--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - AI-Lab-Makerere/beans metrics: - accuracy widget: - src: https://huggingface.co/RaymundoSGlz/vit_model_beans/resolve/main/bean_rust.jpeg example_title: Bean rust - src: https://huggingface.co/RaymundoSGlz/vit_model_beans/resolve/main/healthy.jpeg example_title: Healthy base_model: google/vit-base-patch16-224-in21k model-index: - name: vit_model_beans results: - task: type: image-classification name: Image Classification dataset: name: beans type: beans config: default split: validation args: default metrics: - type: accuracy value: 0.9924812030075187 name: Accuracy --- # vit_model_beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0310 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3