File size: 5,106 Bytes
c64e733
53bfa46
 
 
 
 
 
 
c64e733
53bfa46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24e1f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d049a7b
53bfa46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dd6b9e
 
 
 
 
52fd582
 
 
 
5af2bc7
 
7240a68
6dd6b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53bfa46
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
tags:
- generated_from_trainer
datasets:
- RaiBP/openwebtext2-first-30-chunks-ablation-translation
model-index:
- name: training_translation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# training_translation

This model was trained from scratch on the RaiBP/openwebtext2-first-30-chunks-ablation-translation dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure
The [`run_clm.py` script](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py) from the transformers library was used. Training was distributed on two NVIDIA Quadro RTX 6000 GPUs:
```bash
TORCH_CPP_LOG_LEVEL=INFO NCCL_DEBUG=INFO CUDA_VISIBLE_DEVICES=0,1 nohup python -m torch.distributed.launch \
--nproc_per_node=2 run_clm.py --output_dir="./training_translation" \
--model_type="gpt2" \
--config_name="./training" \
--tokenizer_name="./training" \
--dataset_name="RaiBP/openwebtext2-first-30-chunks-ablation-translation" \
--do_train \
--per_device_train_batch_size 8 \
--block_size="1024" \
--learning_rate="5e-3" --warmup_steps="1000" \
--adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" \
--overwrite_output_dir \
--num_train_epochs="1" \
--logging_steps="500" \
--save_steps="5000" --preprocessing_num_workers="16" \
--gradient_accumulation_steps="4" --report_to="tensorboard" \
--logging_dir="./log_translation"  > command_translation_log.log 2>&1 &
```
### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1.0

### Training results
### Evaluation results
Perplexity on random 2000 examples of the target language's [Wikipedia dataset](https://huggingface.co/datasets/wikimedia/wikipedia), using the code provided in the [perplexity docs](https://huggingface.co/docs/transformers/perplexity), with 512 tokes of stride.
Baseline is the result from evaluating [OpenAI's GPT-2](https://huggingface.co/gpt2) on the same examples.
| Target language | PPL               | Baseline PPL      |
|-----------------|-------------------|-------------------|
| en              |39.97170639038086   |26.562532424926758 |
| de              |25.49677848815918   |56.907039642333984 |
| es              |21.964618682861328  |55.592445373535156 |
| fr              | 25.343358993530273 |49.69472885131836  |
|it               |25.46650505065918   |75.95120239257812  |
|pt               | 19.93419075012207  ||
|nl               | 32.07345199584961  ||

The following script was used for evaluation


```python
import numpy as np
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from tqdm import tqdm
import random

# Set the seed for reproducibility
random.seed(42)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load the model
model_name = "RaiBP/gpt2-openwebtext2-first-30-chunks-ablation-translation"
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)

target_language_dataset = "20231101.de" # change here for other languages

dataset = load_dataset("wikimedia/wikipedia", target_language_dataset, split="train")
num_examples = 2000
random_numbers = list(np.random.randint(0, len(dataset), num_examples))
examples = []
for i in tqdm(random_numbers):
    examples.append(dataset[int(i)]["text"])
encodings = tokenizer("\n\n".join(examples), return_tensors="pt")

max_length = model.config.n_positions
stride = 512
seq_len = encodings.input_ids.size(1)

nlls = []
prev_end_loc = 0
for begin_loc in tqdm(range(0, seq_len, stride)):
    end_loc = min(begin_loc + max_length, seq_len)
    trg_len = end_loc - prev_end_loc  # may be different from stride on last loop
    input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device)
    target_ids = input_ids.clone()
    target_ids[:, :-trg_len] = -100

    with torch.no_grad():
        outputs = model(input_ids, labels=target_ids)

        # loss is calculated using CrossEntropyLoss which averages over valid labels
        # N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels
        # to the left by 1.
        neg_log_likelihood = outputs.loss

    nlls.append(neg_log_likelihood)

    prev_end_loc = end_loc
    if end_loc == seq_len:
        break

ppl = torch.exp(torch.stack(nlls).mean())

print("Perplexity: ", ppl.item())
```


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 1.13.0
- Datasets 2.16.0
- Tokenizers 0.15.0