File size: 1,949 Bytes
14749f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-large-ie-budquo-5k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-large-ie-budquo-5k

This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0504
- Rouge1: 0.1024
- Rouge2: 0.0848
- Rougel: 0.1021
- Rougelsum: 0.1023

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 0.1081        | 0.9997 | 1921 | 0.0537          | 0.0995 | 0.0819 | 0.0994 | 0.0993    |
| 0.0291        | 2.0    | 3843 | 0.0177          | 0.1030 | 0.0866 | 0.1030 | 0.1029    |
| 0.0157        | 2.9997 | 5764 | 0.0101          | 0.1041 | 0.0878 | 0.1040 | 0.1037    |
| 0.0092        | 4.0    | 7686 | 0.0071          | 0.1039 | 0.0881 | 0.1040 | 0.1038    |
| 0.0061        | 4.9987 | 9605 | 0.0067          | 0.1045 | 0.0884 | 0.1043 | 0.1041    |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1