--- library_name: transformers license: apache-2.0 base_model: google/mt5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-ie-budquo-finetuned results: [] --- # t5-ie-budquo-finetuned This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0376 - Rouge1: 0.1256 - Rouge2: 0.1059 - Rougel: 0.1253 - Rougelsum: 0.1250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 0.1216 | 0.9995 | 551 | 0.0391 | 0.1297 | 0.1077 | 0.1294 | 0.1297 | | 0.0418 | 1.9991 | 1102 | 0.0176 | 0.1310 | 0.1114 | 0.1310 | 0.1312 | | 0.0277 | 2.9986 | 1653 | 0.0141 | 0.1311 | 0.1117 | 0.1314 | 0.1313 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1