--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - ag_news metrics: - accuracy model-index: - name: N_bert_agnews_padding50model results: - task: name: Text Classification type: text-classification dataset: name: ag_news type: ag_news config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9467105263157894 --- # N_bert_agnews_padding50model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ag_news dataset. It achieves the following results on the evaluation set: - Loss: 0.5754 - Accuracy: 0.9467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.1754 | 1.0 | 7500 | 0.1909 | 0.9428 | | 0.1362 | 2.0 | 15000 | 0.1928 | 0.9461 | | 0.1139 | 3.0 | 22500 | 0.2106 | 0.9461 | | 0.0825 | 4.0 | 30000 | 0.2544 | 0.9466 | | 0.0565 | 5.0 | 37500 | 0.3046 | 0.9367 | | 0.0372 | 6.0 | 45000 | 0.3764 | 0.9436 | | 0.0347 | 7.0 | 52500 | 0.3646 | 0.9425 | | 0.0346 | 8.0 | 60000 | 0.3826 | 0.9461 | | 0.0247 | 9.0 | 67500 | 0.4244 | 0.9455 | | 0.0113 | 10.0 | 75000 | 0.4418 | 0.9446 | | 0.0166 | 11.0 | 82500 | 0.4917 | 0.9462 | | 0.0157 | 12.0 | 90000 | 0.4662 | 0.9442 | | 0.0124 | 13.0 | 97500 | 0.4864 | 0.9438 | | 0.0055 | 14.0 | 105000 | 0.4912 | 0.9457 | | 0.0102 | 15.0 | 112500 | 0.5040 | 0.9446 | | 0.0045 | 16.0 | 120000 | 0.5200 | 0.9441 | | 0.0038 | 17.0 | 127500 | 0.5374 | 0.9467 | | 0.0012 | 18.0 | 135000 | 0.5605 | 0.9459 | | 0.0005 | 19.0 | 142500 | 0.5809 | 0.9455 | | 0.0003 | 20.0 | 150000 | 0.5754 | 0.9467 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3