--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-1 results: [] --- # distilhubert-finetuned-gtzan-1 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6660 - Accuracy: 0.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7533 | 1.0 | 113 | 1.7927 | 0.47 | | 1.2555 | 2.0 | 226 | 1.2792 | 0.6 | | 1.0209 | 3.0 | 339 | 1.0276 | 0.7 | | 0.6703 | 4.0 | 452 | 0.8181 | 0.75 | | 0.5152 | 5.0 | 565 | 0.7395 | 0.77 | | 0.2763 | 6.0 | 678 | 0.6498 | 0.81 | | 0.2386 | 7.0 | 791 | 0.6775 | 0.79 | | 0.3162 | 8.0 | 904 | 0.6291 | 0.81 | | 0.155 | 9.0 | 1017 | 0.6121 | 0.83 | | 0.0894 | 10.0 | 1130 | 0.6660 | 0.81 | ### Framework versions - Transformers 4.29.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2