picocreator commited on
Commit
cdc8eda
·
verified ·
1 Parent(s): 9d7032b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -5,6 +5,7 @@
5
  **! Important Note !**
6
 
7
  The following is the HF transformers implementation of the RWKV-5 Eagle 7B model. And is meant to be used **only with huggingface transformers**
 
8
  For the full model weights on its own, for use with other RWKV libraries, refer to [here](https://huggingface.co/RWKV/v5-Eagle-7B)
9
 
10
  #### Running on CPU via HF transformers
@@ -32,8 +33,8 @@ User: {instruction}
32
  Assistant:"""
33
 
34
 
35
- model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-5-world-7b", trust_remote_code=True).to(torch.float32)
36
- tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-5-world-7b", trust_remote_code=True)
37
 
38
  text = "请介绍北京的旅游景点"
39
  prompt = generate_prompt(text)
@@ -88,8 +89,8 @@ User: {instruction}
88
  Assistant:"""
89
 
90
 
91
- model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-5-world-7b", trust_remote_code=True, torch_dtype=torch.float16).to(0)
92
- tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-5-world-7b", trust_remote_code=True)
93
 
94
  text = "介绍一下大熊猫"
95
  prompt = generate_prompt(text)
@@ -135,8 +136,8 @@ User: {instruction}
135
 
136
  Assistant:"""
137
 
138
- model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-5-world-7b", trust_remote_code=True).to(torch.float32)
139
- tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-5-world-7b", trust_remote_code=True)
140
 
141
  texts = ["请介绍北京的旅游景点", "介绍一下大熊猫", "乌兰察布"]
142
  prompts = [generate_prompt(text) for text in texts]
 
5
  **! Important Note !**
6
 
7
  The following is the HF transformers implementation of the RWKV-5 Eagle 7B model. And is meant to be used **only with huggingface transformers**
8
+
9
  For the full model weights on its own, for use with other RWKV libraries, refer to [here](https://huggingface.co/RWKV/v5-Eagle-7B)
10
 
11
  #### Running on CPU via HF transformers
 
33
  Assistant:"""
34
 
35
 
36
+ model = AutoModelForCausalLM.from_pretrained("RWKV/HF_v5-Eagle-7B", trust_remote_code=True).to(torch.float32)
37
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/HF_v5-Eagle-7B", trust_remote_code=True)
38
 
39
  text = "请介绍北京的旅游景点"
40
  prompt = generate_prompt(text)
 
89
  Assistant:"""
90
 
91
 
92
+ model = AutoModelForCausalLM.from_pretrained("RWKV/HF_v5-Eagle-7B", trust_remote_code=True, torch_dtype=torch.float16).to(0)
93
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/HF_v5-Eagle-7B", trust_remote_code=True)
94
 
95
  text = "介绍一下大熊猫"
96
  prompt = generate_prompt(text)
 
136
 
137
  Assistant:"""
138
 
139
+ model = AutoModelForCausalLM.from_pretrained("RWKV/HF_v5-Eagle-7B", trust_remote_code=True).to(torch.float32)
140
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/HF_v5-Eagle-7B", trust_remote_code=True)
141
 
142
  texts = ["请介绍北京的旅游景点", "介绍一下大熊猫", "乌兰察布"]
143
  prompts = [generate_prompt(text) for text in texts]