--- base_model: mrm8488/electricidad-base-discriminator tags: - generated_from_keras_callback model-index: - name: RafaelMayer/electra-copec-2 results: [] --- # RafaelMayer/electra-copec-2 This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7303 - Validation Loss: 0.6874 - Train Accuracy: 0.8824 - Train Precision: [0.75 0.92307692] - Train Precision W: 0.8824 - Train Recall: [0.75 0.92307692] - Train Recall W: 0.8824 - Train F1: [0.75 0.92307692] - Train F1 W: 0.8824 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 5, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch | |:----------:|:---------------:|:--------------:|:-----------------------:|:-----------------:|:-----------------------:|:--------------:|:-----------------------:|:----------:|:-----:| | 0.7303 | 0.6874 | 0.8824 | [0.75 0.92307692] | 0.8824 | [0.75 0.92307692] | 0.8824 | [0.75 0.92307692] | 0.8824 | 1 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3