File size: 3,049 Bytes
9f5773d
5765935
8764512
 
 
 
 
 
 
 
 
 
 
 
 
9f5773d
 
8764512
91e524f
8764512
9f5773d
8764512
 
80a6eb4
87f2711
8764512
9f5773d
8764512
9f5773d
 
8764512
8d08f12
9f5773d
 
 
8764512
 
9f5773d
 
8764512
9f5773d
8764512
9f5773d
d140b30
 
 
 
 
 
 
 
 
 
 
9f5773d
8764512
9f5773d
8764512
 
 
 
 
 
 
 
 
 
 
 
5765935
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B
tags:
- ORPO
- llama 3 8B
- conversational
datasets:
- BramVanroy/ultra_feedback_dutch
model-index:
- name: ReBatch/Llama-3-8B-dutch
  results: []
language:
- nl
pipeline_tag: text-generation
---

<p align="center" style="margin:0;padding:0">
  <img src="llama3-8b-dutch-banner.jpeg" alt="Llama 3 dutch banner" width="400" height="400"/>
</p>

<div style="margin:auto; text-align:center">
<h1 style="margin-bottom: 0">Llama 3 8B - Dutch</h1>
<em>A conversational model for Dutch, based on Llama 3 8B</em>
<p><em><a href="https://huggingface.co/spaces/ReBatch/Llama-3-Dutch">Try chatting with the model!</a></em></p>
</div>

This model is a [QLORA](https://huggingface.co/blog/4bit-transformers-bitsandbytes) and [ORPO](https://huggingface.co/docs/trl/main/en/orpo_trainer) fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the synthetic feedback dataset [BramVanroy/ultra_feedback_dutch](https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch)


## Model description
This model is a Dutch chat model, originally developed from Llama 3 8B and further refined through a feedback dataset with [ORPO](https://huggingface.co/docs/trl/main/en/orpo_trainer) and trained on [BramVanroy/ultra_feedback_dutch](https://huggingface.co/datasets/BramVanroy/ultra_feedback_dutch)



## Intended uses & limitations
Although the model has been aligned with gpt-4-turbo output, which has strong content filters, the model could still generate wrong, misleading, and potentially even offensive content. Use at your own risk. 


## Training procedure

The model was trained in bfloat16 with QLORA with flash attention 2 on one GPU - H100 80GB SXM5 for around 24 hours on RunPod. 

## Evaluation Results

The model was evaluated using [scandeval](https://scandeval.com/dutch-nlg/)

The model showed mixed results across different benchmarks; it exhibited slight improvements on some while experiencing a decrease in scores on others. This occurred despite being trained on only 200,000 samples for a single epoch. We are curious to see whether its performance could be enhanced by training with more data or additional epochs.

| Model| conll_nl | dutch_social | scala_nl | squad_nl | wiki_lingua_nl | mmlu_nl | hellaswag_nl |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:
meta-llama/Meta-Llama-3-8B-Instruct | 68.72	| 14.67	| 32.91	| 45.36	| 67.62	| 36.18	| 33.91
ReBatch/Llama-3-8B-dutch | 58.85 | 11.14 | 15.58 | 59.96 | 64.51 | 36.27 | 28.34
meta-llama/Meta-Llama-3-8B | 62.26 | 10.45| 30.3| 62.99| 65.17 | 36.38| 28.33

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 2
- eval_batch_size: 2
- num_devices: 1
- gradient_accumulation_steps: 4
- optimizer: paged_adamw_8bit
- lr_scheduler_type: linear
- warmup_steps: 10
- num_epochs: 1.0
- r: 16
- lora_alpha: 32
- lora_dropout: 0.05