|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for RWKV5.""" |
|
|
|
import json |
|
import os |
|
from typing import TYPE_CHECKING, List, Optional, Tuple, Union |
|
|
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
from transformers.tokenization_utils_base import ( |
|
BatchEncoding, |
|
EncodedInput, |
|
TextInput, |
|
TruncationStrategy, |
|
) |
|
from transformers.utils import PaddingStrategy, TensorType, logging, to_py_obj |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers.pipelines.conversational import Conversation |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = { |
|
"vocab_file": "rwkv_vocab_v20230424.txt", |
|
} |
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": { |
|
"RWKV/rwkv-5-world-169m": "https://huggingface.co/RWKV/rwkv-5-world-169m/blob/main/rwkv_vocab_v20230424.txt", |
|
}, |
|
} |
|
|
|
|
|
class TRIE: |
|
__slots__ = tuple("ch,to,values,front".split(",")) |
|
to: list |
|
values: set |
|
|
|
def __init__(self, front=None, ch=None): |
|
self.ch = ch |
|
self.to = [None for ch in range(256)] |
|
self.values = set() |
|
self.front = front |
|
|
|
def __repr__(self): |
|
fr = self |
|
ret = [] |
|
while fr is not None: |
|
if fr.ch is not None: |
|
ret.append(fr.ch) |
|
fr = fr.front |
|
return "<TRIE %s %s>" % (ret[::-1], self.values) |
|
|
|
def add(self, key: bytes, idx: int = 0, val=None): |
|
if idx == len(key): |
|
if val is None: |
|
val = key |
|
self.values.add(val) |
|
return self |
|
ch = key[idx] |
|
if self.to[ch] is None: |
|
self.to[ch] = TRIE(front=self, ch=ch) |
|
return self.to[ch].add(key, idx=idx + 1, val=val) |
|
|
|
def find_longest(self, key: bytes, idx: int = 0): |
|
u: TRIE = self |
|
ch: int = key[idx] |
|
|
|
while u.to[ch] is not None: |
|
u = u.to[ch] |
|
idx += 1 |
|
if u.values: |
|
ret = idx, u, u.values |
|
if idx == len(key): |
|
break |
|
ch = key[idx] |
|
return ret |
|
|
|
|
|
class RWKVWorldTokenizer(PreTrainedTokenizer): |
|
vocab_files_names = VOCAB_FILES_NAMES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__(self, vocab_file, errors="replace", pad_token="0", **kwargs): |
|
self.add_bos_token = False |
|
self.encoder = {} |
|
sorted = [] |
|
with open(vocab_file, "r", encoding="utf-8") as f: |
|
lines = f.readlines() |
|
for l in lines: |
|
idx = int(l[: l.index(" ")]) |
|
x = eval(l[l.index(" ") : l.rindex(" ")]) |
|
x = x.encode("utf-8") if isinstance(x, str) else x |
|
assert isinstance(x, bytes) |
|
assert len(x) == int(l[l.rindex(" ") :]) |
|
sorted += [x] |
|
self.encoder[idx] = x |
|
|
|
self.decoder = {} |
|
for k, v in self.encoder.items(): |
|
self.decoder[v] = int(k) |
|
|
|
self.trie = TRIE() |
|
for t, i in self.decoder.items(): |
|
_ = self.trie.add(t, val=(t, i)) |
|
self.errors = errors |
|
self.cache = {} |
|
self.first_max_length = 0 |
|
super().__init__( |
|
errors=errors, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def eos_token_id(self) -> Optional[int]: |
|
return 0 |
|
|
|
@property |
|
def eot_token_id(self) -> Optional[int]: |
|
return 0 |
|
|
|
@property |
|
def pad_token_id(self) -> Optional[int]: |
|
return 0 |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.encoder) |
|
|
|
def get_vocab(self): |
|
return dict(self.encoder, **self.added_tokens_encoder) |
|
|
|
def add_tokens(self, new_tokens, special_tokens: bool = False): |
|
for token in new_tokens: |
|
token_id = self.convert_tokens_to_ids(token) |
|
self.added_tokens_decoder[token_id] = token |
|
|
|
def convert_ids_to_tokens(self, ids, skip_special_tokens=False): |
|
if isinstance(ids, int): |
|
ids = [ids] |
|
tokens = [] |
|
for id_ in ids: |
|
if id_ in self.added_tokens_decoder: |
|
tokens.append(self.added_tokens_decoder[id_]) |
|
else: |
|
tokens.append(self._convert_id_to_token(id_)) |
|
return tokens |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
if self.add_bos_token: |
|
bos_token_ids = [self.bos_token_id] |
|
else: |
|
bos_token_ids = [] |
|
|
|
output = bos_token_ids + token_ids_0 |
|
|
|
if token_ids_1 is None: |
|
return output |
|
|
|
return output + bos_token_ids + token_ids_1 |
|
|
|
def get_special_tokens_mask( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False |
|
) -> List[int]: |
|
""" |
|
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True |
|
) |
|
|
|
if not self.add_bos_token: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False |
|
) |
|
|
|
if token_ids_1 is None: |
|
return [1] + ([0] * len(token_ids_0)) |
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) |
|
|
|
def encodeBytes(self, src: bytes): |
|
idx: int = 0 |
|
tokens = [] |
|
while idx < len(src): |
|
_idx: int = idx |
|
idx, _, values = self.trie.find_longest(src, idx) |
|
assert idx != _idx |
|
_, token = next(iter(values)) |
|
tokens.append(token) |
|
return tokens |
|
|
|
def decodeBytes(self, tokens): |
|
return b"".join(map(lambda i: self.encoder[i], tokens)) |
|
|
|
def _tokenize(self, text, **kwargs): |
|
"""Tokenize a string.""" |
|
return self.encodeBytes(text.encode("utf-8")) |
|
|
|
def _decode_tokens(self, tokens): |
|
try: |
|
return self.decodeBytes(tokens).decode("utf-8") |
|
except Exception: |
|
return "\ufffd" |
|
|
|
def _decode( |
|
self, |
|
token_ids: Union[int, List[int]], |
|
skip_special_tokens: bool = False, |
|
**kwargs, |
|
) -> str: |
|
def remove_zeros_from_first_segment(token_ids, first_max_length): |
|
first_segment = token_ids[:first_max_length] |
|
first_segment_cleaned = [token for token in first_segment if token != 0] |
|
return first_segment_cleaned + token_ids[first_max_length:] |
|
|
|
|
|
token_ids = to_py_obj(token_ids) |
|
token_ids = remove_zeros_from_first_segment(token_ids, self.first_max_length) |
|
if isinstance(token_ids, int): |
|
if token_ids in self.all_special_ids and skip_special_tokens: |
|
return "" |
|
return self.encoder.get(token_ids, self.unk_token) |
|
elif isinstance(token_ids, list): |
|
self.first_max_length |
|
out_str = "" |
|
out_last = 0 |
|
out_tokens = [] |
|
for i, token in enumerate(token_ids): |
|
if token == 0: |
|
break |
|
out_tokens += [token] |
|
tmp = self._decode_tokens(out_tokens[out_last:]) |
|
if "\ufffd" not in tmp: |
|
out_str += tmp |
|
out_last = i + 1 |
|
return out_str |
|
else: |
|
return token_ids |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.encoder.get(token, self.encoder.get(self.unk_token)) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.decoder.get(index) |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
if not os.path.exists(save_directory): |
|
os.mkdir(save_directory) |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return |
|
vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
|
|
with open(vocab_file, "w", encoding="utf-8") as f: |
|
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") |
|
|
|
return (vocab_file,) |
|
|
|
def prepare_for_tokenization(self, text, **kwargs): |
|
return (text, kwargs) |
|
|
|
def _get_padding_truncation_strategies( |
|
self, padding=False, truncation=None, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs |
|
): |
|
return PaddingStrategy.LONGEST, TruncationStrategy.DO_NOT_TRUNCATE, -1, kwargs |
|
|
|
def _encode_plus( |
|
self, |
|
text: Union[TextInput, EncodedInput], |
|
add_special_tokens: bool = True, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
def get_input_ids(text, max_length=None, pad_token_id=0): |
|
def pad_sequence(seq, max_len, pad_tok): |
|
return [pad_tok] * (max_len - len(seq)) + seq |
|
|
|
if isinstance(text, str): |
|
tokens = self._tokenize(text) |
|
if max_length is not None: |
|
tokens = pad_sequence(tokens, max_length, pad_token_id) |
|
return tokens |
|
|
|
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str): |
|
tokenized_texts = [self._tokenize(t) for t in text] |
|
if max_length is None: |
|
max_length = max(len(t) for t in tokenized_texts) |
|
return [pad_sequence(t, max_length, pad_token_id) for t in tokenized_texts] |
|
|
|
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): |
|
if max_length is not None and len(text) < max_length: |
|
return pad_sequence(text, max_length, pad_token_id) |
|
return text |
|
|
|
else: |
|
raise ValueError( |
|
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." |
|
) |
|
|
|
if return_offsets_mapping: |
|
raise NotImplementedError( |
|
"return_offset_mapping is not available when using Python tokenizers. " |
|
"To use this feature, change your tokenizer to one deriving from " |
|
"transformers.PreTrainedTokenizerFast. " |
|
"More information on available tokenizers at " |
|
"https://github.com/huggingface/transformers/pull/2674" |
|
) |
|
|
|
first_ids = get_input_ids(text) |
|
|
|
return self.prepare_for_model( |
|
first_ids, |
|
pair_ids=None, |
|
add_special_tokens=add_special_tokens, |
|
padding=padding_strategy.value, |
|
truncation=truncation_strategy.value, |
|
max_length=max_length, |
|
stride=stride, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_tensors=return_tensors, |
|
prepend_batch_axis=True, |
|
return_attention_mask=return_attention_mask, |
|
return_token_type_ids=return_token_type_ids, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_length=return_length, |
|
verbose=verbose, |
|
) |
|
|
|
def _batch_encode_plus( |
|
self, |
|
batch_text_or_text_pairs: Union[ |
|
List[TextInput], |
|
List[EncodedInput], |
|
], |
|
add_special_tokens: bool = True, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, |
|
max_length: Optional[int] = None, |
|
stride: int = 0, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_token_type_ids: Optional[bool] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
return_overflowing_tokens: bool = False, |
|
return_special_tokens_mask: bool = False, |
|
return_offsets_mapping: bool = False, |
|
return_length: bool = False, |
|
verbose: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
def get_input_ids(text, max_length=None, pad_token_id=0): |
|
def pad_sequence(seq, max_len, pad_tok): |
|
return [pad_tok] * (max_len - len(seq)) + seq |
|
|
|
if isinstance(text, str): |
|
tokens = self._tokenize(text) |
|
if max_length is not None: |
|
tokens = pad_sequence(tokens, max_length, pad_token_id) |
|
return tokens |
|
|
|
elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str): |
|
tokenized_texts = [self._tokenize(t) for t in text] |
|
if max_length is None: |
|
max_length = max(len(t) for t in tokenized_texts) |
|
return [pad_sequence(t, max_length, pad_token_id) for t in tokenized_texts] |
|
|
|
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): |
|
if max_length is not None and len(text) < max_length: |
|
return pad_sequence(text, max_length, pad_token_id) |
|
return text |
|
|
|
else: |
|
raise ValueError( |
|
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." |
|
) |
|
|
|
if return_offsets_mapping: |
|
raise NotImplementedError( |
|
"return_offset_mapping is not available when using Python tokenizers. " |
|
"To use this feature, change your tokenizer to one deriving from " |
|
"transformers.PreTrainedTokenizerFast." |
|
) |
|
|
|
first_max_length = 0 |
|
second_max_length = 0 |
|
for ids_or_pair_ids in batch_text_or_text_pairs: |
|
if not isinstance(ids_or_pair_ids, (list, tuple)): |
|
ids, pair_ids = ids_or_pair_ids, None |
|
else: |
|
ids, pair_ids = ids_or_pair_ids |
|
first_ids = get_input_ids(ids) |
|
second_ids = get_input_ids(pair_ids) if pair_ids is not None else None |
|
first_max_length = max(first_max_length, len(first_ids)) |
|
if second_ids is not None: |
|
second_max_length = max(second_max_length, len(second_ids)) |
|
|
|
self.first_max_length = first_max_length |
|
input_ids = [] |
|
for ids_or_pair_ids in batch_text_or_text_pairs: |
|
if not isinstance(ids_or_pair_ids, (list, tuple)): |
|
ids, pair_ids = ids_or_pair_ids, None |
|
else: |
|
ids, pair_ids = ids_or_pair_ids |
|
|
|
first_ids = get_input_ids(ids, max_length=first_max_length) |
|
second_ids = get_input_ids(pair_ids, max_length=second_max_length) if pair_ids is not None else None |
|
input_ids.append((first_ids, second_ids)) |
|
|
|
batch_outputs = self._batch_prepare_for_model( |
|
input_ids, |
|
add_special_tokens=add_special_tokens, |
|
padding_strategy=padding_strategy, |
|
truncation_strategy=truncation_strategy, |
|
max_length=max_length, |
|
stride=stride, |
|
pad_to_multiple_of=pad_to_multiple_of, |
|
return_attention_mask=return_attention_mask, |
|
return_token_type_ids=return_token_type_ids, |
|
return_overflowing_tokens=return_overflowing_tokens, |
|
return_special_tokens_mask=return_special_tokens_mask, |
|
return_length=return_length, |
|
return_tensors=return_tensors, |
|
verbose=verbose, |
|
) |
|
|
|
return BatchEncoding(batch_outputs) |
|
|
|
def decode( |
|
self, |
|
token_ids: Union[int, List[int]], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = None, |
|
**kwargs, |
|
) -> str: |
|
""" |
|
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special |
|
tokens and clean up tokenization spaces. |
|
|
|
Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. |
|
|
|
Args: |
|
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): |
|
List of tokenized input ids. Can be obtained using the `__call__` method. |
|
skip_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to remove special tokens in the decoding. |
|
clean_up_tokenization_spaces (`bool`, *optional*): |
|
Whether or not to clean up the tokenization spaces. If `None`, will default to |
|
`self.clean_up_tokenization_spaces`. |
|
kwargs (additional keyword arguments, *optional*): |
|
Will be passed to the underlying model specific decode method. |
|
|
|
Returns: |
|
`str`: The decoded sentence. |
|
""" |
|
|
|
return self._decode( |
|
token_ids=token_ids, |
|
skip_special_tokens=skip_special_tokens, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
|
|
def batch_decode( |
|
self, |
|
sequences: Union[List[int], List[List[int]]], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = None, |
|
**kwargs, |
|
) -> List[str]: |
|
""" |
|
Convert a list of lists of token ids into a list of strings by calling decode. |
|
|
|
Args: |
|
sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): |
|
List of tokenized input ids. Can be obtained using the `__call__` method. |
|
skip_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to remove special tokens in the decoding. |
|
clean_up_tokenization_spaces (`bool`, *optional*): |
|
Whether or not to clean up the tokenization spaces. If `None`, will default to |
|
`self.clean_up_tokenization_spaces`. |
|
kwargs (additional keyword arguments, *optional*): |
|
Will be passed to the underlying model specific decode method. |
|
|
|
Returns: |
|
`List[str]`: The list of decoded sentences. |
|
""" |
|
return [ |
|
self.decode( |
|
seq, |
|
skip_special_tokens=skip_special_tokens, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
for seq in sequences |
|
] |
|
|
|
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]: |
|
input_ids = [] |
|
for is_user, text in conversation.iter_texts(): |
|
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id]) |
|
if len(input_ids) > self.model_max_length: |
|
input_ids = input_ids[-self.model_max_length :] |
|
return input_ids |
|
|