--- datasets: - IlyaGusev/saiga_scored - IlyaGusev/saiga_preferences - dichspace/darulm language: - ru pipeline_tag: text-generation license: apache-2.0 base_model: - Qwen/Qwen2.5-32B - t-tech/T-pro-it-1.0 --- ## Описание модели WORK IN PROGRESS!!! Текущая версия v1. GGUF версия. Адаптация модели T-pro-it-1.0 на русский язык. В модели был заменен токенизатор, затем произведено дообучение (Continued pretraining) на русскоязычном корпусе, после чего была применена техника LEP (Learned Embedding Propagation). Благодаря новому токенизатору (расширенный tiktoken cl100k с помощью униграм токенизатора на 48 т. токенов) скорость генерации* русскоязычных текстов возрасла до 60% по сравнению с исходной моделью T-pro-it-1.0. *Под скоростью генерации подразумевается количество русскоязычных символов/слов в секунду на одинаковых текстовых последовательностях. ## Попробовать Модель можно попробовать в поднятом Space (внизу в параметрах выбор модели): https://huggingface.co/spaces/RefalMachine/RuadaptQwen2.5 ## Токенизация ![image/png](https://cdn-uploads.huggingface.co/production/uploads/652cedbdf120598322ae358a/O4eQEhnowETEatDPcmArB.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/652cedbdf120598322ae358a/oW0Q6LzD_Py3GdH0kfqu4.png) ## Метрики и оценка качества Модель была оценена на Ru-Arena-General, MERA, llmtf_open #### Результаты на Ru-Arena-General Замеры были произведены с использованием оффициального кода лидерборда (https://github.com/VikhrModels/ru_llm_arena), **но с repetition_penalty=1.1**. TODO #### Результаты на MERA TODO #### Результаты на llmtf_open TODO ## How to cite: Tikhomirov M., Chernyshov D. Facilitating Large Language Model Russian Adaptation with Learned Embedding Propagation //Journal of Language and Education. – 2024. – Т. 10. – №. 4. – С. 130-145. Tikhomirov M., Chernyshev D. Impact of Tokenization on LLaMa Russian Adaptation //2023 Ivannikov Ispras Open Conference (ISPRAS). – IEEE, 2023. – С. 163-168. ## Предупреждение Ответы модели не отражают мнения авторов, а лишь повторяют знания полученные из данных на всех этапах обучения (предобучение, смена токенизатора, обучение на инструкциях, калибровка качества ответов). Модель была получена из сторонней предобученной модели, **контроль за предобучением** которой **не является ответственностью текущих авторов**. При создании данной версии модели не производилось никаких дополнительных действий, направленных на изменение заложенных в LLM "мнений". Используйте с осторожностью.