-00007.safetensors",
134
+ "model.layers.12.self_attn.time_mixer.k_a": "model-00003-of-00007.safetensors",
135
+ "model.layers.12.self_attn.time_mixer.k_k": "model-00003-of-00007.safetensors",
136
+ "model.layers.12.self_attn.time_mixer.key.weight": "model-00003-of-00007.safetensors",
137
+ "model.layers.12.self_attn.time_mixer.output.weight": "model-00003-of-00007.safetensors",
138
+ "model.layers.12.self_attn.time_mixer.r_k": "model-00003-of-00007.safetensors",
139
+ "model.layers.12.self_attn.time_mixer.receptance.weight": "model-00003-of-00007.safetensors",
140
+ "model.layers.12.self_attn.time_mixer.v0": "model-00003-of-00007.safetensors",
141
+ "model.layers.12.self_attn.time_mixer.v1": "model-00003-of-00007.safetensors",
142
+ "model.layers.12.self_attn.time_mixer.v2": "model-00003-of-00007.safetensors",
143
+ "model.layers.12.self_attn.time_mixer.value.weight": "model-00003-of-00007.safetensors",
144
+ "model.layers.12.self_attn.time_mixer.w0": "model-00003-of-00007.safetensors",
145
+ "model.layers.12.self_attn.time_mixer.w1": "model-00003-of-00007.safetensors",
146
+ "model.layers.12.self_attn.time_mixer.w2": "model-00003-of-00007.safetensors",
147
+ "model.layers.12.self_attn.time_mixer.x_a": "model-00003-of-00007.safetensors",
148
+ "model.layers.12.self_attn.time_mixer.x_g": "model-00003-of-00007.safetensors",
149
+ "model.layers.12.self_attn.time_mixer.x_k": "model-00003-of-00007.safetensors",
150
+ "model.layers.12.self_attn.time_mixer.x_r": "model-00003-of-00007.safetensors",
151
+ "model.layers.12.self_attn.time_mixer.x_v": "model-00003-of-00007.safetensors",
152
+ "model.layers.12.self_attn.time_mixer.x_w": "model-00003-of-00007.safetensors",
153
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00007.safetensors",
154
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
155
+ "model.layers.13.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
156
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
157
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
158
+ "model.layers.13.self_attn.time_mixer.a0": "model-00004-of-00007.safetensors",
159
+ "model.layers.13.self_attn.time_mixer.a1": "model-00004-of-00007.safetensors",
160
+ "model.layers.13.self_attn.time_mixer.a2": "model-00004-of-00007.safetensors",
161
+ "model.layers.13.self_attn.time_mixer.g1": "model-00004-of-00007.safetensors",
162
+ "model.layers.13.self_attn.time_mixer.g2": "model-00004-of-00007.safetensors",
163
+ "model.layers.13.self_attn.time_mixer.k_a": "model-00004-of-00007.safetensors",
164
+ "model.layers.13.self_attn.time_mixer.k_k": "model-00004-of-00007.safetensors",
165
+ "model.layers.13.self_attn.time_mixer.key.weight": "model-00004-of-00007.safetensors",
166
+ "model.layers.13.self_attn.time_mixer.output.weight": "model-00004-of-00007.safetensors",
167
+ "model.layers.13.self_attn.time_mixer.r_k": "model-00004-of-00007.safetensors",
168
+ "model.layers.13.self_attn.time_mixer.receptance.weight": "model-00004-of-00007.safetensors",
169
+ "model.layers.13.self_attn.time_mixer.v0": "model-00004-of-00007.safetensors",
170
+ "model.layers.13.self_attn.time_mixer.v1": "model-00004-of-00007.safetensors",
171
+ "model.layers.13.self_attn.time_mixer.v2": "model-00004-of-00007.safetensors",
172
+ "model.layers.13.self_attn.time_mixer.value.weight": "model-00004-of-00007.safetensors",
173
+ "model.layers.13.self_attn.time_mixer.w0": "model-00004-of-00007.safetensors",
174
+ "model.layers.13.self_attn.time_mixer.w1": "model-00004-of-00007.safetensors",
175
+ "model.layers.13.self_attn.time_mixer.w2": "model-00004-of-00007.safetensors",
176
+ "model.layers.13.self_attn.time_mixer.x_a": "model-00004-of-00007.safetensors",
177
+ "model.layers.13.self_attn.time_mixer.x_g": "model-00004-of-00007.safetensors",
178
+ "model.layers.13.self_attn.time_mixer.x_k": "model-00004-of-00007.safetensors",
179
+ "model.layers.13.self_attn.time_mixer.x_r": "model-00004-of-00007.safetensors",
180
+ "model.layers.13.self_attn.time_mixer.x_v": "model-00004-of-00007.safetensors",
181
+ "model.layers.13.self_attn.time_mixer.x_w": "model-00004-of-00007.safetensors",
182
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
183
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
184
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
185
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
186
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
187
+ "model.layers.14.self_attn.time_mixer.a0": "model-00004-of-00007.safetensors",
188
+ "model.layers.14.self_attn.time_mixer.a1": "model-00004-of-00007.safetensors",
189
+ "model.layers.14.self_attn.time_mixer.a2": "model-00004-of-00007.safetensors",
190
+ "model.layers.14.self_attn.time_mixer.g1": "model-00004-of-00007.safetensors",
191
+ "model.layers.14.self_attn.time_mixer.g2": "model-00004-of-00007.safetensors",
192
+ "model.layers.14.self_attn.time_mixer.k_a": "model-00004-of-00007.safetensors",
193
+ "model.layers.14.self_attn.time_mixer.k_k": "model-00004-of-00007.safetensors",
194
+ "model.layers.14.self_attn.time_mixer.key.weight": "model-00004-of-00007.safetensors",
195
+ "model.layers.14.self_attn.time_mixer.output.weight": "model-00004-of-00007.safetensors",
196
+ "model.layers.14.self_attn.time_mixer.r_k": "model-00004-of-00007.safetensors",
197
+ "model.layers.14.self_attn.time_mixer.receptance.weight": "model-00004-of-00007.safetensors",
198
+ "model.layers.14.self_attn.time_mixer.v0": "model-00004-of-00007.safetensors",
199
+ "model.layers.14.self_attn.time_mixer.v1": "model-00004-of-00007.safetensors",
200
+ "model.layers.14.self_attn.time_mixer.v2": "model-00004-of-00007.safetensors",
201
+ "model.layers.14.self_attn.time_mixer.value.weight": "model-00004-of-00007.safetensors",
202
+ "model.layers.14.self_attn.time_mixer.w0": "model-00004-of-00007.safetensors",
203
+ "model.layers.14.self_attn.time_mixer.w1": "model-00004-of-00007.safetensors",
204
+ "model.layers.14.self_attn.time_mixer.w2": "model-00004-of-00007.safetensors",
205
+ "model.layers.14.self_attn.time_mixer.x_a": "model-00004-of-00007.safetensors",
206
+ "model.layers.14.self_attn.time_mixer.x_g": "model-00004-of-00007.safetensors",
207
+ "model.layers.14.self_attn.time_mixer.x_k": "model-00004-of-00007.safetensors",
208
+ "model.layers.14.self_attn.time_mixer.x_r": "model-00004-of-00007.safetensors",
209
+ "model.layers.14.self_attn.time_mixer.x_v": "model-00004-of-00007.safetensors",
210
+ "model.layers.14.self_attn.time_mixer.x_w": "model-00004-of-00007.safetensors",
211
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
212
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
213
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
214
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
215
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
216
+ "model.layers.15.self_attn.time_mixer.a0": "model-00004-of-00007.safetensors",
217
+ "model.layers.15.self_attn.time_mixer.a1": "model-00004-of-00007.safetensors",
218
+ "model.layers.15.self_attn.time_mixer.a2": "model-00004-of-00007.safetensors",
219
+ "model.layers.15.self_attn.time_mixer.g1": "model-00004-of-00007.safetensors",
220
+ "model.layers.15.self_attn.time_mixer.g2": "model-00004-of-00007.safetensors",
221
+ "model.layers.15.self_attn.time_mixer.k_a": "model-00004-of-00007.safetensors",
222
+ "model.layers.15.self_attn.time_mixer.k_k": "model-00004-of-00007.safetensors",
223
+ "model.layers.15.self_attn.time_mixer.key.weight": "model-00004-of-00007.safetensors",
224
+ "model.layers.15.self_attn.time_mixer.output.weight": "model-00004-of-00007.safetensors",
225
+ "model.layers.15.self_attn.time_mixer.r_k": "model-00004-of-00007.safetensors",
226
+ "model.layers.15.self_attn.time_mixer.receptance.weight": "model-00004-of-00007.safetensors",
227
+ "model.layers.15.self_attn.time_mixer.v0": "model-00004-of-00007.safetensors",
228
+ "model.layers.15.self_attn.time_mixer.v1": "model-00004-of-00007.safetensors",
229
+ "model.layers.15.self_attn.time_mixer.v2": "model-00004-of-00007.safetensors",
230
+ "model.layers.15.self_attn.time_mixer.value.weight": "model-00004-of-00007.safetensors",
231
+ "model.layers.15.self_attn.time_mixer.w0": "model-00004-of-00007.safetensors",
232
+ "model.layers.15.self_attn.time_mixer.w1": "model-00004-of-00007.safetensors",
233
+ "model.layers.15.self_attn.time_mixer.w2": "model-00004-of-00007.safetensors",
234
+ "model.layers.15.self_attn.time_mixer.x_a": "model-00004-of-00007.safetensors",
235
+ "model.layers.15.self_attn.time_mixer.x_g": "model-00004-of-00007.safetensors",
236
+ "model.layers.15.self_attn.time_mixer.x_k": "model-00004-of-00007.safetensors",
237
+ "model.layers.15.self_attn.time_mixer.x_r": "model-00004-of-00007.safetensors",
238
+ "model.layers.15.self_attn.time_mixer.x_v": "model-00004-of-00007.safetensors",
239
+ "model.layers.15.self_attn.time_mixer.x_w": "model-00004-of-00007.safetensors",
240
+ "model.layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
241
+ "model.layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
242
+ "model.layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
243
+ "model.layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
244
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
245
+ "model.layers.16.self_attn.time_mixer.a0": "model-00004-of-00007.safetensors",
246
+ "model.layers.16.self_attn.time_mixer.a1": "model-00004-of-00007.safetensors",
247
+ "model.layers.16.self_attn.time_mixer.a2": "model-00004-of-00007.safetensors",
248
+ "model.layers.16.self_attn.time_mixer.g1": "model-00004-of-00007.safetensors",
249
+ "model.layers.16.self_attn.time_mixer.g2": "model-00004-of-00007.safetensors",
250
+ "model.layers.16.self_attn.time_mixer.k_a": "model-00004-of-00007.safetensors",
251
+ "model.layers.16.self_attn.time_mixer.k_k": "model-00004-of-00007.safetensors",
252
+ "model.layers.16.self_attn.time_mixer.key.weight": "model-00004-of-00007.safetensors",
253
+ "model.layers.16.self_attn.time_mixer.output.weight": "model-00004-of-00007.safetensors",
254
+ "model.layers.16.self_attn.time_mixer.r_k": "model-00004-of-00007.safetensors",
255
+ "model.layers.16.self_attn.time_mixer.receptance.weight": "model-00004-of-00007.safetensors",
256
+ "model.layers.16.self_attn.time_mixer.v0": "model-00004-of-00007.safetensors",
257
+ "model.layers.16.self_attn.time_mixer.v1": "model-00004-of-00007.safetensors",
258
+ "model.layers.16.self_attn.time_mixer.v2": "model-00004-of-00007.safetensors",
259
+ "model.layers.16.self_attn.time_mixer.value.weight": "model-00004-of-00007.safetensors",
260
+ "model.layers.16.self_attn.time_mixer.w0": "model-00004-of-00007.safetensors",
261
+ "model.layers.16.self_attn.time_mixer.w1": "model-00004-of-00007.safetensors",
262
+ "model.layers.16.self_attn.time_mixer.w2": "model-00004-of-00007.safetensors",
263
+ "model.layers.16.self_attn.time_mixer.x_a": "model-00004-of-00007.safetensors",
264
+ "model.layers.16.self_attn.time_mixer.x_g": "model-00004-of-00007.safetensors",
265
+ "model.layers.16.self_attn.time_mixer.x_k": "model-00004-of-00007.safetensors",
266
+ "model.layers.16.self_attn.time_mixer.x_r": "model-00004-of-00007.safetensors",
267
+ "model.layers.16.self_attn.time_mixer.x_v": "model-00004-of-00007.safetensors",
268
+ "model.layers.16.self_attn.time_mixer.x_w": "model-00004-of-00007.safetensors",
269
+ "model.layers.17.input_layernorm.weight": "model-00005-of-00007.safetensors",
270
+ "model.layers.17.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
271
+ "model.layers.17.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
272
+ "model.layers.17.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
273
+ "model.layers.17.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
274
+ "model.layers.17.self_attn.time_mixer.a0": "model-00004-of-00007.safetensors",
275
+ "model.layers.17.self_attn.time_mixer.a1": "model-00004-of-00007.safetensors",
276
+ "model.layers.17.self_attn.time_mixer.a2": "model-00004-of-00007.safetensors",
277
+ "model.layers.17.self_attn.time_mixer.g1": "model-00004-of-00007.safetensors",
278
+ "model.layers.17.self_attn.time_mixer.g2": "model-00004-of-00007.safetensors",
279
+ "model.layers.17.self_attn.time_mixer.k_a": "model-00004-of-00007.safetensors",
280
+ "model.layers.17.self_attn.time_mixer.k_k": "model-00004-of-00007.safetensors",
281
+ "model.layers.17.self_attn.time_mixer.key.weight": "model-00005-of-00007.safetensors",
282
+ "model.layers.17.self_attn.time_mixer.output.weight": "model-00005-of-00007.safetensors",
283
+ "model.layers.17.self_attn.time_mixer.r_k": "model-00004-of-00007.safetensors",
284
+ "model.layers.17.self_attn.time_mixer.receptance.weight": "model-00004-of-00007.safetensors",
285
+ "model.layers.17.self_attn.time_mixer.v0": "model-00004-of-00007.safetensors",
286
+ "model.layers.17.self_attn.time_mixer.v1": "model-00004-of-00007.safetensors",
287
+ "model.layers.17.self_attn.time_mixer.v2": "model-00004-of-00007.safetensors",
288
+ "model.layers.17.self_attn.time_mixer.value.weight": "model-00005-of-00007.safetensors",
289
+ "model.layers.17.self_attn.time_mixer.w0": "model-00004-of-00007.safetensors",
290
+ "model.layers.17.self_attn.time_mixer.w1": "model-00004-of-00007.safetensors",
291
+ "model.layers.17.self_attn.time_mixer.w2": "model-00004-of-00007.safetensors",
292
+ "model.layers.17.self_attn.time_mixer.x_a": "model-00004-of-00007.safetensors",
293
+ "model.layers.17.self_attn.time_mixer.x_g": "model-00004-of-00007.safetensors",
294
+ "model.layers.17.self_attn.time_mixer.x_k": "model-00004-of-00007.safetensors",
295
+ "model.layers.17.self_attn.time_mixer.x_r": "model-00004-of-00007.safetensors",
296
+ "model.layers.17.self_attn.time_mixer.x_v": "model-00004-of-00007.safetensors",
297
+ "model.layers.17.self_attn.time_mixer.x_w": "model-00004-of-00007.safetensors",
298
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00007.safetensors",
299
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
300
+ "model.layers.18.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
301
+ "model.layers.18.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
302
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
303
+ "model.layers.18.self_attn.time_mixer.a0": "model-00005-of-00007.safetensors",
304
+ "model.layers.18.self_attn.time_mixer.a1": "model-00005-of-00007.safetensors",
305
+ "model.layers.18.self_attn.time_mixer.a2": "model-00005-of-00007.safetensors",
306
+ "model.layers.18.self_attn.time_mixer.g1": "model-00005-of-00007.safetensors",
307
+ "model.layers.18.self_attn.time_mixer.g2": "model-00005-of-00007.safetensors",
308
+ "model.layers.18.self_attn.time_mixer.k_a": "model-00005-of-00007.safetensors",
309
+ "model.layers.18.self_attn.time_mixer.k_k": "model-00005-of-00007.safetensors",
310
+ "model.layers.18.self_attn.time_mixer.key.weight": "model-00005-of-00007.safetensors",
311
+ "model.layers.18.self_attn.time_mixer.output.weight": "model-00005-of-00007.safetensors",
312
+ "model.layers.18.self_attn.time_mixer.r_k": "model-00005-of-00007.safetensors",
313
+ "model.layers.18.self_attn.time_mixer.receptance.weight": "model-00005-of-00007.safetensors",
314
+ "model.layers.18.self_attn.time_mixer.v0": "model-00005-of-00007.safetensors",
315
+ "model.layers.18.self_attn.time_mixer.v1": "model-00005-of-00007.safetensors",
316
+ "model.layers.18.self_attn.time_mixer.v2": "model-00005-of-00007.safetensors",
317
+ "model.layers.18.self_attn.time_mixer.value.weight": "model-00005-of-00007.safetensors",
318
+ "model.layers.18.self_attn.time_mixer.w0": "model-00005-of-00007.safetensors",
319
+ "model.layers.18.self_attn.time_mixer.w1": "model-00005-of-00007.safetensors",
320
+ "model.layers.18.self_attn.time_mixer.w2": "model-00005-of-00007.safetensors",
321
+ "model.layers.18.self_attn.time_mixer.x_a": "model-00005-of-00007.safetensors",
322
+ "model.layers.18.self_attn.time_mixer.x_g": "model-00005-of-00007.safetensors",
323
+ "model.layers.18.self_attn.time_mixer.x_k": "model-00005-of-00007.safetensors",
324
+ "model.layers.18.self_attn.time_mixer.x_r": "model-00005-of-00007.safetensors",
325
+ "model.layers.18.self_attn.time_mixer.x_v": "model-00005-of-00007.safetensors",
326
+ "model.layers.18.self_attn.time_mixer.x_w": "model-00005-of-00007.safetensors",
327
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00007.safetensors",
328
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
329
+ "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
330
+ "model.layers.19.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
331
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
332
+ "model.layers.19.self_attn.time_mixer.a0": "model-00005-of-00007.safetensors",
333
+ "model.layers.19.self_attn.time_mixer.a1": "model-00005-of-00007.safetensors",
334
+ "model.layers.19.self_attn.time_mixer.a2": "model-00005-of-00007.safetensors",
335
+ "model.layers.19.self_attn.time_mixer.g1": "model-00005-of-00007.safetensors",
336
+ "model.layers.19.self_attn.time_mixer.g2": "model-00005-of-00007.safetensors",
337
+ "model.layers.19.self_attn.time_mixer.k_a": "model-00005-of-00007.safetensors",
338
+ "model.layers.19.self_attn.time_mixer.k_k": "model-00005-of-00007.safetensors",
339
+ "model.layers.19.self_attn.time_mixer.key.weight": "model-00005-of-00007.safetensors",
340
+ "model.layers.19.self_attn.time_mixer.output.weight": "model-00005-of-00007.safetensors",
341
+ "model.layers.19.self_attn.time_mixer.r_k": "model-00005-of-00007.safetensors",
342
+ "model.layers.19.self_attn.time_mixer.receptance.weight": "model-00005-of-00007.safetensors",
343
+ "model.layers.19.self_attn.time_mixer.v0": "model-00005-of-00007.safetensors",
344
+ "model.layers.19.self_attn.time_mixer.v1": "model-00005-of-00007.safetensors",
345
+ "model.layers.19.self_attn.time_mixer.v2": "model-00005-of-00007.safetensors",
346
+ "model.layers.19.self_attn.time_mixer.value.weight": "model-00005-of-00007.safetensors",
347
+ "model.layers.19.self_attn.time_mixer.w0": "model-00005-of-00007.safetensors",
348
+ "model.layers.19.self_attn.time_mixer.w1": "model-00005-of-00007.safetensors",
349
+ "model.layers.19.self_attn.time_mixer.w2": "model-00005-of-00007.safetensors",
350
+ "model.layers.19.self_attn.time_mixer.x_a": "model-00005-of-00007.safetensors",
351
+ "model.layers.19.self_attn.time_mixer.x_g": "model-00005-of-00007.safetensors",
352
+ "model.layers.19.self_attn.time_mixer.x_k": "model-00005-of-00007.safetensors",
353
+ "model.layers.19.self_attn.time_mixer.x_r": "model-00005-of-00007.safetensors",
354
+ "model.layers.19.self_attn.time_mixer.x_v": "model-00005-of-00007.safetensors",
355
+ "model.layers.19.self_attn.time_mixer.x_w": "model-00005-of-00007.safetensors",
356
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00007.safetensors",
357
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
358
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
359
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
360
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
361
+ "model.layers.2.self_attn.time_mixer.a0": "model-00001-of-00007.safetensors",
362
+ "model.layers.2.self_attn.time_mixer.a1": "model-00001-of-00007.safetensors",
363
+ "model.layers.2.self_attn.time_mixer.a2": "model-00001-of-00007.safetensors",
364
+ "model.layers.2.self_attn.time_mixer.g1": "model-00001-of-00007.safetensors",
365
+ "model.layers.2.self_attn.time_mixer.g2": "model-00001-of-00007.safetensors",
366
+ "model.layers.2.self_attn.time_mixer.k_a": "model-00001-of-00007.safetensors",
367
+ "model.layers.2.self_attn.time_mixer.k_k": "model-00001-of-00007.safetensors",
368
+ "model.layers.2.self_attn.time_mixer.key.weight": "model-00001-of-00007.safetensors",
369
+ "model.layers.2.self_attn.time_mixer.output.weight": "model-00001-of-00007.safetensors",
370
+ "model.layers.2.self_attn.time_mixer.r_k": "model-00001-of-00007.safetensors",
371
+ "model.layers.2.self_attn.time_mixer.receptance.weight": "model-00001-of-00007.safetensors",
372
+ "model.layers.2.self_attn.time_mixer.v0": "model-00001-of-00007.safetensors",
373
+ "model.layers.2.self_attn.time_mixer.v1": "model-00001-of-00007.safetensors",
374
+ "model.layers.2.self_attn.time_mixer.v2": "model-00001-of-00007.safetensors",
375
+ "model.layers.2.self_attn.time_mixer.value.weight": "model-00001-of-00007.safetensors",
376
+ "model.layers.2.self_attn.time_mixer.w0": "model-00001-of-00007.safetensors",
377
+ "model.layers.2.self_attn.time_mixer.w1": "model-00001-of-00007.safetensors",
378
+ "model.layers.2.self_attn.time_mixer.w2": "model-00001-of-00007.safetensors",
379
+ "model.layers.2.self_attn.time_mixer.x_a": "model-00001-of-00007.safetensors",
380
+ "model.layers.2.self_attn.time_mixer.x_g": "model-00001-of-00007.safetensors",
381
+ "model.layers.2.self_attn.time_mixer.x_k": "model-00001-of-00007.safetensors",
382
+ "model.layers.2.self_attn.time_mixer.x_r": "model-00001-of-00007.safetensors",
383
+ "model.layers.2.self_attn.time_mixer.x_v": "model-00001-of-00007.safetensors",
384
+ "model.layers.2.self_attn.time_mixer.x_w": "model-00001-of-00007.safetensors",
385
+ "model.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
386
+ "model.layers.20.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
387
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
388
+ "model.layers.20.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
389
+ "model.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
390
+ "model.layers.20.self_attn.time_mixer.a0": "model-00005-of-00007.safetensors",
391
+ "model.layers.20.self_attn.time_mixer.a1": "model-00005-of-00007.safetensors",
392
+ "model.layers.20.self_attn.time_mixer.a2": "model-00005-of-00007.safetensors",
393
+ "model.layers.20.self_attn.time_mixer.g1": "model-00005-of-00007.safetensors",
394
+ "model.layers.20.self_attn.time_mixer.g2": "model-00005-of-00007.safetensors",
395
+ "model.layers.20.self_attn.time_mixer.k_a": "model-00005-of-00007.safetensors",
396
+ "model.layers.20.self_attn.time_mixer.k_k": "model-00005-of-00007.safetensors",
397
+ "model.layers.20.self_attn.time_mixer.key.weight": "model-00005-of-00007.safetensors",
398
+ "model.layers.20.self_attn.time_mixer.output.weight": "model-00005-of-00007.safetensors",
399
+ "model.layers.20.self_attn.time_mixer.r_k": "model-00005-of-00007.safetensors",
400
+ "model.layers.20.self_attn.time_mixer.receptance.weight": "model-00005-of-00007.safetensors",
401
+ "model.layers.20.self_attn.time_mixer.v0": "model-00005-of-00007.safetensors",
402
+ "model.layers.20.self_attn.time_mixer.v1": "model-00005-of-00007.safetensors",
403
+ "model.layers.20.self_attn.time_mixer.v2": "model-00005-of-00007.safetensors",
404
+ "model.layers.20.self_attn.time_mixer.value.weight": "model-00005-of-00007.safetensors",
405
+ "model.layers.20.self_attn.time_mixer.w0": "model-00005-of-00007.safetensors",
406
+ "model.layers.20.self_attn.time_mixer.w1": "model-00005-of-00007.safetensors",
407
+ "model.layers.20.self_attn.time_mixer.w2": "model-00005-of-00007.safetensors",
408
+ "model.layers.20.self_attn.time_mixer.x_a": "model-00005-of-00007.safetensors",
409
+ "model.layers.20.self_attn.time_mixer.x_g": "model-00005-of-00007.safetensors",
410
+ "model.layers.20.self_attn.time_mixer.x_k": "model-00005-of-00007.safetensors",
411
+ "model.layers.20.self_attn.time_mixer.x_r": "model-00005-of-00007.safetensors",
412
+ "model.layers.20.self_attn.time_mixer.x_v": "model-00005-of-00007.safetensors",
413
+ "model.layers.20.self_attn.time_mixer.x_w": "model-00005-of-00007.safetensors",
414
+ "model.layers.21.input_layernorm.weight": "model-00006-of-00007.safetensors",
415
+ "model.layers.21.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
416
+ "model.layers.21.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
417
+ "model.layers.21.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
418
+ "model.layers.21.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
419
+ "model.layers.21.self_attn.time_mixer.a0": "model-00005-of-00007.safetensors",
420
+ "model.layers.21.self_attn.time_mixer.a1": "model-00005-of-00007.safetensors",
421
+ "model.layers.21.self_attn.time_mixer.a2": "model-00005-of-00007.safetensors",
422
+ "model.layers.21.self_attn.time_mixer.g1": "model-00005-of-00007.safetensors",
423
+ "model.layers.21.self_attn.time_mixer.g2": "model-00005-of-00007.safetensors",
424
+ "model.layers.21.self_attn.time_mixer.k_a": "model-00005-of-00007.safetensors",
425
+ "model.layers.21.self_attn.time_mixer.k_k": "model-00005-of-00007.safetensors",
426
+ "model.layers.21.self_attn.time_mixer.key.weight": "model-00005-of-00007.safetensors",
427
+ "model.layers.21.self_attn.time_mixer.output.weight": "model-00005-of-00007.safetensors",
428
+ "model.layers.21.self_attn.time_mixer.r_k": "model-00005-of-00007.safetensors",
429
+ "model.layers.21.self_attn.time_mixer.receptance.weight": "model-00005-of-00007.safetensors",
430
+ "model.layers.21.self_attn.time_mixer.v0": "model-00005-of-00007.safetensors",
431
+ "model.layers.21.self_attn.time_mixer.v1": "model-00005-of-00007.safetensors",
432
+ "model.layers.21.self_attn.time_mixer.v2": "model-00005-of-00007.safetensors",
433
+ "model.layers.21.self_attn.time_mixer.value.weight": "model-00005-of-00007.safetensors",
434
+ "model.layers.21.self_attn.time_mixer.w0": "model-00005-of-00007.safetensors",
435
+ "model.layers.21.self_attn.time_mixer.w1": "model-00005-of-00007.safetensors",
436
+ "model.layers.21.self_attn.time_mixer.w2": "model-00005-of-00007.safetensors",
437
+ "model.layers.21.self_attn.time_mixer.x_a": "model-00005-of-00007.safetensors",
438
+ "model.layers.21.self_attn.time_mixer.x_g": "model-00005-of-00007.safetensors",
439
+ "model.layers.21.self_attn.time_mixer.x_k": "model-00005-of-00007.safetensors",
440
+ "model.layers.21.self_attn.time_mixer.x_r": "model-00005-of-00007.safetensors",
441
+ "model.layers.21.self_attn.time_mixer.x_v": "model-00005-of-00007.safetensors",
442
+ "model.layers.21.self_attn.time_mixer.x_w": "model-00005-of-00007.safetensors",
443
+ "model.layers.22.input_layernorm.weight": "model-00006-of-00007.safetensors",
444
+ "model.layers.22.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
445
+ "model.layers.22.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
446
+ "model.layers.22.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
447
+ "model.layers.22.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
448
+ "model.layers.22.self_attn.time_mixer.a0": "model-00006-of-00007.safetensors",
449
+ "model.layers.22.self_attn.time_mixer.a1": "model-00006-of-00007.safetensors",
450
+ "model.layers.22.self_attn.time_mixer.a2": "model-00006-of-00007.safetensors",
451
+ "model.layers.22.self_attn.time_mixer.g1": "model-00006-of-00007.safetensors",
452
+ "model.layers.22.self_attn.time_mixer.g2": "model-00006-of-00007.safetensors",
453
+ "model.layers.22.self_attn.time_mixer.k_a": "model-00006-of-00007.safetensors",
454
+ "model.layers.22.self_attn.time_mixer.k_k": "model-00006-of-00007.safetensors",
455
+ "model.layers.22.self_attn.time_mixer.key.weight": "model-00006-of-00007.safetensors",
456
+ "model.layers.22.self_attn.time_mixer.output.weight": "model-00006-of-00007.safetensors",
457
+ "model.layers.22.self_attn.time_mixer.r_k": "model-00006-of-00007.safetensors",
458
+ "model.layers.22.self_attn.time_mixer.receptance.weight": "model-00006-of-00007.safetensors",
459
+ "model.layers.22.self_attn.time_mixer.v0": "model-00006-of-00007.safetensors",
460
+ "model.layers.22.self_attn.time_mixer.v1": "model-00006-of-00007.safetensors",
461
+ "model.layers.22.self_attn.time_mixer.v2": "model-00006-of-00007.safetensors",
462
+ "model.layers.22.self_attn.time_mixer.value.weight": "model-00006-of-00007.safetensors",
463
+ "model.layers.22.self_attn.time_mixer.w0": "model-00006-of-00007.safetensors",
464
+ "model.layers.22.self_attn.time_mixer.w1": "model-00006-of-00007.safetensors",
465
+ "model.layers.22.self_attn.time_mixer.w2": "model-00006-of-00007.safetensors",
466
+ "model.layers.22.self_attn.time_mixer.x_a": "model-00006-of-00007.safetensors",
467
+ "model.layers.22.self_attn.time_mixer.x_g": "model-00006-of-00007.safetensors",
468
+ "model.layers.22.self_attn.time_mixer.x_k": "model-00006-of-00007.safetensors",
469
+ "model.layers.22.self_attn.time_mixer.x_r": "model-00006-of-00007.safetensors",
470
+ "model.layers.22.self_attn.time_mixer.x_v": "model-00006-of-00007.safetensors",
471
+ "model.layers.22.self_attn.time_mixer.x_w": "model-00006-of-00007.safetensors",
472
+ "model.layers.23.input_layernorm.weight": "model-00006-of-00007.safetensors",
473
+ "model.layers.23.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
474
+ "model.layers.23.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
475
+ "model.layers.23.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
476
+ "model.layers.23.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
477
+ "model.layers.23.self_attn.time_mixer.a0": "model-00006-of-00007.safetensors",
478
+ "model.layers.23.self_attn.time_mixer.a1": "model-00006-of-00007.safetensors",
479
+ "model.layers.23.self_attn.time_mixer.a2": "model-00006-of-00007.safetensors",
480
+ "model.layers.23.self_attn.time_mixer.g1": "model-00006-of-00007.safetensors",
481
+ "model.layers.23.self_attn.time_mixer.g2": "model-00006-of-00007.safetensors",
482
+ "model.layers.23.self_attn.time_mixer.k_a": "model-00006-of-00007.safetensors",
483
+ "model.layers.23.self_attn.time_mixer.k_k": "model-00006-of-00007.safetensors",
484
+ "model.layers.23.self_attn.time_mixer.key.weight": "model-00006-of-00007.safetensors",
485
+ "model.layers.23.self_attn.time_mixer.output.weight": "model-00006-of-00007.safetensors",
486
+ "model.layers.23.self_attn.time_mixer.r_k": "model-00006-of-00007.safetensors",
487
+ "model.layers.23.self_attn.time_mixer.receptance.weight": "model-00006-of-00007.safetensors",
488
+ "model.layers.23.self_attn.time_mixer.v0": "model-00006-of-00007.safetensors",
489
+ "model.layers.23.self_attn.time_mixer.v1": "model-00006-of-00007.safetensors",
490
+ "model.layers.23.self_attn.time_mixer.v2": "model-00006-of-00007.safetensors",
491
+ "model.layers.23.self_attn.time_mixer.value.weight": "model-00006-of-00007.safetensors",
492
+ "model.layers.23.self_attn.time_mixer.w0": "model-00006-of-00007.safetensors",
493
+ "model.layers.23.self_attn.time_mixer.w1": "model-00006-of-00007.safetensors",
494
+ "model.layers.23.self_attn.time_mixer.w2": "model-00006-of-00007.safetensors",
495
+ "model.layers.23.self_attn.time_mixer.x_a": "model-00006-of-00007.safetensors",
496
+ "model.layers.23.self_attn.time_mixer.x_g": "model-00006-of-00007.safetensors",
497
+ "model.layers.23.self_attn.time_mixer.x_k": "model-00006-of-00007.safetensors",
498
+ "model.layers.23.self_attn.time_mixer.x_r": "model-00006-of-00007.safetensors",
499
+ "model.layers.23.self_attn.time_mixer.x_v": "model-00006-of-00007.safetensors",
500
+ "model.layers.23.self_attn.time_mixer.x_w": "model-00006-of-00007.safetensors",
501
+ "model.layers.24.input_layernorm.weight": "model-00006-of-00007.safetensors",
502
+ "model.layers.24.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
503
+ "model.layers.24.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
504
+ "model.layers.24.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
505
+ "model.layers.24.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
506
+ "model.layers.24.self_attn.time_mixer.a0": "model-00006-of-00007.safetensors",
507
+ "model.layers.24.self_attn.time_mixer.a1": "model-00006-of-00007.safetensors",
508
+ "model.layers.24.self_attn.time_mixer.a2": "model-00006-of-00007.safetensors",
509
+ "model.layers.24.self_attn.time_mixer.g1": "model-00006-of-00007.safetensors",
510
+ "model.layers.24.self_attn.time_mixer.g2": "model-00006-of-00007.safetensors",
511
+ "model.layers.24.self_attn.time_mixer.k_a": "model-00006-of-00007.safetensors",
512
+ "model.layers.24.self_attn.time_mixer.k_k": "model-00006-of-00007.safetensors",
513
+ "model.layers.24.self_attn.time_mixer.key.weight": "model-00006-of-00007.safetensors",
514
+ "model.layers.24.self_attn.time_mixer.output.weight": "model-00006-of-00007.safetensors",
515
+ "model.layers.24.self_attn.time_mixer.r_k": "model-00006-of-00007.safetensors",
516
+ "model.layers.24.self_attn.time_mixer.receptance.weight": "model-00006-of-00007.safetensors",
517
+ "model.layers.24.self_attn.time_mixer.v0": "model-00006-of-00007.safetensors",
518
+ "model.layers.24.self_attn.time_mixer.v1": "model-00006-of-00007.safetensors",
519
+ "model.layers.24.self_attn.time_mixer.v2": "model-00006-of-00007.safetensors",
520
+ "model.layers.24.self_attn.time_mixer.value.weight": "model-00006-of-00007.safetensors",
521
+ "model.layers.24.self_attn.time_mixer.w0": "model-00006-of-00007.safetensors",
522
+ "model.layers.24.self_attn.time_mixer.w1": "model-00006-of-00007.safetensors",
523
+ "model.layers.24.self_attn.time_mixer.w2": "model-00006-of-00007.safetensors",
524
+ "model.layers.24.self_attn.time_mixer.x_a": "model-00006-of-00007.safetensors",
525
+ "model.layers.24.self_attn.time_mixer.x_g": "model-00006-of-00007.safetensors",
526
+ "model.layers.24.self_attn.time_mixer.x_k": "model-00006-of-00007.safetensors",
527
+ "model.layers.24.self_attn.time_mixer.x_r": "model-00006-of-00007.safetensors",
528
+ "model.layers.24.self_attn.time_mixer.x_v": "model-00006-of-00007.safetensors",
529
+ "model.layers.24.self_attn.time_mixer.x_w": "model-00006-of-00007.safetensors",
530
+ "model.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
531
+ "model.layers.25.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
532
+ "model.layers.25.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
533
+ "model.layers.25.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
534
+ "model.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
535
+ "model.layers.25.self_attn.time_mixer.a0": "model-00006-of-00007.safetensors",
536
+ "model.layers.25.self_attn.time_mixer.a1": "model-00006-of-00007.safetensors",
537
+ "model.layers.25.self_attn.time_mixer.a2": "model-00006-of-00007.safetensors",
538
+ "model.layers.25.self_attn.time_mixer.g1": "model-00006-of-00007.safetensors",
539
+ "model.layers.25.self_attn.time_mixer.g2": "model-00006-of-00007.safetensors",
540
+ "model.layers.25.self_attn.time_mixer.k_a": "model-00006-of-00007.safetensors",
541
+ "model.layers.25.self_attn.time_mixer.k_k": "model-00006-of-00007.safetensors",
542
+ "model.layers.25.self_attn.time_mixer.key.weight": "model-00006-of-00007.safetensors",
543
+ "model.layers.25.self_attn.time_mixer.output.weight": "model-00006-of-00007.safetensors",
544
+ "model.layers.25.self_attn.time_mixer.r_k": "model-00006-of-00007.safetensors",
545
+ "model.layers.25.self_attn.time_mixer.receptance.weight": "model-00006-of-00007.safetensors",
546
+ "model.layers.25.self_attn.time_mixer.v0": "model-00006-of-00007.safetensors",
547
+ "model.layers.25.self_attn.time_mixer.v1": "model-00006-of-00007.safetensors",
548
+ "model.layers.25.self_attn.time_mixer.v2": "model-00006-of-00007.safetensors",
549
+ "model.layers.25.self_attn.time_mixer.value.weight": "model-00006-of-00007.safetensors",
550
+ "model.layers.25.self_attn.time_mixer.w0": "model-00006-of-00007.safetensors",
551
+ "model.layers.25.self_attn.time_mixer.w1": "model-00006-of-00007.safetensors",
552
+ "model.layers.25.self_attn.time_mixer.w2": "model-00006-of-00007.safetensors",
553
+ "model.layers.25.self_attn.time_mixer.x_a": "model-00006-of-00007.safetensors",
554
+ "model.layers.25.self_attn.time_mixer.x_g": "model-00006-of-00007.safetensors",
555
+ "model.layers.25.self_attn.time_mixer.x_k": "model-00006-of-00007.safetensors",
556
+ "model.layers.25.self_attn.time_mixer.x_r": "model-00006-of-00007.safetensors",
557
+ "model.layers.25.self_attn.time_mixer.x_v": "model-00006-of-00007.safetensors",
558
+ "model.layers.25.self_attn.time_mixer.x_w": "model-00006-of-00007.safetensors",
559
+ "model.layers.26.input_layernorm.weight": "model-00007-of-00007.safetensors",
560
+ "model.layers.26.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
561
+ "model.layers.26.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
562
+ "model.layers.26.mlp.up_proj.weight": "model-00007-of-00007.safetensors",
563
+ "model.layers.26.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
564
+ "model.layers.26.self_attn.time_mixer.a0": "model-00006-of-00007.safetensors",
565
+ "model.layers.26.self_attn.time_mixer.a1": "model-00006-of-00007.safetensors",
566
+ "model.layers.26.self_attn.time_mixer.a2": "model-00006-of-00007.safetensors",
567
+ "model.layers.26.self_attn.time_mixer.g1": "model-00006-of-00007.safetensors",
568
+ "model.layers.26.self_attn.time_mixer.g2": "model-00006-of-00007.safetensors",
569
+ "model.layers.26.self_attn.time_mixer.k_a": "model-00006-of-00007.safetensors",
570
+ "model.layers.26.self_attn.time_mixer.k_k": "model-00006-of-00007.safetensors",
571
+ "model.layers.26.self_attn.time_mixer.key.weight": "model-00006-of-00007.safetensors",
572
+ "model.layers.26.self_attn.time_mixer.output.weight": "model-00006-of-00007.safetensors",
573
+ "model.layers.26.self_attn.time_mixer.r_k": "model-00006-of-00007.safetensors",
574
+ "model.layers.26.self_attn.time_mixer.receptance.weight": "model-00006-of-00007.safetensors",
575
+ "model.layers.26.self_attn.time_mixer.v0": "model-00006-of-00007.safetensors",
576
+ "model.layers.26.self_attn.time_mixer.v1": "model-00006-of-00007.safetensors",
577
+ "model.layers.26.self_attn.time_mixer.v2": "model-00006-of-00007.safetensors",
578
+ "model.layers.26.self_attn.time_mixer.value.weight": "model-00006-of-00007.safetensors",
579
+ "model.layers.26.self_attn.time_mixer.w0": "model-00006-of-00007.safetensors",
580
+ "model.layers.26.self_attn.time_mixer.w1": "model-00006-of-00007.safetensors",
581
+ "model.layers.26.self_attn.time_mixer.w2": "model-00006-of-00007.safetensors",
582
+ "model.layers.26.self_attn.time_mixer.x_a": "model-00006-of-00007.safetensors",
583
+ "model.layers.26.self_attn.time_mixer.x_g": "model-00006-of-00007.safetensors",
584
+ "model.layers.26.self_attn.time_mixer.x_k": "model-00006-of-00007.safetensors",
585
+ "model.layers.26.self_attn.time_mixer.x_r": "model-00006-of-00007.safetensors",
586
+ "model.layers.26.self_attn.time_mixer.x_v": "model-00006-of-00007.safetensors",
587
+ "model.layers.26.self_attn.time_mixer.x_w": "model-00006-of-00007.safetensors",
588
+ "model.layers.27.input_layernorm.weight": "model-00007-of-00007.safetensors",
589
+ "model.layers.27.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
590
+ "model.layers.27.mlp.gate_proj.weight": "model-00007-of-00007.safetensors",
591
+ "model.layers.27.mlp.up_proj.weight": "model-00007-of-00007.safetensors",
592
+ "model.layers.27.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
593
+ "model.layers.27.self_attn.time_mixer.a0": "model-00007-of-00007.safetensors",
594
+ "model.layers.27.self_attn.time_mixer.a1": "model-00007-of-00007.safetensors",
595
+ "model.layers.27.self_attn.time_mixer.a2": "model-00007-of-00007.safetensors",
596
+ "model.layers.27.self_attn.time_mixer.g1": "model-00007-of-00007.safetensors",
597
+ "model.layers.27.self_attn.time_mixer.g2": "model-00007-of-00007.safetensors",
598
+ "model.layers.27.self_attn.time_mixer.k_a": "model-00007-of-00007.safetensors",
599
+ "model.layers.27.self_attn.time_mixer.k_k": "model-00007-of-00007.safetensors",
600
+ "model.layers.27.self_attn.time_mixer.key.weight": "model-00007-of-00007.safetensors",
601
+ "model.layers.27.self_attn.time_mixer.output.weight": "model-00007-of-00007.safetensors",
602
+ "model.layers.27.self_attn.time_mixer.r_k": "model-00007-of-00007.safetensors",
603
+ "model.layers.27.self_attn.time_mixer.receptance.weight": "model-00007-of-00007.safetensors",
604
+ "model.layers.27.self_attn.time_mixer.v0": "model-00007-of-00007.safetensors",
605
+ "model.layers.27.self_attn.time_mixer.v1": "model-00007-of-00007.safetensors",
606
+ "model.layers.27.self_attn.time_mixer.v2": "model-00007-of-00007.safetensors",
607
+ "model.layers.27.self_attn.time_mixer.value.weight": "model-00007-of-00007.safetensors",
608
+ "model.layers.27.self_attn.time_mixer.w0": "model-00007-of-00007.safetensors",
609
+ "model.layers.27.self_attn.time_mixer.w1": "model-00007-of-00007.safetensors",
610
+ "model.layers.27.self_attn.time_mixer.w2": "model-00007-of-00007.safetensors",
611
+ "model.layers.27.self_attn.time_mixer.x_a": "model-00007-of-00007.safetensors",
612
+ "model.layers.27.self_attn.time_mixer.x_g": "model-00007-of-00007.safetensors",
613
+ "model.layers.27.self_attn.time_mixer.x_k": "model-00007-of-00007.safetensors",
614
+ "model.layers.27.self_attn.time_mixer.x_r": "model-00007-of-00007.safetensors",
615
+ "model.layers.27.self_attn.time_mixer.x_v": "model-00007-of-00007.safetensors",
616
+ "model.layers.27.self_attn.time_mixer.x_w": "model-00007-of-00007.safetensors",
617
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
618
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
619
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
620
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
621
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
622
+ "model.layers.3.self_attn.time_mixer.a0": "model-00002-of-00007.safetensors",
623
+ "model.layers.3.self_attn.time_mixer.a1": "model-00002-of-00007.safetensors",
624
+ "model.layers.3.self_attn.time_mixer.a2": "model-00002-of-00007.safetensors",
625
+ "model.layers.3.self_attn.time_mixer.g1": "model-00002-of-00007.safetensors",
626
+ "model.layers.3.self_attn.time_mixer.g2": "model-00002-of-00007.safetensors",
627
+ "model.layers.3.self_attn.time_mixer.k_a": "model-00002-of-00007.safetensors",
628
+ "model.layers.3.self_attn.time_mixer.k_k": "model-00002-of-00007.safetensors",
629
+ "model.layers.3.self_attn.time_mixer.key.weight": "model-00002-of-00007.safetensors",
630
+ "model.layers.3.self_attn.time_mixer.output.weight": "model-00002-of-00007.safetensors",
631
+ "model.layers.3.self_attn.time_mixer.r_k": "model-00002-of-00007.safetensors",
632
+ "model.layers.3.self_attn.time_mixer.receptance.weight": "model-00002-of-00007.safetensors",
633
+ "model.layers.3.self_attn.time_mixer.v0": "model-00002-of-00007.safetensors",
634
+ "model.layers.3.self_attn.time_mixer.v1": "model-00002-of-00007.safetensors",
635
+ "model.layers.3.self_attn.time_mixer.v2": "model-00002-of-00007.safetensors",
636
+ "model.layers.3.self_attn.time_mixer.value.weight": "model-00002-of-00007.safetensors",
637
+ "model.layers.3.self_attn.time_mixer.w0": "model-00002-of-00007.safetensors",
638
+ "model.layers.3.self_attn.time_mixer.w1": "model-00002-of-00007.safetensors",
639
+ "model.layers.3.self_attn.time_mixer.w2": "model-00002-of-00007.safetensors",
640
+ "model.layers.3.self_attn.time_mixer.x_a": "model-00002-of-00007.safetensors",
641
+ "model.layers.3.self_attn.time_mixer.x_g": "model-00002-of-00007.safetensors",
642
+ "model.layers.3.self_attn.time_mixer.x_k": "model-00002-of-00007.safetensors",
643
+ "model.layers.3.self_attn.time_mixer.x_r": "model-00002-of-00007.safetensors",
644
+ "model.layers.3.self_attn.time_mixer.x_v": "model-00002-of-00007.safetensors",
645
+ "model.layers.3.self_attn.time_mixer.x_w": "model-00002-of-00007.safetensors",
646
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
647
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
648
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
649
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
650
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
651
+ "model.layers.4.self_attn.time_mixer.a0": "model-00002-of-00007.safetensors",
652
+ "model.layers.4.self_attn.time_mixer.a1": "model-00002-of-00007.safetensors",
653
+ "model.layers.4.self_attn.time_mixer.a2": "model-00002-of-00007.safetensors",
654
+ "model.layers.4.self_attn.time_mixer.g1": "model-00002-of-00007.safetensors",
655
+ "model.layers.4.self_attn.time_mixer.g2": "model-00002-of-00007.safetensors",
656
+ "model.layers.4.self_attn.time_mixer.k_a": "model-00002-of-00007.safetensors",
657
+ "model.layers.4.self_attn.time_mixer.k_k": "model-00002-of-00007.safetensors",
658
+ "model.layers.4.self_attn.time_mixer.key.weight": "model-00002-of-00007.safetensors",
659
+ "model.layers.4.self_attn.time_mixer.output.weight": "model-00002-of-00007.safetensors",
660
+ "model.layers.4.self_attn.time_mixer.r_k": "model-00002-of-00007.safetensors",
661
+ "model.layers.4.self_attn.time_mixer.receptance.weight": "model-00002-of-00007.safetensors",
662
+ "model.layers.4.self_attn.time_mixer.v0": "model-00002-of-00007.safetensors",
663
+ "model.layers.4.self_attn.time_mixer.v1": "model-00002-of-00007.safetensors",
664
+ "model.layers.4.self_attn.time_mixer.v2": "model-00002-of-00007.safetensors",
665
+ "model.layers.4.self_attn.time_mixer.value.weight": "model-00002-of-00007.safetensors",
666
+ "model.layers.4.self_attn.time_mixer.w0": "model-00002-of-00007.safetensors",
667
+ "model.layers.4.self_attn.time_mixer.w1": "model-00002-of-00007.safetensors",
668
+ "model.layers.4.self_attn.time_mixer.w2": "model-00002-of-00007.safetensors",
669
+ "model.layers.4.self_attn.time_mixer.x_a": "model-00002-of-00007.safetensors",
670
+ "model.layers.4.self_attn.time_mixer.x_g": "model-00002-of-00007.safetensors",
671
+ "model.layers.4.self_attn.time_mixer.x_k": "model-00002-of-00007.safetensors",
672
+ "model.layers.4.self_attn.time_mixer.x_r": "model-00002-of-00007.safetensors",
673
+ "model.layers.4.self_attn.time_mixer.x_v": "model-00002-of-00007.safetensors",
674
+ "model.layers.4.self_attn.time_mixer.x_w": "model-00002-of-00007.safetensors",
675
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
676
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
677
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
678
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
679
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
680
+ "model.layers.5.self_attn.time_mixer.a0": "model-00002-of-00007.safetensors",
681
+ "model.layers.5.self_attn.time_mixer.a1": "model-00002-of-00007.safetensors",
682
+ "model.layers.5.self_attn.time_mixer.a2": "model-00002-of-00007.safetensors",
683
+ "model.layers.5.self_attn.time_mixer.g1": "model-00002-of-00007.safetensors",
684
+ "model.layers.5.self_attn.time_mixer.g2": "model-00002-of-00007.safetensors",
685
+ "model.layers.5.self_attn.time_mixer.k_a": "model-00002-of-00007.safetensors",
686
+ "model.layers.5.self_attn.time_mixer.k_k": "model-00002-of-00007.safetensors",
687
+ "model.layers.5.self_attn.time_mixer.key.weight": "model-00002-of-00007.safetensors",
688
+ "model.layers.5.self_attn.time_mixer.output.weight": "model-00002-of-00007.safetensors",
689
+ "model.layers.5.self_attn.time_mixer.r_k": "model-00002-of-00007.safetensors",
690
+ "model.layers.5.self_attn.time_mixer.receptance.weight": "model-00002-of-00007.safetensors",
691
+ "model.layers.5.self_attn.time_mixer.v0": "model-00002-of-00007.safetensors",
692
+ "model.layers.5.self_attn.time_mixer.v1": "model-00002-of-00007.safetensors",
693
+ "model.layers.5.self_attn.time_mixer.v2": "model-00002-of-00007.safetensors",
694
+ "model.layers.5.self_attn.time_mixer.value.weight": "model-00002-of-00007.safetensors",
695
+ "model.layers.5.self_attn.time_mixer.w0": "model-00002-of-00007.safetensors",
696
+ "model.layers.5.self_attn.time_mixer.w1": "model-00002-of-00007.safetensors",
697
+ "model.layers.5.self_attn.time_mixer.w2": "model-00002-of-00007.safetensors",
698
+ "model.layers.5.self_attn.time_mixer.x_a": "model-00002-of-00007.safetensors",
699
+ "model.layers.5.self_attn.time_mixer.x_g": "model-00002-of-00007.safetensors",
700
+ "model.layers.5.self_attn.time_mixer.x_k": "model-00002-of-00007.safetensors",
701
+ "model.layers.5.self_attn.time_mixer.x_r": "model-00002-of-00007.safetensors",
702
+ "model.layers.5.self_attn.time_mixer.x_v": "model-00002-of-00007.safetensors",
703
+ "model.layers.5.self_attn.time_mixer.x_w": "model-00002-of-00007.safetensors",
704
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
705
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
706
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
707
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
708
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
709
+ "model.layers.6.self_attn.time_mixer.a0": "model-00002-of-00007.safetensors",
710
+ "model.layers.6.self_attn.time_mixer.a1": "model-00002-of-00007.safetensors",
711
+ "model.layers.6.self_attn.time_mixer.a2": "model-00002-of-00007.safetensors",
712
+ "model.layers.6.self_attn.time_mixer.g1": "model-00002-of-00007.safetensors",
713
+ "model.layers.6.self_attn.time_mixer.g2": "model-00002-of-00007.safetensors",
714
+ "model.layers.6.self_attn.time_mixer.k_a": "model-00002-of-00007.safetensors",
715
+ "model.layers.6.self_attn.time_mixer.k_k": "model-00002-of-00007.safetensors",
716
+ "model.layers.6.self_attn.time_mixer.key.weight": "model-00002-of-00007.safetensors",
717
+ "model.layers.6.self_attn.time_mixer.output.weight": "model-00002-of-00007.safetensors",
718
+ "model.layers.6.self_attn.time_mixer.r_k": "model-00002-of-00007.safetensors",
719
+ "model.layers.6.self_attn.time_mixer.receptance.weight": "model-00002-of-00007.safetensors",
720
+ "model.layers.6.self_attn.time_mixer.v0": "model-00002-of-00007.safetensors",
721
+ "model.layers.6.self_attn.time_mixer.v1": "model-00002-of-00007.safetensors",
722
+ "model.layers.6.self_attn.time_mixer.v2": "model-00002-of-00007.safetensors",
723
+ "model.layers.6.self_attn.time_mixer.value.weight": "model-00002-of-00007.safetensors",
724
+ "model.layers.6.self_attn.time_mixer.w0": "model-00002-of-00007.safetensors",
725
+ "model.layers.6.self_attn.time_mixer.w1": "model-00002-of-00007.safetensors",
726
+ "model.layers.6.self_attn.time_mixer.w2": "model-00002-of-00007.safetensors",
727
+ "model.layers.6.self_attn.time_mixer.x_a": "model-00002-of-00007.safetensors",
728
+ "model.layers.6.self_attn.time_mixer.x_g": "model-00002-of-00007.safetensors",
729
+ "model.layers.6.self_attn.time_mixer.x_k": "model-00002-of-00007.safetensors",
730
+ "model.layers.6.self_attn.time_mixer.x_r": "model-00002-of-00007.safetensors",
731
+ "model.layers.6.self_attn.time_mixer.x_v": "model-00002-of-00007.safetensors",
732
+ "model.layers.6.self_attn.time_mixer.x_w": "model-00002-of-00007.safetensors",
733
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00007.safetensors",
734
+ "model.layers.7.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
735
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
736
+ "model.layers.7.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
737
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
738
+ "model.layers.7.self_attn.time_mixer.a0": "model-00002-of-00007.safetensors",
739
+ "model.layers.7.self_attn.time_mixer.a1": "model-00002-of-00007.safetensors",
740
+ "model.layers.7.self_attn.time_mixer.a2": "model-00002-of-00007.safetensors",
741
+ "model.layers.7.self_attn.time_mixer.g1": "model-00002-of-00007.safetensors",
742
+ "model.layers.7.self_attn.time_mixer.g2": "model-00002-of-00007.safetensors",
743
+ "model.layers.7.self_attn.time_mixer.k_a": "model-00002-of-00007.safetensors",
744
+ "model.layers.7.self_attn.time_mixer.k_k": "model-00002-of-00007.safetensors",
745
+ "model.layers.7.self_attn.time_mixer.key.weight": "model-00002-of-00007.safetensors",
746
+ "model.layers.7.self_attn.time_mixer.output.weight": "model-00002-of-00007.safetensors",
747
+ "model.layers.7.self_attn.time_mixer.r_k": "model-00002-of-00007.safetensors",
748
+ "model.layers.7.self_attn.time_mixer.receptance.weight": "model-00002-of-00007.safetensors",
749
+ "model.layers.7.self_attn.time_mixer.v0": "model-00002-of-00007.safetensors",
750
+ "model.layers.7.self_attn.time_mixer.v1": "model-00002-of-00007.safetensors",
751
+ "model.layers.7.self_attn.time_mixer.v2": "model-00002-of-00007.safetensors",
752
+ "model.layers.7.self_attn.time_mixer.value.weight": "model-00002-of-00007.safetensors",
753
+ "model.layers.7.self_attn.time_mixer.w0": "model-00002-of-00007.safetensors",
754
+ "model.layers.7.self_attn.time_mixer.w1": "model-00002-of-00007.safetensors",
755
+ "model.layers.7.self_attn.time_mixer.w2": "model-00002-of-00007.safetensors",
756
+ "model.layers.7.self_attn.time_mixer.x_a": "model-00002-of-00007.safetensors",
757
+ "model.layers.7.self_attn.time_mixer.x_g": "model-00002-of-00007.safetensors",
758
+ "model.layers.7.self_attn.time_mixer.x_k": "model-00002-of-00007.safetensors",
759
+ "model.layers.7.self_attn.time_mixer.x_r": "model-00002-of-00007.safetensors",
760
+ "model.layers.7.self_attn.time_mixer.x_v": "model-00002-of-00007.safetensors",
761
+ "model.layers.7.self_attn.time_mixer.x_w": "model-00002-of-00007.safetensors",
762
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00007.safetensors",
763
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
764
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
765
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
766
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
767
+ "model.layers.8.self_attn.time_mixer.a0": "model-00003-of-00007.safetensors",
768
+ "model.layers.8.self_attn.time_mixer.a1": "model-00003-of-00007.safetensors",
769
+ "model.layers.8.self_attn.time_mixer.a2": "model-00003-of-00007.safetensors",
770
+ "model.layers.8.self_attn.time_mixer.g1": "model-00003-of-00007.safetensors",
771
+ "model.layers.8.self_attn.time_mixer.g2": "model-00003-of-00007.safetensors",
772
+ "model.layers.8.self_attn.time_mixer.k_a": "model-00003-of-00007.safetensors",
773
+ "model.layers.8.self_attn.time_mixer.k_k": "model-00003-of-00007.safetensors",
774
+ "model.layers.8.self_attn.time_mixer.key.weight": "model-00003-of-00007.safetensors",
775
+ "model.layers.8.self_attn.time_mixer.output.weight": "model-00003-of-00007.safetensors",
776
+ "model.layers.8.self_attn.time_mixer.r_k": "model-00003-of-00007.safetensors",
777
+ "model.layers.8.self_attn.time_mixer.receptance.weight": "model-00003-of-00007.safetensors",
778
+ "model.layers.8.self_attn.time_mixer.v0": "model-00003-of-00007.safetensors",
779
+ "model.layers.8.self_attn.time_mixer.v1": "model-00003-of-00007.safetensors",
780
+ "model.layers.8.self_attn.time_mixer.v2": "model-00003-of-00007.safetensors",
781
+ "model.layers.8.self_attn.time_mixer.value.weight": "model-00003-of-00007.safetensors",
782
+ "model.layers.8.self_attn.time_mixer.w0": "model-00003-of-00007.safetensors",
783
+ "model.layers.8.self_attn.time_mixer.w1": "model-00003-of-00007.safetensors",
784
+ "model.layers.8.self_attn.time_mixer.w2": "model-00003-of-00007.safetensors",
785
+ "model.layers.8.self_attn.time_mixer.x_a": "model-00003-of-00007.safetensors",
786
+ "model.layers.8.self_attn.time_mixer.x_g": "model-00003-of-00007.safetensors",
787
+ "model.layers.8.self_attn.time_mixer.x_k": "model-00003-of-00007.safetensors",
788
+ "model.layers.8.self_attn.time_mixer.x_r": "model-00003-of-00007.safetensors",
789
+ "model.layers.8.self_attn.time_mixer.x_v": "model-00003-of-00007.safetensors",
790
+ "model.layers.8.self_attn.time_mixer.x_w": "model-00003-of-00007.safetensors",
791
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
792
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
793
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
794
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
795
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
796
+ "model.layers.9.self_attn.time_mixer.a0": "model-00003-of-00007.safetensors",
797
+ "model.layers.9.self_attn.time_mixer.a1": "model-00003-of-00007.safetensors",
798
+ "model.layers.9.self_attn.time_mixer.a2": "model-00003-of-00007.safetensors",
799
+ "model.layers.9.self_attn.time_mixer.g1": "model-00003-of-00007.safetensors",
800
+ "model.layers.9.self_attn.time_mixer.g2": "model-00003-of-00007.safetensors",
801
+ "model.layers.9.self_attn.time_mixer.k_a": "model-00003-of-00007.safetensors",
802
+ "model.layers.9.self_attn.time_mixer.k_k": "model-00003-of-00007.safetensors",
803
+ "model.layers.9.self_attn.time_mixer.key.weight": "model-00003-of-00007.safetensors",
804
+ "model.layers.9.self_attn.time_mixer.output.weight": "model-00003-of-00007.safetensors",
805
+ "model.layers.9.self_attn.time_mixer.r_k": "model-00003-of-00007.safetensors",
806
+ "model.layers.9.self_attn.time_mixer.receptance.weight": "model-00003-of-00007.safetensors",
807
+ "model.layers.9.self_attn.time_mixer.v0": "model-00003-of-00007.safetensors",
808
+ "model.layers.9.self_attn.time_mixer.v1": "model-00003-of-00007.safetensors",
809
+ "model.layers.9.self_attn.time_mixer.v2": "model-00003-of-00007.safetensors",
810
+ "model.layers.9.self_attn.time_mixer.value.weight": "model-00003-of-00007.safetensors",
811
+ "model.layers.9.self_attn.time_mixer.w0": "model-00003-of-00007.safetensors",
812
+ "model.layers.9.self_attn.time_mixer.w1": "model-00003-of-00007.safetensors",
813
+ "model.layers.9.self_attn.time_mixer.w2": "model-00003-of-00007.safetensors",
814
+ "model.layers.9.self_attn.time_mixer.x_a": "model-00003-of-00007.safetensors",
815
+ "model.layers.9.self_attn.time_mixer.x_g": "model-00003-of-00007.safetensors",
816
+ "model.layers.9.self_attn.time_mixer.x_k": "model-00003-of-00007.safetensors",
817
+ "model.layers.9.self_attn.time_mixer.x_r": "model-00003-of-00007.safetensors",
818
+ "model.layers.9.self_attn.time_mixer.x_v": "model-00003-of-00007.safetensors",
819
+ "model.layers.9.self_attn.time_mixer.x_w": "model-00003-of-00007.safetensors",
820
+ "model.norm.weight": "model-00007-of-00007.safetensors"
821
+ }
822
+ }
modeling_rwkv_hybrid.py ADDED
@@ -0,0 +1,632 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Callable, List, Optional, Tuple, Union
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ from transformers.cache_utils import Cache
6
+
7
+ from transformers.activations import ACT2FN
8
+ from transformers.cache_utils import Cache, StaticCache
9
+ from .hybrid_cache import HybridCache
10
+ from transformers.generation import GenerationMixin
11
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
12
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
13
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
14
+
15
+ from transformers.modeling_outputs import (
16
+ BaseModelOutputWithPast,
17
+ CausalLMOutputWithPast,
18
+ )
19
+ from transformers.processing_utils import Unpack
20
+ from transformers.utils import (
21
+ LossKwargs,
22
+ add_start_docstrings,
23
+ add_start_docstrings_to_model_forward,
24
+ logging,
25
+ )
26
+
27
+ import threading
28
+ from .wkv import Rwkv7Attention, Rwkv6Attention
29
+ from .configuration_rwkv_hybrid import RwkvHybridConfig
30
+
31
+ from transformers.models.qwen2.modeling_qwen2 import (Qwen2MLP,
32
+ Qwen2RMSNorm,
33
+ Qwen2RotaryEmbedding,
34
+ Qwen2Attention)
35
+
36
+ logger = logging.get_logger(__name__)
37
+
38
+ _CONFIG_FOR_DOC = "RwkvHybridConfig"
39
+
40
+ class RwkvHybridDecoderLayer(nn.Module):
41
+ def __init__(self, config: RwkvHybridConfig, layer_idx: int, update_v_first, get_v_first):
42
+ super().__init__()
43
+ self.hidden_size = config.hidden_size
44
+
45
+ self.is_rwkv = True if layer_idx in config.wkv_layers else False
46
+ if self.is_rwkv:
47
+ if config.wkv_version == 7:
48
+ self.self_attn = Rwkv7Attention(args=config, layer_id=layer_idx,
49
+ update_v_first=update_v_first,
50
+ get_v_first=get_v_first)
51
+ elif config.wkv_version == 6:
52
+ self.self_attn = Rwkv6Attention(args=config, layer_id=layer_idx,
53
+ update_v_first=update_v_first,
54
+ get_v_first=get_v_first)
55
+ else:
56
+ raise NotImplementedError
57
+ elif not self.is_rwkv:
58
+ self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
59
+ else:
60
+ self.self_attn = None
61
+ raise NotImplementedError
62
+
63
+ self.mlp = Qwen2MLP(config)
64
+ self.input_layernorm = Qwen2RMSNorm(
65
+ config.hidden_size, eps=config.rms_norm_eps)
66
+ self.post_attention_layernorm = Qwen2RMSNorm(
67
+ config.hidden_size, eps=config.rms_norm_eps)
68
+
69
+
70
+ def forward(
71
+ self,
72
+ hidden_states: torch.Tensor,
73
+ attention_mask: Optional[torch.Tensor] = None,
74
+ position_ids: Optional[torch.LongTensor] = None,
75
+ past_key_value: Optional[Cache] = None,
76
+ output_attentions: Optional[bool] = False,
77
+ use_cache: Optional[bool] = False,
78
+ cache_position: Optional[torch.LongTensor] = None,
79
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
80
+ **kwargs,
81
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
82
+ residual = hidden_states
83
+
84
+ hidden_states = self.input_layernorm(hidden_states)
85
+
86
+ # RWKV attention
87
+ hidden_states, self_attn_weights = self.self_attn(
88
+ hidden_states=hidden_states,
89
+ attention_mask=attention_mask,
90
+ position_ids=position_ids,
91
+ past_key_value=past_key_value,
92
+ output_attentions=output_attentions,
93
+ use_cache=use_cache,
94
+ cache_position=cache_position,
95
+ position_embeddings=position_embeddings,
96
+ )
97
+ hidden_states = residual + hidden_states
98
+
99
+ # Fully Connected
100
+ residual = hidden_states
101
+ hidden_states = self.post_attention_layernorm(hidden_states)
102
+ hidden_states = self.mlp(hidden_states)
103
+ hidden_states = residual + hidden_states
104
+
105
+ outputs = (hidden_states,)
106
+ if output_attentions:
107
+ outputs += (self_attn_weights,)
108
+
109
+ return outputs
110
+
111
+ RWKV_HYBRID_START_DOCSTRING = r"""
112
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
113
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
114
+ etc.)
115
+
116
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
117
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
118
+ and behavior.
119
+
120
+ Parameters:
121
+ config ([`RwkvHybridConfig`]):
122
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
123
+ load the weights associated with the model, only the configuration. Check out the
124
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
125
+ """
126
+
127
+ @add_start_docstrings(
128
+ "The bare RWKV Hybrid Model outputting raw hidden-states without any specific head on top.",
129
+ RWKV_HYBRID_START_DOCSTRING,
130
+ )
131
+ class RwkvHybridPreTrainedModel(PreTrainedModel):
132
+ config_class = RwkvHybridConfig
133
+ base_model_prefix = "rwkv_hybrid"
134
+ supports_gradient_checkpointing = True
135
+ _no_split_modules = ["RwkvHybridDecoderLayer"]
136
+ _skip_keys_device_placement = ["past_key_values"]
137
+
138
+ def _init_weights(self, module):
139
+ std = self.config.initializer_range
140
+ if isinstance(module, nn.Linear):
141
+ module.weight.data.normal_(mean=0.0, std=std)
142
+ if module.bias is not None:
143
+ module.bias.data.zero_()
144
+ elif isinstance(module, nn.Embedding):
145
+ module.weight.data.normal_(mean=0.0, std=std)
146
+ if module.padding_idx is not None:
147
+ module.weight.data[module.padding_idx].zero_()
148
+
149
+ RWKV_HYBRID_INPUTS_DOCSTRING = r"""
150
+ Args:
151
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
152
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
153
+ it.
154
+
155
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
156
+ [`PreTrainedTokenizer.__call__`] for details.
157
+
158
+ [What are input IDs?](../glossary#input-ids)
159
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
160
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
161
+
162
+ - 1 for tokens that are **not masked**,
163
+ - 0 for tokens that are **masked**.
164
+
165
+ [What are attention masks?](../glossary#attention-mask)
166
+
167
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
168
+ [`PreTrainedTokenizer.__call__`] for details.
169
+
170
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
171
+ `past_key_values`).
172
+
173
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
174
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
175
+ information on the default strategy.
176
+
177
+ - 1 indicates the head is **not masked**,
178
+ - 0 indicates the head is **masked**.
179
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
180
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
181
+ config.n_positions - 1]`.
182
+
183
+ [What are position IDs?](../glossary#position-ids)
184
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
185
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
186
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
187
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
188
+
189
+ Two formats are allowed:
190
+ - a [`~cache_utils.Cache`] instance, see our
191
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
192
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
193
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
194
+ cache format.
195
+
196
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
197
+ legacy cache format will be returned.
198
+
199
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
200
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
201
+ of shape `(batch_size, sequence_length)`.
202
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
203
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
204
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
205
+ model's internal embedding lookup matrix.
206
+ use_cache (`bool`, *optional*):
207
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
208
+ `past_key_values`).
209
+ output_attentions (`bool`, *optional*):
210
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
211
+ tensors for more detail.
212
+ output_hidden_states (`bool`, *optional*):
213
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
214
+ more detail.
215
+ return_dict (`bool`, *optional*):
216
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
217
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
218
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
219
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
220
+ the complete sequence length.
221
+ """
222
+
223
+
224
+ @add_start_docstrings(
225
+ "The bare RWKV Hybrid Model outputting raw hidden-states without any specific head on top.",
226
+ RWKV_HYBRID_START_DOCSTRING,
227
+ )
228
+ class RwkvHybridModel(RwkvHybridPreTrainedModel):
229
+ """
230
+ RWKV and Transformer hybrid decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`RwkvHybridDecoderLayer`]
231
+
232
+ Args:
233
+ config: RwkvHybridConfig
234
+ """
235
+
236
+ def __init__(self, config: RwkvHybridConfig):
237
+ super().__init__(config)
238
+ self.padding_idx = config.pad_token_id
239
+ self.vocab_size = config.vocab_size
240
+
241
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
242
+ self.thread_local = threading.local()
243
+ self.thread_local.v_first = None
244
+ self.layers = nn.ModuleList(
245
+ [RwkvHybridDecoderLayer(config, layer_idx, self.update_v_first, self.get_v_first) for layer_idx in range(config.num_hidden_layers)]
246
+ )
247
+ self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
248
+ self.rotary_emb = Qwen2RotaryEmbedding(config=config)
249
+ self.gradient_checkpointing = False
250
+
251
+ # Initialize weights and apply final processing
252
+ self.post_init()
253
+
254
+ def post_init(self):
255
+ """
256
+ A method executed at the end of each Transformer model initialization, to execute code that needs the model's
257
+ modules properly initialized (such as weight initialization).
258
+ """
259
+ self.init_weights()
260
+ self._backward_compatibility_gradient_checkpointing()
261
+ # If current model is a base model, attach `base_model_tp_plan` from config
262
+ if self.base_model is self:
263
+ self._tp_plan = self.config.base_model_tp_plan
264
+ from transformers.modeling_utils import _init_weights
265
+ if _init_weights:
266
+ for layer in self.layers:
267
+ layer.self_attn.time_mixer.post_init()
268
+
269
+ def update_v_first(self, new_v_first):
270
+ """Callback function to update v_first in HybridModel."""
271
+ self.thread_local.v_first = new_v_first
272
+
273
+ def get_v_first(self):
274
+ return self.thread_local.v_first
275
+
276
+ def get_input_embeddings(self):
277
+ return self.embed_tokens
278
+
279
+ def set_input_embeddings(self, value):
280
+ self.embed_tokens = value
281
+
282
+ @add_start_docstrings_to_model_forward(RWKV_HYBRID_INPUTS_DOCSTRING)
283
+ def forward(
284
+ self,
285
+ input_ids: torch.LongTensor = None,
286
+ attention_mask: Optional[torch.Tensor] = None,
287
+ position_ids: Optional[torch.LongTensor] = None,
288
+ past_key_values: Optional[Cache] = None,
289
+ inputs_embeds: Optional[torch.FloatTensor] = None,
290
+ use_cache: Optional[bool] = None,
291
+ output_attentions: Optional[bool] = None,
292
+ output_hidden_states: Optional[bool] = None,
293
+ return_dict: Optional[bool] = None,
294
+ cache_position: Optional[torch.LongTensor] = None,
295
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
296
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
297
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
298
+ output_hidden_states = (
299
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
300
+ )
301
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
302
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
303
+
304
+ if (input_ids is None) ^ (inputs_embeds is not None):
305
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
306
+
307
+ if self.gradient_checkpointing and self.training and use_cache:
308
+ logger.warning_once(
309
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
310
+ )
311
+ use_cache = False
312
+
313
+ if inputs_embeds is None:
314
+ inputs_embeds = self.embed_tokens(input_ids)
315
+
316
+ if use_cache and past_key_values is None:
317
+ past_key_values = HybridCache()
318
+
319
+ if cache_position is None:
320
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
321
+ cache_position = torch.arange(
322
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
323
+ )
324
+
325
+ if position_ids is None:
326
+ position_ids = cache_position.unsqueeze(0)
327
+
328
+ causal_mask = self._update_causal_mask(
329
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
330
+ )
331
+
332
+ hidden_states = inputs_embeds
333
+
334
+ # create position embeddings to be shared across the decoder layers
335
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
336
+
337
+ # decoder layers
338
+ all_hidden_states = () if output_hidden_states else None
339
+ all_self_attns = () if output_attentions else None
340
+
341
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
342
+ if output_hidden_states:
343
+ all_hidden_states += (hidden_states,)
344
+
345
+ if self.gradient_checkpointing and self.training:
346
+ layer_outputs = self._gradient_checkpointing_func(
347
+ decoder_layer.__call__,
348
+ hidden_states,
349
+ causal_mask,
350
+ position_ids,
351
+ past_key_values,
352
+ output_attentions,
353
+ use_cache,
354
+ cache_position,
355
+ position_embeddings,
356
+ )
357
+ else:
358
+ layer_outputs = decoder_layer(
359
+ hidden_states,
360
+ attention_mask=causal_mask,
361
+ position_ids=position_ids,
362
+ past_key_value=past_key_values,
363
+ output_attentions=output_attentions,
364
+ use_cache=use_cache,
365
+ cache_position=cache_position,
366
+ position_embeddings=position_embeddings,
367
+ **flash_attn_kwargs,
368
+ )
369
+
370
+ hidden_states = layer_outputs[0]
371
+
372
+ if output_attentions:
373
+ all_self_attns += (layer_outputs[1],)
374
+
375
+ hidden_states = self.norm(hidden_states)
376
+
377
+ # add hidden states from the last decoder layer
378
+ if output_hidden_states:
379
+ all_hidden_states += (hidden_states,)
380
+
381
+ output = BaseModelOutputWithPast(
382
+ last_hidden_state=hidden_states,
383
+ past_key_values=past_key_values if use_cache else None,
384
+ hidden_states=all_hidden_states,
385
+ attentions=all_self_attns,
386
+ )
387
+ return output if return_dict else output.to_tuple()
388
+
389
+ def _update_causal_mask(
390
+ self,
391
+ attention_mask: torch.Tensor,
392
+ input_tensor: torch.Tensor,
393
+ cache_position: torch.Tensor,
394
+ past_key_values: Cache,
395
+ output_attentions: bool,
396
+ ):
397
+ if self.config._attn_implementation == "flash_attention_2":
398
+ if attention_mask is not None and (attention_mask == 0.0).any():
399
+ return attention_mask
400
+ return None
401
+
402
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
403
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
404
+ # to infer the attention mask.
405
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
406
+ using_static_cache = isinstance(past_key_values, StaticCache)
407
+
408
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
409
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
410
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
411
+ attention_mask,
412
+ inputs_embeds=input_tensor,
413
+ past_key_values_length=past_seen_tokens,
414
+ is_training=self.training,
415
+ ):
416
+ return None
417
+
418
+ dtype, device = input_tensor.dtype, input_tensor.device
419
+ sequence_length = input_tensor.shape[1]
420
+ if using_static_cache:
421
+ target_length = past_key_values.get_max_cache_shape()
422
+ else:
423
+ target_length = (
424
+ attention_mask.shape[-1]
425
+ if isinstance(attention_mask, torch.Tensor)
426
+ else past_seen_tokens + sequence_length + 1
427
+ )
428
+
429
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
430
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
431
+ attention_mask,
432
+ sequence_length=sequence_length,
433
+ target_length=target_length,
434
+ dtype=dtype,
435
+ device=device,
436
+ cache_position=cache_position,
437
+ batch_size=input_tensor.shape[0],
438
+ )
439
+
440
+ if (
441
+ self.config._attn_implementation == "sdpa"
442
+ and attention_mask is not None
443
+ and attention_mask.device.type == "cuda"
444
+ and not output_attentions
445
+ ):
446
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
447
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
448
+ # Details: https://github.com/pytorch/pytorch/issues/110213
449
+ min_dtype = torch.finfo(dtype).min
450
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
451
+
452
+ return causal_mask
453
+
454
+ @staticmethod
455
+ def _prepare_4d_causal_attention_mask_with_cache_position(
456
+ attention_mask: torch.Tensor,
457
+ sequence_length: int,
458
+ target_length: int,
459
+ dtype: torch.dtype,
460
+ device: torch.device,
461
+ cache_position: torch.Tensor,
462
+ batch_size: int,
463
+ **kwargs,
464
+ ):
465
+ """
466
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
467
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
468
+
469
+ Args:
470
+ attention_mask (`torch.Tensor`):
471
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
472
+ `(batch_size, 1, query_length, key_value_length)`.
473
+ sequence_length (`int`):
474
+ The sequence length being processed.
475
+ target_length (`int`):
476
+ The target length: when generating with static cache, the mask should be as long as the static cache,
477
+ to account for the 0 padding, the part of the cache that is not filled yet.
478
+ dtype (`torch.dtype`):
479
+ The dtype to use for the 4D attention mask.
480
+ device (`torch.device`):
481
+ The device to plcae the 4D attention mask on.
482
+ cache_position (`torch.Tensor`):
483
+ Indices depicting the position of the input sequence tokens in the sequence.
484
+ batch_size (`torch.Tensor`):
485
+ Batch size.
486
+ """
487
+ if attention_mask is not None and attention_mask.dim() == 4:
488
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
489
+ causal_mask = attention_mask
490
+ else:
491
+ min_dtype = torch.finfo(dtype).min
492
+ causal_mask = torch.full(
493
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
494
+ )
495
+ if sequence_length != 1:
496
+ causal_mask = torch.triu(causal_mask, diagonal=1)
497
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
498
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
499
+ if attention_mask is not None:
500
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
501
+ mask_length = attention_mask.shape[-1]
502
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
503
+ padding_mask = padding_mask == 0
504
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
505
+ padding_mask, min_dtype
506
+ )
507
+
508
+ return causal_mask
509
+
510
+
511
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
512
+
513
+ class RwkvHybridForCausalLM(RwkvHybridPreTrainedModel, GenerationMixin):
514
+ _tied_weights_keys = ["lm_head.weight"]
515
+ _tp_plan = {"lm_head": "colwise_rep"}
516
+
517
+ def __init__(self, config):
518
+ super().__init__(config)
519
+ self.model = RwkvHybridModel(config)
520
+ self.vocab_size = config.vocab_size
521
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
522
+
523
+ # Initialize weights and apply final processing
524
+ self.post_init()
525
+
526
+ def get_input_embeddings(self):
527
+ return self.model.embed_tokens
528
+
529
+ def set_input_embeddings(self, value):
530
+ self.model.embed_tokens = value
531
+
532
+ def get_output_embeddings(self):
533
+ return self.lm_head
534
+
535
+ def set_output_embeddings(self, new_embeddings):
536
+ self.lm_head = new_embeddings
537
+
538
+ def set_decoder(self, decoder):
539
+ self.model = decoder
540
+
541
+ def get_decoder(self):
542
+ return self.model
543
+
544
+ # @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
545
+ # @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
546
+ def forward(
547
+ self,
548
+ input_ids: torch.LongTensor = None,
549
+ attention_mask: Optional[torch.Tensor] = None,
550
+ position_ids: Optional[torch.LongTensor] = None,
551
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
552
+ inputs_embeds: Optional[torch.FloatTensor] = None,
553
+ labels: Optional[torch.LongTensor] = None,
554
+ use_cache: Optional[bool] = None,
555
+ output_attentions: Optional[bool] = None,
556
+ output_hidden_states: Optional[bool] = None,
557
+ return_dict: Optional[bool] = None,
558
+ cache_position: Optional[torch.LongTensor] = None,
559
+ num_logits_to_keep: int = 0,
560
+ **kwargs: Unpack[KwargsForCausalLM],
561
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
562
+ r"""
563
+ Args:
564
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
565
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
566
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
567
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
568
+
569
+ num_logits_to_keep (`int`, *optional*):
570
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
571
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
572
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
573
+
574
+ Returns:
575
+
576
+ Example:
577
+
578
+ ```python
579
+ >>> from transformers import AutoTokenizer, RwkvHybridForCausalLM
580
+
581
+ >>> model = Qwen2ForCausalLM.from_pretrained("RWKV-Red-Team/ARWKV-7B-Preview-0.1")
582
+ >>> tokenizer = AutoTokenizer.from_pretrained("RWKV-Red-Team/ARWKV-7B-Preview-0.1")
583
+
584
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
585
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
586
+
587
+ >>> # Generate
588
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
589
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
590
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
591
+ ```"""
592
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
593
+ output_hidden_states = (
594
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
595
+ )
596
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
597
+
598
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
599
+ outputs = self.model(
600
+ input_ids=input_ids,
601
+ attention_mask=attention_mask,
602
+ position_ids=position_ids,
603
+ past_key_values=past_key_values,
604
+ inputs_embeds=inputs_embeds,
605
+ use_cache=use_cache,
606
+ output_attentions=output_attentions,
607
+ output_hidden_states=output_hidden_states,
608
+ return_dict=return_dict,
609
+ cache_position=cache_position,
610
+ **kwargs,
611
+ )
612
+
613
+ hidden_states = outputs[0]
614
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
615
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
616
+
617
+ loss = None
618
+ if labels is not None:
619
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
620
+
621
+ if not return_dict:
622
+ output = (logits,) + outputs[1:]
623
+ return (loss,) + output if loss is not None else output
624
+
625
+ return CausalLMOutputWithPast(
626
+ loss=loss,
627
+ logits=logits,
628
+ past_key_values=outputs.past_key_values,
629
+ hidden_states=outputs.hidden_states,
630
+ attentions=outputs.attentions,
631
+ )
632
+
test_gradio.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+ from transformers import TextIteratorStreamer
5
+ import threading
6
+
7
+
8
+ model = AutoModelForCausalLM.from_pretrained(
9
+ "RWKV-Red-Team/ARWKV-7B-Preview-0.1",
10
+ device_map="auto",
11
+ torch_dtype=torch.float16,
12
+ trust_remote_code=True,
13
+ )
14
+ tokenizer = AutoTokenizer.from_pretrained(
15
+ "RWKV-Red-Team/ARWKV-7B-Preview-0.1"
16
+ )
17
+ device = "cuda"
18
+
19
+
20
+ def convert_history_to_messages(history):
21
+ messages = []
22
+ for user_msg, bot_msg in history:
23
+ messages.append({"role": "user", "content": user_msg})
24
+ if bot_msg is not None:
25
+ messages.append({"role": "assistant", "content": bot_msg})
26
+ return messages
27
+
28
+
29
+ def stream_chat(prompt, history):
30
+
31
+ messages = convert_history_to_messages(history)
32
+ messages.append({"role": "user", "content": prompt})
33
+
34
+ text = tokenizer.apply_chat_template(
35
+ messages, tokenize=False, add_generation_prompt=True
36
+ )
37
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
38
+
39
+ streamer = TextIteratorStreamer(
40
+ tokenizer, skip_prompt=True, skip_special_tokens=True
41
+ )
42
+
43
+ generation_kwargs = dict(
44
+ model_inputs,
45
+ streamer=streamer,
46
+ max_new_tokens=4096,
47
+ do_sample=True,
48
+ temperature=1.5,
49
+ top_p=0.2,
50
+ top_k=0,
51
+ )
52
+ thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
53
+ thread.start()
54
+
55
+ response = ""
56
+ for new_text in streamer:
57
+ response += new_text
58
+ yield history + [(prompt, response)]
59
+
60
+
61
+ with gr.Blocks() as demo:
62
+ chatbot = gr.Chatbot(label="Chat with LLM", height=750)
63
+ msg = gr.Textbox(label="Your Message")
64
+ clear = gr.Button("Clear Chat")
65
+
66
+ def user(user_message, history):
67
+ return "", history + [[user_message, None]]
68
+
69
+ def bot(history):
70
+ prompt = history[-1][0]
71
+ history[-1][1] = ""
72
+ for updated_history in stream_chat(prompt, history[:-1]):
73
+ yield updated_history
74
+
75
+ msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
76
+ bot, chatbot, chatbot
77
+ )
78
+ clear.click(lambda: None, None, chatbot, queue=False)
79
+
80
+ demo.queue().launch(server_name="0.0.0.0")
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
wkv.py ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from einops import rearrange
3
+
4
+ from .hybrid_cache import TimeMixState, BlockState
5
+ import math
6
+ import torch.nn as nn
7
+ from torch.nn import functional as F
8
+ from .configuration_rwkv_hybrid import RwkvHybridConfig
9
+
10
+ try:
11
+ import triton
12
+ from rwkvfla.ops.rwkv7 import (
13
+ fused_recurrent_rwkv7,
14
+ chunk_rwkv7,
15
+ native_recurrent_rwkv7,
16
+ ) # pylint: disable=C0411
17
+ from rwkvfla.ops.rwkv6 import (
18
+ fused_recurrent_rwkv6,
19
+ chunk_rwkv6,
20
+ native_recurrent_rwkv6,
21
+ )
22
+ except ImportError:
23
+ from rwkvfla.ops.rwkv7 import native_recurrent_rwkv7 # pylint: disable=C0411
24
+ from rwkvfla.ops.rwkv6 import native_recurrent_rwkv6
25
+
26
+ fused_recurrent_rwkv7 = native_recurrent_rwkv7
27
+ chunk_rwkv7 = native_recurrent_rwkv7
28
+ chunk_rwkv6 = native_recurrent_rwkv6
29
+ fused_recurrent_rwkv6 = native_recurrent_rwkv6
30
+
31
+
32
+ class Rwkv_Tmix_x070(nn.Module):
33
+ def __init__(self, args: RwkvHybridConfig, layer_id, update_v_first, get_v_first):
34
+ super().__init__()
35
+ self.args = args
36
+ self.layer_id = layer_id
37
+ self.hidden_size = args.hidden_size
38
+
39
+ self.update_v_first = update_v_first
40
+ self.get_v_first = get_v_first
41
+
42
+ self.head_size = args.head_size
43
+ self.n_head = args.num_wkv_heads
44
+ assert args.hidden_size % self.n_head == 0
45
+ H = self.n_head
46
+ N = self.head_size
47
+
48
+ self.x_r = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
49
+ self.x_w = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
50
+ self.x_k = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
51
+ self.x_v = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
52
+ self.x_a = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
53
+ self.x_g = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
54
+
55
+ D_DECAY_LORA = 64
56
+ D_AAA_LORA = 64
57
+ D_MV_LORA = 32
58
+ D_GATE_LORA = 128
59
+
60
+ self.w1 = nn.Parameter(torch.Tensor(args.hidden_size, D_DECAY_LORA))
61
+ self.w2 = nn.Parameter(torch.Tensor(D_DECAY_LORA, args.hidden_size))
62
+ self.w0 = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
63
+
64
+ self.a1 = nn.Parameter(torch.Tensor(args.hidden_size, D_AAA_LORA))
65
+ self.a2 = nn.Parameter(torch.Tensor(D_AAA_LORA, args.hidden_size))
66
+ self.a0 = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
67
+
68
+ self.v1 = nn.Parameter(torch.Tensor(args.hidden_size, D_MV_LORA))
69
+ self.v2 = nn.Parameter(torch.Tensor(D_MV_LORA, args.hidden_size))
70
+ self.v0 = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
71
+
72
+ if self.args.wkv_has_gate:
73
+ self.g1 = nn.Parameter(torch.Tensor(args.hidden_size, D_GATE_LORA))
74
+ self.g2 = nn.Parameter(torch.Tensor(D_GATE_LORA, args.hidden_size))
75
+
76
+ self.k_k = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
77
+ self.k_a = nn.Parameter(torch.Tensor(1, 1, args.hidden_size))
78
+ self.r_k = nn.Parameter(torch.Tensor(H, N))
79
+
80
+ self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
81
+ self.receptance = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
82
+ self.key = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
83
+ self.value = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
84
+ self.output = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
85
+
86
+ if self.args.wkv_has_group_norm:
87
+ self.ln_x = nn.GroupNorm(
88
+ H, args.hidden_size, eps=(1e-5) * (args.head_size_divisor**2)
89
+ )
90
+
91
+ def post_init(self):
92
+ with torch.no_grad():
93
+ ratio_0_to_1 = self.layer_id / (self.args.num_hidden_layers - 1) # 0 to 1
94
+ ratio_1_to_almost0 = 1.0 - (
95
+ self.layer_id / self.args.num_hidden_layers
96
+ ) # 1 to ~0
97
+
98
+ ddd = torch.ones(1, 1, self.args.hidden_size)
99
+ for i in range(self.args.hidden_size):
100
+ ddd[0, 0, i] = i / self.args.hidden_size
101
+
102
+ nn.init.constant_(self.x_r, 1.0 - torch.pow(ddd, 0.2 * ratio_1_to_almost0))
103
+ nn.init.constant_(self.x_w, 1.0 - torch.pow(ddd, 0.9 * ratio_1_to_almost0))
104
+ nn.init.constant_(
105
+ self.x_k,
106
+ 1.0 - (torch.pow(ddd, 0.9 * ratio_1_to_almost0) + 0.4 * ratio_0_to_1),
107
+ )
108
+ nn.init.constant_(
109
+ self.x_v,
110
+ 1.0 - (torch.pow(ddd, 0.4 * ratio_1_to_almost0) + 0.6 * ratio_0_to_1),
111
+ )
112
+ nn.init.constant_(self.x_a, 1.0 - torch.pow(ddd, 0.9 * ratio_1_to_almost0))
113
+ nn.init.constant_(self.x_g, 1.0 - torch.pow(ddd, 0.2 * ratio_1_to_almost0))
114
+
115
+ def ortho_init(x, scale):
116
+ shape = x.shape
117
+ original_dtype = x.dtype
118
+ x_fp32 = x.float()
119
+ if len(shape) == 2:
120
+ gain = math.sqrt(shape[0] / shape[1]) if shape[0] > shape[1] else 1
121
+ nn.init.orthogonal_(x_fp32, gain=gain * scale)
122
+ elif len(shape) == 3:
123
+ gain = math.sqrt(shape[1] / shape[2]) if shape[1] > shape[2] else 1
124
+ for i in range(shape[0]):
125
+ nn.init.orthogonal_(x_fp32[i], gain=gain * scale)
126
+ else:
127
+ raise ValueError("ortho_init only supports 2D or 3D tensors")
128
+ x.data.copy_(x_fp32.to(original_dtype))
129
+ return x
130
+
131
+ D_DECAY_LORA = 64
132
+ nn.init.zeros_(self.w1)
133
+ self.w2 = nn.Parameter(
134
+ ortho_init(torch.zeros(D_DECAY_LORA, self.args.hidden_size), 0.1)
135
+ )
136
+
137
+ decay_speed = torch.ones(self.args.hidden_size)
138
+ for n in range(self.args.hidden_size):
139
+ decay_speed[n] = -7 + 5 * (n / (self.args.hidden_size - 1)) ** (
140
+ 0.85 + 1.0 * ratio_0_to_1**0.5
141
+ )
142
+ nn.init.constant_(
143
+ self.w0, decay_speed.reshape(1, 1, self.args.hidden_size) + 0.5
144
+ )
145
+
146
+ D_AAA_LORA = 64
147
+ nn.init.zeros_(self.a1)
148
+ self.a2 = nn.Parameter(
149
+ ortho_init(torch.zeros(D_AAA_LORA, self.args.hidden_size), 0.1)
150
+ )
151
+ nn.init.zeros_(self.a0)
152
+
153
+ D_MV_LORA = 32
154
+ nn.init.zeros_(self.v1)
155
+ self.v2 = nn.Parameter(
156
+ ortho_init(torch.zeros(D_MV_LORA, self.args.hidden_size), 0.1)
157
+ )
158
+ nn.init.constant_(self.v0, 1.0)
159
+
160
+ D_GATE_LORA = 128
161
+ if self.args.wkv_has_gate:
162
+ nn.init.zeros_(self.g1)
163
+ self.g2 = nn.Parameter(
164
+ ortho_init(torch.zeros(D_GATE_LORA, self.args.hidden_size), 0.1)
165
+ )
166
+
167
+ nn.init.constant_(self.k_k, 0.85)
168
+ nn.init.constant_(self.k_a, 1.0)
169
+ nn.init.zeros_(self.r_k)
170
+
171
+ nn.init.zeros_(self.receptance.weight)
172
+ nn.init.zeros_(self.key.weight)
173
+ nn.init.zeros_(self.value.weight)
174
+ nn.init.zeros_(self.output.weight)
175
+
176
+ if self.args.wkv_has_group_norm:
177
+ nn.init.ones_(self.ln_x.weight)
178
+ nn.init.zeros_(self.ln_x.bias)
179
+
180
+ def apply_wkv7_state(self, r, k, v, w, a, b, s):
181
+ r = rearrange(r, "b l (h d) -> b h l d", h=self.n_head)
182
+ k = rearrange(k, "b l (h d) -> b h l d", h=self.n_head)
183
+ v = rearrange(v, "b l (h d) -> b h l d", h=self.n_head)
184
+ w = rearrange(w, "b l (h d) -> b h l d", h=self.n_head)
185
+ a = rearrange(a, "b l (h d) -> b h l d", h=self.n_head)
186
+ b = rearrange(b, "b l (h d) -> b h l d", h=self.n_head)
187
+
188
+ if r.device.type == "cpu":
189
+ o, state = native_recurrent_rwkv7(
190
+ r,
191
+ k,
192
+ v,
193
+ w,
194
+ a,
195
+ b,
196
+ scale=1.0,
197
+ initial_state=s.transpose(-1, -2),
198
+ output_final_state=True,
199
+ use_log_w=False,
200
+ head_first=True,
201
+ )
202
+ state = state.transpose(-1, -2)
203
+ elif self.training:
204
+ o, state = chunk_rwkv7(
205
+ r,
206
+ k,
207
+ v,
208
+ w,
209
+ a,
210
+ b,
211
+ scale=1.0,
212
+ initial_state=s,
213
+ output_final_state=True,
214
+ use_log_w=False,
215
+ head_first=True,
216
+ )
217
+ else:
218
+ o, state = fused_recurrent_rwkv7(
219
+ r,
220
+ k,
221
+ v,
222
+ w,
223
+ a,
224
+ b,
225
+ scale=1.0,
226
+ initial_state=s,
227
+ output_final_state=True,
228
+ use_log_w=False,
229
+ head_first=True,
230
+ )
231
+
232
+ x = rearrange(o, "b h l d -> b l (h d)")
233
+ return x, state
234
+
235
+ def forward(self, x, last_state: TimeMixState):
236
+ shift_state = last_state.shift_state
237
+ B, T, C = x.size()
238
+ H = self.n_head
239
+ if shift_state is not None:
240
+ xx = torch.concat((shift_state.unsqueeze(1), x[:, :-1]), dim=1) - x
241
+ else:
242
+ xx = self.time_shift(x) - x
243
+ lx = x[:, -1]
244
+
245
+ xr = x + xx * self.x_r
246
+ xw = x + xx * self.x_w
247
+ xk = x + xx * self.x_k
248
+ xv = x + xx * self.x_v
249
+ xa = x + xx * self.x_a
250
+ xg = x + xx * self.x_g
251
+
252
+ r = self.receptance(xr)
253
+ w = (
254
+ -F.softplus(-(self.w0 + torch.tanh(xw @ self.w1) @ self.w2)) - 0.5
255
+ ) # soft-clamp to (-inf, -0.5)
256
+ k = self.key(xk)
257
+ v = self.value(xv)
258
+ if self.layer_id == 0:
259
+ self.update_v_first(v)
260
+ else:
261
+ # Original implementation
262
+ v = v + (self.get_v_first().to(v.device) - v) * torch.sigmoid(
263
+ self.v0 + (xv @ self.v1) @ self.v2
264
+ ) # add value residual
265
+
266
+ a = torch.sigmoid(
267
+ self.a0 + (xa @ self.a1) @ self.a2
268
+ ) # a is "in-context learning rate"
269
+ if self.args.wkv_has_gate:
270
+ g = torch.sigmoid(xg @ self.g1) @ self.g2
271
+ kk = k * self.k_k
272
+ kk = F.normalize(kk.view(B, T, H, -1), dim=-1, p=2.0).view(B, T, C)
273
+ k = k * (1 + (a - 1) * self.k_a)
274
+
275
+ wkv_state = last_state.wkv_state
276
+ x, wkv_state = self.apply_wkv7_state(
277
+ r,
278
+ k,
279
+ v,
280
+ w,
281
+ -kk,
282
+ (kk * a),
283
+ s=wkv_state,
284
+ )
285
+ if self.args.wkv_has_group_norm:
286
+ x = self.ln_x(x.view(B * T, C)).view(B, T, C)
287
+ x = x + (
288
+ (r.view(B, T, H, -1) * k.view(B, T, H, -1) * self.r_k).sum(
289
+ dim=-1, keepdim=True
290
+ )
291
+ * v.view(B, T, H, -1)
292
+ ).view(B, T, C)
293
+ x = self.output(x * g) if self.args.wkv_has_gate else self.output(x)
294
+ return x, TimeMixState(lx, wkv_state)
295
+
296
+
297
+ class Rwkv7Attention(nn.Module):
298
+ def __init__(self, args: RwkvHybridConfig, layer_id, update_v_first, get_v_first):
299
+ super().__init__()
300
+ self.args = args
301
+ self.layer_idx = layer_id
302
+ self.time_mixer = Rwkv_Tmix_x070(args, layer_id, update_v_first, get_v_first)
303
+
304
+ def forward(self, hidden_states, past_key_value, **kwargs):
305
+ attn_output = hidden_states
306
+ batch_size, token_length, _ = attn_output.size()
307
+
308
+ if past_key_value is not None and len(past_key_value) > self.layer_idx:
309
+ last_state = past_key_value[self.layer_idx][0]
310
+ else:
311
+ last_state = self.init_state(
312
+ batch_size, attn_output.device, attn_output.dtype
313
+ )
314
+
315
+ attn_output, states = self.time_mixer(attn_output, last_state.time_mix_state)
316
+ last_state.time_mix_state = states
317
+
318
+ if past_key_value is not None:
319
+ past_key_value.update(token_length, last_state, self.layer_idx)
320
+ return attn_output, None
321
+
322
+ def init_state(self, batch_size, device, dtype) -> BlockState:
323
+ wkv_states = torch.zeros(
324
+ (
325
+ batch_size,
326
+ self.args.num_wkv_heads,
327
+ self.args.head_size,
328
+ self.args.head_size,
329
+ ),
330
+ device=device,
331
+ dtype=torch.float32,
332
+ )
333
+ token_shift = torch.zeros(
334
+ (batch_size, self.args.hidden_size), device=device, dtype=dtype
335
+ )
336
+ return BlockState(TimeMixState(token_shift, wkv_states), None)
337
+
338
+
339
+ class Rwkv_Tmix_x060(nn.Module):
340
+ def __init__(self, args: RwkvHybridConfig, layer_id, **kwargs):
341
+ super().__init__()
342
+ self.args = args
343
+ self.layer_id = layer_id
344
+ self.hidden_size = args.hidden_size
345
+
346
+ self.head_size = args.head_size
347
+ self.n_head = args.num_wkv_heads
348
+ assert args.hidden_size % self.n_head == 0
349
+ H = self.n_head
350
+ N = self.head_size
351
+
352
+ with torch.no_grad():
353
+ ratio_0_to_1 = layer_id / (args.n_layer - 1) # 0 to 1
354
+ ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
355
+ ddd = torch.ones(1, 1, args.hidden_size)
356
+ for i in range(args.hidden_size):
357
+ ddd[0, 0, i] = i / args.hidden_size
358
+
359
+ # fancy time_mix
360
+ self.time_maa_x = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
361
+ self.time_maa_w = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
362
+ self.time_maa_k = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
363
+ self.time_maa_v = nn.Parameter(
364
+ 1.0 - (torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
365
+ )
366
+ self.time_maa_r = nn.Parameter(
367
+ 1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0)
368
+ )
369
+ self.time_maa_g = nn.Parameter(
370
+ 1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0)
371
+ )
372
+
373
+ D_MIX_LORA = 32 # generate TIME_MIX for w,k,v,r,g
374
+ if args.hidden_size == 4096:
375
+ D_MIX_LORA = D_MIX_LORA * 2
376
+ self.time_maa_w1 = nn.Parameter(
377
+ torch.zeros(args.hidden_size, D_MIX_LORA * 5)
378
+ )
379
+ self.time_maa_w2 = nn.Parameter(
380
+ torch.zeros(5, D_MIX_LORA, args.hidden_size).uniform_(-0.01, 0.01)
381
+ )
382
+
383
+ # fancy time_decay
384
+ decay_speed = torch.ones(args.head_size)
385
+ for n in range(args.head_size):
386
+ decay_speed[n] = -6 + 5 * (n / (args.head_size - 1)) ** (
387
+ 0.7 + 1.3 * ratio_0_to_1
388
+ )
389
+ self.time_decay = nn.Parameter(decay_speed.reshape(1, 1, args.head_size))
390
+
391
+ D_DECAY_LORA = 64
392
+ if args.hidden_size == 4096:
393
+ D_DECAY_LORA = D_DECAY_LORA * 2
394
+ self.time_decay_w1 = nn.Parameter(
395
+ torch.zeros(args.hidden_size, D_DECAY_LORA)
396
+ )
397
+ self.time_decay_w2 = nn.Parameter(
398
+ torch.zeros(D_DECAY_LORA, args.head_size).uniform_(-0.01, 0.01)
399
+ )
400
+
401
+ tmp = torch.zeros(args.head_size)
402
+ for n in range(args.head_size):
403
+ zigzag = ((n + 1) % 3 - 1) * 0.1
404
+ tmp[n] = ratio_0_to_1 * (1 - (n / (args.head_size - 1))) + zigzag
405
+
406
+ self.time_faaaa = nn.Parameter(tmp.reshape(self.n_head, self.head_size))
407
+ # self.time_state = nn.Parameter(torch.zeros(self.n_head, self.head_size, self.head_size))
408
+
409
+ self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
410
+ self.receptance = nn.Linear(args.hidden_size, args.head_size, bias=False)
411
+ self.key = nn.Linear(args.hidden_size, args.head_size, bias=False)
412
+
413
+ self.value = nn.Linear(args.hidden_size, args.head_size, bias=False)
414
+ self.output = nn.Linear(args.head_size, args.hidden_size, bias=False)
415
+ self.gate = nn.Linear(args.hidden_size, args.head_size, bias=False)
416
+
417
+ if self.args.wkv_has_group_norm:
418
+ self.ln_x = nn.GroupNorm(
419
+ self.n_head, args.head_size, eps=(1e-5) * (args.head_size_divisor**2)
420
+ )
421
+
422
+ def post_init(self):
423
+ pass
424
+
425
+ def forward(self, x, last_state: TimeMixState):
426
+ shift_state = last_state.shift_state
427
+ B, T, C = x.size()
428
+ H = self.n_head
429
+ if shift_state is not None:
430
+ xx = torch.concat((shift_state.unsqueeze(1), x[:, :-1]), dim=1) - x
431
+ else:
432
+ xx = self.time_shift(x) - x
433
+ lx = x[:, -1]
434
+
435
+ xxx = x + xx * self.time_maa_x
436
+ xxx = torch.tanh(xxx @ self.time_maa_w1).view(B * T, 5, -1).transpose(0, 1)
437
+ xxx = torch.bmm(xxx, self.time_maa_w2).view(5, B, T, -1)
438
+ mw, mk, mv, mr, mg = xxx.unbind(dim=0)
439
+
440
+ xw = x + xx * (self.time_maa_w + mw)
441
+ xk = x + xx * (self.time_maa_k + mk)
442
+ xv = x + xx * (self.time_maa_v + mv)
443
+ xr = x + xx * (self.time_maa_r + mr)
444
+ xg = x + xx * (self.time_maa_g + mg)
445
+
446
+ r = self.receptance(xr)
447
+ k = self.key(xk)
448
+ v = self.value(xv)
449
+ g = F.silu(self.gate(xg))
450
+
451
+ ww = torch.tanh(xw @ self.time_decay_w1) @ self.time_decay_w2
452
+ w = self.time_decay + ww
453
+
454
+ wkv_state = last_state.wkv_state
455
+ x, wkv_state = self.apply_wkv6_state(
456
+ B, T, C, H, r, k, v, w, u=self.time_faaaa, s=wkv_state
457
+ )
458
+ if self.args.wkv_has_group_norm:
459
+ x = self.ln_x(x.view(B * T, C)).view(B, T, C)
460
+ x = self.output(x * g)
461
+ return x, TimeMixState(lx, wkv_state)
462
+
463
+ def apply_wkv6_state(self, B, T, C, H, r, k, v, w, u, s):
464
+ r = rearrange(r, "b l (h d) -> b h l d", h=H)
465
+ k = rearrange(k, "b l (h d) -> b h l d", h=H)
466
+ v = rearrange(v, "b l (h d) -> b h l d", h=H)
467
+ w = rearrange(w, "b l (h d) -> b h l d", h=H)
468
+
469
+ if r.device.type == "cpu":
470
+ wkv6_func = native_recurrent_rwkv6
471
+ elif self.training:
472
+ wkv6_func = chunk_rwkv6
473
+ else:
474
+ wkv6_func = fused_recurrent_rwkv6
475
+
476
+ o, state = wkv6_func(
477
+ r,
478
+ k,
479
+ v,
480
+ -torch.exp(w),
481
+ u=u,
482
+ scale=1.0,
483
+ initial_state=s,
484
+ output_final_state=True,
485
+ )
486
+ x = rearrange(o, "b h l d -> b l (h d)")
487
+ return x, state
488
+
489
+
490
+ class Rwkv6Attention(nn.Module):
491
+ def __init__(self, args: RwkvHybridConfig, layer_id, **kwargs):
492
+ super().__init__()
493
+ self.args = args
494
+ self.layer_idx = layer_id
495
+ self.time_mixer = Rwkv_Tmix_x060(args, layer_id, **kwargs)
496
+
497
+ def forward(self, hidden_states, past_key_value, **kwargs):
498
+ attn_output = hidden_states
499
+ B, T, C = attn_output.size()
500
+ if past_key_value is not None:
501
+ if len(past_key_value) <= self.layer_idx:
502
+ last_state = None
503
+ else:
504
+ last_state = past_key_value[self.layer_idx][0]
505
+ if last_state is None:
506
+ wkv_states = torch.zeros(
507
+ (B, self.args.num_wkv_heads, self.args.head_size, self.args.head_size),
508
+ device=attn_output.device,
509
+ dtype=torch.float32,
510
+ )
511
+ token_shift = torch.zeros(
512
+ (B, C), device=attn_output.device, dtype=attn_output.dtype
513
+ )
514
+ time_state = TimeMixState(token_shift, wkv_states)
515
+ channel_state = None
516
+ last_state = BlockState(time_state, channel_state)
517
+ attn_output, states = self.time_mixer(attn_output, last_state.time_mix_state)
518
+ last_state.time_mix_state = states
519
+
520
+ if past_key_value is not None:
521
+ past_key_value.update(T, last_state, self.layer_idx)
522
+ return attn_output, None