--- license: apache-2.0 base_model: PlanTL-GOB-ES/roberta-base-bne tags: - generated_from_keras_callback model-index: - name: RafaelMayer/roberta-copec-1 results: [] --- # RafaelMayer/roberta-copec-1 This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6572 - Validation Loss: 0.6316 - Train Accuracy: 0.8235 - Train Precision: [0. 0.82352941] - Train Precision W: 0.6782 - Train Recall: [0. 1.] - Train Recall W: 0.8235 - Train F1: [0. 0.90322581] - Train F1 W: 0.7438 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 5, 'power': 1.0, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch | |:----------:|:---------------:|:--------------:|:-----------------------:|:-----------------:|:------------:|:--------------:|:-----------------------:|:----------:|:-----:| | 0.6572 | 0.6316 | 0.8235 | [0. 0.82352941] | 0.6782 | [0. 1.] | 0.8235 | [0. 0.90322581] | 0.7438 | 1 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3