End of training
Browse files- README.md +94 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imdb
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: N_bert_imdb_padding50model
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: imdb
|
18 |
+
type: imdb
|
19 |
+
config: plain_text
|
20 |
+
split: test
|
21 |
+
args: plain_text
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.93852
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# N_bert_imdb_padding50model
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.7352
|
36 |
+
- Accuracy: 0.9385
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 2e-05
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 16
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 20
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
67 |
+
| 0.2185 | 1.0 | 1563 | 0.2445 | 0.9211 |
|
68 |
+
| 0.1562 | 2.0 | 3126 | 0.1966 | 0.9369 |
|
69 |
+
| 0.0924 | 3.0 | 4689 | 0.3358 | 0.9287 |
|
70 |
+
| 0.0576 | 4.0 | 6252 | 0.3586 | 0.9308 |
|
71 |
+
| 0.0493 | 5.0 | 7815 | 0.3533 | 0.9346 |
|
72 |
+
| 0.0362 | 6.0 | 9378 | 0.4772 | 0.9287 |
|
73 |
+
| 0.019 | 7.0 | 10941 | 0.4636 | 0.9328 |
|
74 |
+
| 0.0282 | 8.0 | 12504 | 0.4084 | 0.9350 |
|
75 |
+
| 0.0155 | 9.0 | 14067 | 0.4659 | 0.9302 |
|
76 |
+
| 0.0119 | 10.0 | 15630 | 0.5622 | 0.9342 |
|
77 |
+
| 0.0074 | 11.0 | 17193 | 0.5651 | 0.9338 |
|
78 |
+
| 0.0047 | 12.0 | 18756 | 0.5859 | 0.9348 |
|
79 |
+
| 0.006 | 13.0 | 20319 | 0.6266 | 0.9342 |
|
80 |
+
| 0.0067 | 14.0 | 21882 | 0.6573 | 0.9308 |
|
81 |
+
| 0.0044 | 15.0 | 23445 | 0.6579 | 0.9370 |
|
82 |
+
| 0.0 | 16.0 | 25008 | 0.6971 | 0.9386 |
|
83 |
+
| 0.0011 | 17.0 | 26571 | 0.7194 | 0.9377 |
|
84 |
+
| 0.0 | 18.0 | 28134 | 0.7164 | 0.9392 |
|
85 |
+
| 0.0 | 19.0 | 29697 | 0.7198 | 0.9391 |
|
86 |
+
| 0.0 | 20.0 | 31260 | 0.7352 | 0.9385 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.33.2
|
92 |
+
- Pytorch 2.0.1+cu117
|
93 |
+
- Datasets 2.14.5
|
94 |
+
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 438157105
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efac70c6e0a4e5391e82377f89b95a1312c90c91046fcc6dff9e07d44abdd497
|
3 |
size 438157105
|