---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: left_padding40model
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: imdb
      type: imdb
      config: plain_text
      split: test
      args: plain_text
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.93352
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# left_padding40model

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6508
- Accuracy: 0.9335

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Accuracy | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
| 0.0835        | 1.0   | 1563  | 0.9287   | 0.3934          |
| 0.0219        | 2.0   | 3126  | 0.9306   | 0.4228          |
| 0.0408        | 3.0   | 4689  | 0.4133   | 0.9276          |
| 0.0316        | 4.0   | 6252  | 0.4801   | 0.9300          |
| 0.0285        | 5.0   | 7815  | 0.5290   | 0.9287          |
| 0.0318        | 6.0   | 9378  | 0.5954   | 0.9281          |
| 0.0199        | 7.0   | 10941 | 0.6008   | 0.9311          |
| 0.0049        | 8.0   | 12504 | 0.6087   | 0.9305          |
| 0.0003        | 9.0   | 14067 | 0.6529   | 0.9320          |
| 0.0032        | 10.0  | 15630 | 0.6508   | 0.9335          |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.0.0+cu117
- Datasets 2.14.6
- Tokenizers 0.14.1