Upload folder using huggingface_hub
Browse files- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/config.json +30 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/generation_config.json +10 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/latest +1 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00001-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00002-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00003-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00004-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00005-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00006-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model.safetensors.index.json +370 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_0.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_1.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_2.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_3.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_4.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_5.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_6.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_7.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/scheduler.pt +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/special_tokens_map.json +24 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer.json +0 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer.model +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer_config.json +43 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/trainer_state.json +2224 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/training_args.bin +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/zero_to_fp32.py +592 -0
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/data/tungtran/output_model/irish_llama2_data_v3/checkpoint-2200",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 5120,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 13824,
|
15 |
+
"max_position_embeddings": 4096,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 40,
|
19 |
+
"num_hidden_layers": 40,
|
20 |
+
"num_key_value_heads": 40,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rope_theta": 10000.0,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.46.3",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 35483
|
30 |
+
}
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_length": 4096,
|
6 |
+
"pad_token_id": 0,
|
7 |
+
"temperature": 0.6,
|
8 |
+
"top_p": 0.9,
|
9 |
+
"transformers_version": "4.46.3"
|
10 |
+
}
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step624
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b82608b73af1630f7ec9af236bbbfe1947b0be2c00fbc0954923f672569ce0a
|
3 |
+
size 4961502800
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8a71801cee916a77a0c67ee2372e687e7110fe7340ba71b084e8978d353db54
|
3 |
+
size 4970422232
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6aaa9c6184e45f53efb72aaaa8112127b9772c7af87f98a7e1cd6d9c4ea3c08
|
3 |
+
size 4881272584
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35dfda0dd3e0ae4c7d66d066bd68333dee7b04445da805c5d32ea958c7ee87cb
|
3 |
+
size 4933722216
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:025d430bc53976d95aacaa1616ee456009fd541885bd7830cf9051ae8876e4bf
|
3 |
+
size 4933722208
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d11f72a32e119049321b1d8d9ab06c8de75936fdb0d16f1983d792d416ff592
|
3 |
+
size 1422460712
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 26103060480
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
368 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
369 |
+
}
|
370 |
+
}
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:994d0a15e56df433a908d139d0b7caea59dbf6eb9e109191d3df763b430de5e7
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:480b1090b0e942f0994b95fcb4e2d0fd8effca2892f351ff441a70d9143b06a1
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f47f7d835b04b9510790640491f19ac37f3c0ee7f9720eea68e19f9a59f001be
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:179ed45c9b836e74595a5ee6959682569c15e17748ff046457798aba5998c99b
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc9918d8e550835f34df7f403c41b632703a623c1cce2bc21b2e28df805b1646
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e604fb5f644f8e388e5522212cf891a6f957b1a30b9e4a282a72c84bf68b615f
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5df3cd0dacde7148beb677c7d6a1bfc9b7a20b4c8e6818da432855cfe7ef80ac
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00a4d1cc819f2b1045d34a95b3504b61b35cfdcc4ee5cba30b1708f4e3cfc599
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b1e57508d3ad0384901652c36aeb55b1e17a89f8371cd3bd79dd388951df1b8
|
3 |
+
size 1064
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d1f5d0342153f3e3bbb37b2026ba64d0b25583df351345f87cd8b9a5658c2fb
|
3 |
+
size 558602
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.' %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/trainer_state.json
ADDED
@@ -0,0 +1,2224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.9920127795527156,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 624,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.006389776357827476,
|
13 |
+
"grad_norm": 2.055291493195234,
|
14 |
+
"learning_rate": 3.125e-06,
|
15 |
+
"loss": 1.695,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.012779552715654952,
|
20 |
+
"grad_norm": 2.0685233500522586,
|
21 |
+
"learning_rate": 6.25e-06,
|
22 |
+
"loss": 1.6748,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.025559105431309903,
|
27 |
+
"grad_norm": 2.325735299422439,
|
28 |
+
"learning_rate": 1.25e-05,
|
29 |
+
"loss": 1.6964,
|
30 |
+
"step": 4
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.038338658146964855,
|
34 |
+
"grad_norm": 0.4729866673863026,
|
35 |
+
"learning_rate": 1.8750000000000002e-05,
|
36 |
+
"loss": 1.4325,
|
37 |
+
"step": 6
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.051118210862619806,
|
41 |
+
"grad_norm": 0.482620239981458,
|
42 |
+
"learning_rate": 2.5e-05,
|
43 |
+
"loss": 1.3874,
|
44 |
+
"step": 8
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.06389776357827476,
|
48 |
+
"grad_norm": 1.6728433474079003,
|
49 |
+
"learning_rate": 3.125e-05,
|
50 |
+
"loss": 1.4689,
|
51 |
+
"step": 10
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.07667731629392971,
|
55 |
+
"grad_norm": 0.3405987431283081,
|
56 |
+
"learning_rate": 3.7500000000000003e-05,
|
57 |
+
"loss": 1.3127,
|
58 |
+
"step": 12
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.08945686900958466,
|
62 |
+
"grad_norm": 0.2323496464888272,
|
63 |
+
"learning_rate": 4.375e-05,
|
64 |
+
"loss": 1.2639,
|
65 |
+
"step": 14
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.10223642172523961,
|
69 |
+
"grad_norm": 0.18809974511784008,
|
70 |
+
"learning_rate": 5e-05,
|
71 |
+
"loss": 1.2401,
|
72 |
+
"step": 16
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.11501597444089456,
|
76 |
+
"grad_norm": 0.18997340619225084,
|
77 |
+
"learning_rate": 5.6250000000000005e-05,
|
78 |
+
"loss": 1.2084,
|
79 |
+
"step": 18
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.12779552715654952,
|
83 |
+
"grad_norm": 0.15504216343509883,
|
84 |
+
"learning_rate": 6.25e-05,
|
85 |
+
"loss": 1.1855,
|
86 |
+
"step": 20
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.14057507987220447,
|
90 |
+
"grad_norm": 0.12848416587626313,
|
91 |
+
"learning_rate": 6.875e-05,
|
92 |
+
"loss": 1.146,
|
93 |
+
"step": 22
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.15335463258785942,
|
97 |
+
"grad_norm": 0.09889252813730416,
|
98 |
+
"learning_rate": 7.500000000000001e-05,
|
99 |
+
"loss": 1.1357,
|
100 |
+
"step": 24
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.16613418530351437,
|
104 |
+
"grad_norm": 0.09024188902019939,
|
105 |
+
"learning_rate": 8.125000000000001e-05,
|
106 |
+
"loss": 1.1096,
|
107 |
+
"step": 26
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.17891373801916932,
|
111 |
+
"grad_norm": 0.08133676595279006,
|
112 |
+
"learning_rate": 8.75e-05,
|
113 |
+
"loss": 1.0913,
|
114 |
+
"step": 28
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.19169329073482427,
|
118 |
+
"grad_norm": 0.0978463769637292,
|
119 |
+
"learning_rate": 9.375e-05,
|
120 |
+
"loss": 1.0679,
|
121 |
+
"step": 30
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.20447284345047922,
|
125 |
+
"grad_norm": 0.07943889170723487,
|
126 |
+
"learning_rate": 0.0001,
|
127 |
+
"loss": 1.075,
|
128 |
+
"step": 32
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.21725239616613418,
|
132 |
+
"grad_norm": 0.08240884428512509,
|
133 |
+
"learning_rate": 9.99971838728789e-05,
|
134 |
+
"loss": 1.075,
|
135 |
+
"step": 34
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.23003194888178913,
|
139 |
+
"grad_norm": 0.08253986997481327,
|
140 |
+
"learning_rate": 9.998873580873848e-05,
|
141 |
+
"loss": 1.0652,
|
142 |
+
"step": 36
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.24281150159744408,
|
146 |
+
"grad_norm": 0.07954648039103362,
|
147 |
+
"learning_rate": 9.997465675921163e-05,
|
148 |
+
"loss": 1.0519,
|
149 |
+
"step": 38
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.25559105431309903,
|
153 |
+
"grad_norm": 0.0776223200815433,
|
154 |
+
"learning_rate": 9.995494831023409e-05,
|
155 |
+
"loss": 1.0094,
|
156 |
+
"step": 40
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.268370607028754,
|
160 |
+
"grad_norm": 0.08000844411167178,
|
161 |
+
"learning_rate": 9.992961268186573e-05,
|
162 |
+
"loss": 1.0074,
|
163 |
+
"step": 42
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.28115015974440893,
|
167 |
+
"grad_norm": 0.0689657212250583,
|
168 |
+
"learning_rate": 9.989865272804063e-05,
|
169 |
+
"loss": 1.0087,
|
170 |
+
"step": 44
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.2939297124600639,
|
174 |
+
"grad_norm": 0.0722150479128947,
|
175 |
+
"learning_rate": 9.986207193624536e-05,
|
176 |
+
"loss": 1.0067,
|
177 |
+
"step": 46
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.30670926517571884,
|
181 |
+
"grad_norm": 0.06646168454668608,
|
182 |
+
"learning_rate": 9.981987442712633e-05,
|
183 |
+
"loss": 0.9837,
|
184 |
+
"step": 48
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.3194888178913738,
|
188 |
+
"grad_norm": 0.06815852582234988,
|
189 |
+
"learning_rate": 9.977206495402554e-05,
|
190 |
+
"loss": 1.0024,
|
191 |
+
"step": 50
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.33226837060702874,
|
195 |
+
"grad_norm": 0.07469571057420442,
|
196 |
+
"learning_rate": 9.971864890244513e-05,
|
197 |
+
"loss": 0.9606,
|
198 |
+
"step": 52
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.3450479233226837,
|
202 |
+
"grad_norm": 0.07160841663430713,
|
203 |
+
"learning_rate": 9.965963228944078e-05,
|
204 |
+
"loss": 0.9681,
|
205 |
+
"step": 54
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.35782747603833864,
|
209 |
+
"grad_norm": 0.06954866095292117,
|
210 |
+
"learning_rate": 9.959502176294383e-05,
|
211 |
+
"loss": 0.951,
|
212 |
+
"step": 56
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.3706070287539936,
|
216 |
+
"grad_norm": 0.06598684065212063,
|
217 |
+
"learning_rate": 9.95248246010126e-05,
|
218 |
+
"loss": 0.9501,
|
219 |
+
"step": 58
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.38338658146964855,
|
223 |
+
"grad_norm": 0.12103302407814338,
|
224 |
+
"learning_rate": 9.944904871101228e-05,
|
225 |
+
"loss": 0.9713,
|
226 |
+
"step": 60
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.3961661341853035,
|
230 |
+
"grad_norm": 0.07330981053456032,
|
231 |
+
"learning_rate": 9.936770262872443e-05,
|
232 |
+
"loss": 0.9283,
|
233 |
+
"step": 62
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.40894568690095845,
|
237 |
+
"grad_norm": 0.06537535724415816,
|
238 |
+
"learning_rate": 9.928079551738543e-05,
|
239 |
+
"loss": 0.9118,
|
240 |
+
"step": 64
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.4217252396166134,
|
244 |
+
"grad_norm": 0.07457609795137939,
|
245 |
+
"learning_rate": 9.918833716665419e-05,
|
246 |
+
"loss": 0.9279,
|
247 |
+
"step": 66
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.43450479233226835,
|
251 |
+
"grad_norm": 0.07491122165043795,
|
252 |
+
"learning_rate": 9.909033799150946e-05,
|
253 |
+
"loss": 0.935,
|
254 |
+
"step": 68
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.4472843450479233,
|
258 |
+
"grad_norm": 0.06781283989008571,
|
259 |
+
"learning_rate": 9.898680903107666e-05,
|
260 |
+
"loss": 0.9361,
|
261 |
+
"step": 70
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.46006389776357826,
|
265 |
+
"grad_norm": 0.07160916695151898,
|
266 |
+
"learning_rate": 9.887776194738432e-05,
|
267 |
+
"loss": 0.9159,
|
268 |
+
"step": 72
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.4728434504792332,
|
272 |
+
"grad_norm": 0.0681941013678725,
|
273 |
+
"learning_rate": 9.876320902405042e-05,
|
274 |
+
"loss": 0.8779,
|
275 |
+
"step": 74
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.48562300319488816,
|
279 |
+
"grad_norm": 0.07482319269062407,
|
280 |
+
"learning_rate": 9.864316316489873e-05,
|
281 |
+
"loss": 0.8825,
|
282 |
+
"step": 76
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.4984025559105431,
|
286 |
+
"grad_norm": 0.08697975313543096,
|
287 |
+
"learning_rate": 9.851763789250525e-05,
|
288 |
+
"loss": 0.922,
|
289 |
+
"step": 78
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.5111821086261981,
|
293 |
+
"grad_norm": 0.09978612068745818,
|
294 |
+
"learning_rate": 9.838664734667495e-05,
|
295 |
+
"loss": 0.8894,
|
296 |
+
"step": 80
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.5239616613418531,
|
300 |
+
"grad_norm": 0.09384667638421956,
|
301 |
+
"learning_rate": 9.825020628284896e-05,
|
302 |
+
"loss": 0.8593,
|
303 |
+
"step": 82
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.536741214057508,
|
307 |
+
"grad_norm": 0.06932081799385038,
|
308 |
+
"learning_rate": 9.810833007044247e-05,
|
309 |
+
"loss": 0.8662,
|
310 |
+
"step": 84
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.549520766773163,
|
314 |
+
"grad_norm": 0.10358699944795004,
|
315 |
+
"learning_rate": 9.796103469111351e-05,
|
316 |
+
"loss": 0.8723,
|
317 |
+
"step": 86
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.5623003194888179,
|
321 |
+
"grad_norm": 0.07169243369499742,
|
322 |
+
"learning_rate": 9.780833673696254e-05,
|
323 |
+
"loss": 0.8482,
|
324 |
+
"step": 88
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.5750798722044729,
|
328 |
+
"grad_norm": 0.1050406308556227,
|
329 |
+
"learning_rate": 9.76502534086636e-05,
|
330 |
+
"loss": 0.8496,
|
331 |
+
"step": 90
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.5878594249201278,
|
335 |
+
"grad_norm": 0.07201905690967678,
|
336 |
+
"learning_rate": 9.74868025135266e-05,
|
337 |
+
"loss": 0.8291,
|
338 |
+
"step": 92
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.6006389776357828,
|
342 |
+
"grad_norm": 1.2625349021090781,
|
343 |
+
"learning_rate": 9.731800246349148e-05,
|
344 |
+
"loss": 0.8503,
|
345 |
+
"step": 94
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.6134185303514377,
|
349 |
+
"grad_norm": 0.17981258022070712,
|
350 |
+
"learning_rate": 9.714387227305422e-05,
|
351 |
+
"loss": 0.8231,
|
352 |
+
"step": 96
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.6261980830670927,
|
356 |
+
"grad_norm": 0.07561478832740967,
|
357 |
+
"learning_rate": 9.696443155712486e-05,
|
358 |
+
"loss": 0.8119,
|
359 |
+
"step": 98
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.6389776357827476,
|
363 |
+
"grad_norm": 0.08195686915168865,
|
364 |
+
"learning_rate": 9.67797005288181e-05,
|
365 |
+
"loss": 0.7926,
|
366 |
+
"step": 100
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.6517571884984026,
|
370 |
+
"grad_norm": 0.0890476280007116,
|
371 |
+
"learning_rate": 9.65896999971763e-05,
|
372 |
+
"loss": 0.8039,
|
373 |
+
"step": 102
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.6645367412140575,
|
377 |
+
"grad_norm": 0.07738578891457887,
|
378 |
+
"learning_rate": 9.639445136482548e-05,
|
379 |
+
"loss": 0.7721,
|
380 |
+
"step": 104
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.6773162939297125,
|
384 |
+
"grad_norm": 0.0743037172920425,
|
385 |
+
"learning_rate": 9.619397662556435e-05,
|
386 |
+
"loss": 0.794,
|
387 |
+
"step": 106
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.6900958466453674,
|
391 |
+
"grad_norm": 0.08803835897602165,
|
392 |
+
"learning_rate": 9.598829836188694e-05,
|
393 |
+
"loss": 0.7721,
|
394 |
+
"step": 108
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.7028753993610224,
|
398 |
+
"grad_norm": 0.07702819696223887,
|
399 |
+
"learning_rate": 9.577743974243874e-05,
|
400 |
+
"loss": 0.7765,
|
401 |
+
"step": 110
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.7156549520766773,
|
405 |
+
"grad_norm": 0.07473535070111323,
|
406 |
+
"learning_rate": 9.55614245194068e-05,
|
407 |
+
"loss": 0.7598,
|
408 |
+
"step": 112
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.7284345047923323,
|
412 |
+
"grad_norm": 0.08433756541496004,
|
413 |
+
"learning_rate": 9.534027702584425e-05,
|
414 |
+
"loss": 0.7727,
|
415 |
+
"step": 114
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.7412140575079872,
|
419 |
+
"grad_norm": 0.07483257658817612,
|
420 |
+
"learning_rate": 9.511402217292926e-05,
|
421 |
+
"loss": 0.7465,
|
422 |
+
"step": 116
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.7539936102236422,
|
426 |
+
"grad_norm": 0.0880318685591304,
|
427 |
+
"learning_rate": 9.488268544715896e-05,
|
428 |
+
"loss": 0.7321,
|
429 |
+
"step": 118
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.7667731629392971,
|
433 |
+
"grad_norm": 0.07719604899450865,
|
434 |
+
"learning_rate": 9.464629290747842e-05,
|
435 |
+
"loss": 0.7624,
|
436 |
+
"step": 120
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.7795527156549521,
|
440 |
+
"grad_norm": 0.0733176421376437,
|
441 |
+
"learning_rate": 9.440487118234535e-05,
|
442 |
+
"loss": 0.6975,
|
443 |
+
"step": 122
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.792332268370607,
|
447 |
+
"grad_norm": 0.07051701385784455,
|
448 |
+
"learning_rate": 9.415844746673047e-05,
|
449 |
+
"loss": 0.7127,
|
450 |
+
"step": 124
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.805111821086262,
|
454 |
+
"grad_norm": 0.0729787562181977,
|
455 |
+
"learning_rate": 9.390704951905411e-05,
|
456 |
+
"loss": 0.7503,
|
457 |
+
"step": 126
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.8178913738019169,
|
461 |
+
"grad_norm": 0.07128874732953779,
|
462 |
+
"learning_rate": 9.365070565805941e-05,
|
463 |
+
"loss": 0.6941,
|
464 |
+
"step": 128
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.8306709265175719,
|
468 |
+
"grad_norm": 0.07804844381711577,
|
469 |
+
"learning_rate": 9.338944475962237e-05,
|
470 |
+
"loss": 0.7197,
|
471 |
+
"step": 130
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.8434504792332268,
|
475 |
+
"grad_norm": 0.08207580744924538,
|
476 |
+
"learning_rate": 9.312329625349902e-05,
|
477 |
+
"loss": 0.7134,
|
478 |
+
"step": 132
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.8562300319488818,
|
482 |
+
"grad_norm": 0.10268159904999394,
|
483 |
+
"learning_rate": 9.285229012001047e-05,
|
484 |
+
"loss": 0.705,
|
485 |
+
"step": 134
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.8690095846645367,
|
489 |
+
"grad_norm": 0.07097527094154266,
|
490 |
+
"learning_rate": 9.257645688666556e-05,
|
491 |
+
"loss": 0.7036,
|
492 |
+
"step": 136
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.8817891373801917,
|
496 |
+
"grad_norm": 0.07284443178958877,
|
497 |
+
"learning_rate": 9.22958276247223e-05,
|
498 |
+
"loss": 0.7313,
|
499 |
+
"step": 138
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.8945686900958466,
|
503 |
+
"grad_norm": 0.07294697279525543,
|
504 |
+
"learning_rate": 9.201043394568773e-05,
|
505 |
+
"loss": 0.6847,
|
506 |
+
"step": 140
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.9073482428115016,
|
510 |
+
"grad_norm": 0.0725032039002937,
|
511 |
+
"learning_rate": 9.172030799775699e-05,
|
512 |
+
"loss": 0.6877,
|
513 |
+
"step": 142
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.9201277955271565,
|
517 |
+
"grad_norm": 0.06708836437156662,
|
518 |
+
"learning_rate": 9.142548246219212e-05,
|
519 |
+
"loss": 0.6837,
|
520 |
+
"step": 144
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.9329073482428115,
|
524 |
+
"grad_norm": 0.07361178534656698,
|
525 |
+
"learning_rate": 9.112599054964057e-05,
|
526 |
+
"loss": 0.6522,
|
527 |
+
"step": 146
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.9456869009584664,
|
531 |
+
"grad_norm": 0.06961060997060975,
|
532 |
+
"learning_rate": 9.082186599639428e-05,
|
533 |
+
"loss": 0.6732,
|
534 |
+
"step": 148
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.9584664536741214,
|
538 |
+
"grad_norm": 0.06369267112915664,
|
539 |
+
"learning_rate": 9.051314306058933e-05,
|
540 |
+
"loss": 0.6615,
|
541 |
+
"step": 150
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.9712460063897763,
|
545 |
+
"grad_norm": 0.06667729772792583,
|
546 |
+
"learning_rate": 9.019985651834703e-05,
|
547 |
+
"loss": 0.6742,
|
548 |
+
"step": 152
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.9840255591054313,
|
552 |
+
"grad_norm": 0.07052786453330319,
|
553 |
+
"learning_rate": 8.988204165985649e-05,
|
554 |
+
"loss": 0.6365,
|
555 |
+
"step": 154
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.9968051118210862,
|
559 |
+
"grad_norm": 0.06352217971127558,
|
560 |
+
"learning_rate": 8.955973428539944e-05,
|
561 |
+
"loss": 0.6531,
|
562 |
+
"step": 156
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.011182108626198,
|
566 |
+
"grad_norm": 0.0907023898699884,
|
567 |
+
"learning_rate": 8.923297070131737e-05,
|
568 |
+
"loss": 0.6986,
|
569 |
+
"step": 158
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.023961661341853,
|
573 |
+
"grad_norm": 0.06588723514264389,
|
574 |
+
"learning_rate": 8.890178771592199e-05,
|
575 |
+
"loss": 0.4221,
|
576 |
+
"step": 160
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.036741214057508,
|
580 |
+
"grad_norm": 0.07457104912562523,
|
581 |
+
"learning_rate": 8.856622263534875e-05,
|
582 |
+
"loss": 0.4375,
|
583 |
+
"step": 162
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.049520766773163,
|
587 |
+
"grad_norm": 0.08716030746078077,
|
588 |
+
"learning_rate": 8.822631325935463e-05,
|
589 |
+
"loss": 0.4633,
|
590 |
+
"step": 164
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.0623003194888179,
|
594 |
+
"grad_norm": 0.07564657660605784,
|
595 |
+
"learning_rate": 8.788209787706015e-05,
|
596 |
+
"loss": 0.4149,
|
597 |
+
"step": 166
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.0750798722044728,
|
601 |
+
"grad_norm": 0.2601478494309565,
|
602 |
+
"learning_rate": 8.753361526263621e-05,
|
603 |
+
"loss": 0.4644,
|
604 |
+
"step": 168
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 1.0878594249201279,
|
608 |
+
"grad_norm": 0.07236244361689621,
|
609 |
+
"learning_rate": 8.718090467093654e-05,
|
610 |
+
"loss": 0.445,
|
611 |
+
"step": 170
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 1.1006389776357828,
|
615 |
+
"grad_norm": 0.07360308087849284,
|
616 |
+
"learning_rate": 8.682400583307562e-05,
|
617 |
+
"loss": 0.4189,
|
618 |
+
"step": 172
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 1.1134185303514377,
|
622 |
+
"grad_norm": 0.06934965586236702,
|
623 |
+
"learning_rate": 8.646295895195333e-05,
|
624 |
+
"loss": 0.4168,
|
625 |
+
"step": 174
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 1.1261980830670926,
|
629 |
+
"grad_norm": 0.06652725595095291,
|
630 |
+
"learning_rate": 8.609780469772623e-05,
|
631 |
+
"loss": 0.4332,
|
632 |
+
"step": 176
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.1389776357827477,
|
636 |
+
"grad_norm": 0.06493423808775205,
|
637 |
+
"learning_rate": 8.572858420322627e-05,
|
638 |
+
"loss": 0.4126,
|
639 |
+
"step": 178
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.1517571884984026,
|
643 |
+
"grad_norm": 0.07224306242862681,
|
644 |
+
"learning_rate": 8.535533905932738e-05,
|
645 |
+
"loss": 0.4639,
|
646 |
+
"step": 180
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.1645367412140575,
|
650 |
+
"grad_norm": 0.06325420247080109,
|
651 |
+
"learning_rate": 8.497811131026046e-05,
|
652 |
+
"loss": 0.4097,
|
653 |
+
"step": 182
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 1.1773162939297124,
|
657 |
+
"grad_norm": 0.05960690196531746,
|
658 |
+
"learning_rate": 8.459694344887732e-05,
|
659 |
+
"loss": 0.4258,
|
660 |
+
"step": 184
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 1.1900958466453675,
|
664 |
+
"grad_norm": 0.06526403248406679,
|
665 |
+
"learning_rate": 8.421187841186402e-05,
|
666 |
+
"loss": 0.4453,
|
667 |
+
"step": 186
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 1.2028753993610224,
|
671 |
+
"grad_norm": 0.06754636177295095,
|
672 |
+
"learning_rate": 8.382295957490436e-05,
|
673 |
+
"loss": 0.4277,
|
674 |
+
"step": 188
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.2156549520766773,
|
678 |
+
"grad_norm": 0.11883404710840821,
|
679 |
+
"learning_rate": 8.343023074779368e-05,
|
680 |
+
"loss": 0.4386,
|
681 |
+
"step": 190
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.2284345047923322,
|
685 |
+
"grad_norm": 0.07793571463351197,
|
686 |
+
"learning_rate": 8.303373616950408e-05,
|
687 |
+
"loss": 0.4072,
|
688 |
+
"step": 192
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.2412140575079873,
|
692 |
+
"grad_norm": 0.06518657342856102,
|
693 |
+
"learning_rate": 8.263352050320094e-05,
|
694 |
+
"loss": 0.4396,
|
695 |
+
"step": 194
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 1.2539936102236422,
|
699 |
+
"grad_norm": 0.05974282037032855,
|
700 |
+
"learning_rate": 8.222962883121196e-05,
|
701 |
+
"loss": 0.4016,
|
702 |
+
"step": 196
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 1.266773162939297,
|
706 |
+
"grad_norm": 0.0693639502217822,
|
707 |
+
"learning_rate": 8.182210664994878e-05,
|
708 |
+
"loss": 0.3808,
|
709 |
+
"step": 198
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 1.279552715654952,
|
713 |
+
"grad_norm": 0.06127831754623801,
|
714 |
+
"learning_rate": 8.141099986478212e-05,
|
715 |
+
"loss": 0.3961,
|
716 |
+
"step": 200
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.292332268370607,
|
720 |
+
"grad_norm": 0.06755312065722066,
|
721 |
+
"learning_rate": 8.099635478487064e-05,
|
722 |
+
"loss": 0.3894,
|
723 |
+
"step": 202
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.305111821086262,
|
727 |
+
"grad_norm": 0.0584212869146413,
|
728 |
+
"learning_rate": 8.057821811794458e-05,
|
729 |
+
"loss": 0.414,
|
730 |
+
"step": 204
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.317891373801917,
|
734 |
+
"grad_norm": 0.05983512956529008,
|
735 |
+
"learning_rate": 8.015663696504422e-05,
|
736 |
+
"loss": 0.3634,
|
737 |
+
"step": 206
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 1.330670926517572,
|
741 |
+
"grad_norm": 0.05778218969166584,
|
742 |
+
"learning_rate": 7.973165881521434e-05,
|
743 |
+
"loss": 0.4233,
|
744 |
+
"step": 208
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.343450479233227,
|
748 |
+
"grad_norm": 0.058310021079803646,
|
749 |
+
"learning_rate": 7.930333154015466e-05,
|
750 |
+
"loss": 0.4061,
|
751 |
+
"step": 210
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.3562300319488818,
|
755 |
+
"grad_norm": 0.0642143238679532,
|
756 |
+
"learning_rate": 7.88717033888274e-05,
|
757 |
+
"loss": 0.4083,
|
758 |
+
"step": 212
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.3690095846645367,
|
762 |
+
"grad_norm": 0.05656381877721736,
|
763 |
+
"learning_rate": 7.843682298202235e-05,
|
764 |
+
"loss": 0.4033,
|
765 |
+
"step": 214
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.3817891373801916,
|
769 |
+
"grad_norm": 0.05518190162844295,
|
770 |
+
"learning_rate": 7.799873930687978e-05,
|
771 |
+
"loss": 0.3953,
|
772 |
+
"step": 216
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 1.3945686900958467,
|
776 |
+
"grad_norm": 0.05903661851778338,
|
777 |
+
"learning_rate": 7.755750171137246e-05,
|
778 |
+
"loss": 0.4096,
|
779 |
+
"step": 218
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 1.4073482428115016,
|
783 |
+
"grad_norm": 0.05833074145436464,
|
784 |
+
"learning_rate": 7.711315989874677e-05,
|
785 |
+
"loss": 0.4151,
|
786 |
+
"step": 220
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 1.4201277955271565,
|
790 |
+
"grad_norm": 0.05919878363690307,
|
791 |
+
"learning_rate": 7.666576392192389e-05,
|
792 |
+
"loss": 0.39,
|
793 |
+
"step": 222
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 1.4329073482428116,
|
797 |
+
"grad_norm": 0.05913664327254173,
|
798 |
+
"learning_rate": 7.621536417786159e-05,
|
799 |
+
"loss": 0.4005,
|
800 |
+
"step": 224
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 1.4456869009584665,
|
804 |
+
"grad_norm": 0.0640842931075253,
|
805 |
+
"learning_rate": 7.576201140187727e-05,
|
806 |
+
"loss": 0.4165,
|
807 |
+
"step": 226
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 1.4584664536741214,
|
811 |
+
"grad_norm": 0.062131879810909965,
|
812 |
+
"learning_rate": 7.530575666193283e-05,
|
813 |
+
"loss": 0.3891,
|
814 |
+
"step": 228
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 1.4712460063897763,
|
818 |
+
"grad_norm": 0.06992276137309804,
|
819 |
+
"learning_rate": 7.484665135288213e-05,
|
820 |
+
"loss": 0.3971,
|
821 |
+
"step": 230
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 1.4840255591054312,
|
825 |
+
"grad_norm": 0.06078790664861669,
|
826 |
+
"learning_rate": 7.438474719068173e-05,
|
827 |
+
"loss": 0.3961,
|
828 |
+
"step": 232
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 1.4968051118210863,
|
832 |
+
"grad_norm": 0.06922648734675908,
|
833 |
+
"learning_rate": 7.392009620656513e-05,
|
834 |
+
"loss": 0.4331,
|
835 |
+
"step": 234
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.5095846645367412,
|
839 |
+
"grad_norm": 0.05766139832102871,
|
840 |
+
"learning_rate": 7.345275074118185e-05,
|
841 |
+
"loss": 0.4182,
|
842 |
+
"step": 236
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.5223642172523961,
|
846 |
+
"grad_norm": 0.06292873231888371,
|
847 |
+
"learning_rate": 7.298276343870151e-05,
|
848 |
+
"loss": 0.4061,
|
849 |
+
"step": 238
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.5351437699680512,
|
853 |
+
"grad_norm": 0.06000860844713537,
|
854 |
+
"learning_rate": 7.251018724088367e-05,
|
855 |
+
"loss": 0.4023,
|
856 |
+
"step": 240
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.547923322683706,
|
860 |
+
"grad_norm": 0.0585777107714916,
|
861 |
+
"learning_rate": 7.203507538111423e-05,
|
862 |
+
"loss": 0.3855,
|
863 |
+
"step": 242
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.560702875399361,
|
867 |
+
"grad_norm": 0.0571671995255021,
|
868 |
+
"learning_rate": 7.155748137840892e-05,
|
869 |
+
"loss": 0.3951,
|
870 |
+
"step": 244
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 1.573482428115016,
|
874 |
+
"grad_norm": 0.053447175708899994,
|
875 |
+
"learning_rate": 7.107745903138472e-05,
|
876 |
+
"loss": 0.3745,
|
877 |
+
"step": 246
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.5862619808306708,
|
881 |
+
"grad_norm": 0.055736902711725635,
|
882 |
+
"learning_rate": 7.059506241219965e-05,
|
883 |
+
"loss": 0.3911,
|
884 |
+
"step": 248
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.599041533546326,
|
888 |
+
"grad_norm": 0.05715355824554817,
|
889 |
+
"learning_rate": 7.011034586046176e-05,
|
890 |
+
"loss": 0.4043,
|
891 |
+
"step": 250
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.6118210862619808,
|
895 |
+
"grad_norm": 0.06030447320081754,
|
896 |
+
"learning_rate": 6.962336397710819e-05,
|
897 |
+
"loss": 0.3899,
|
898 |
+
"step": 252
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.6246006389776357,
|
902 |
+
"grad_norm": 0.061239135474291606,
|
903 |
+
"learning_rate": 6.91341716182545e-05,
|
904 |
+
"loss": 0.4246,
|
905 |
+
"step": 254
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.6373801916932909,
|
909 |
+
"grad_norm": 0.05695235071864785,
|
910 |
+
"learning_rate": 6.864282388901544e-05,
|
911 |
+
"loss": 0.3953,
|
912 |
+
"step": 256
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.6501597444089455,
|
916 |
+
"grad_norm": 0.05308868251491366,
|
917 |
+
"learning_rate": 6.814937613729766e-05,
|
918 |
+
"loss": 0.4103,
|
919 |
+
"step": 258
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.6629392971246006,
|
923 |
+
"grad_norm": 0.054046791633493914,
|
924 |
+
"learning_rate": 6.765388394756504e-05,
|
925 |
+
"loss": 0.4059,
|
926 |
+
"step": 260
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.6757188498402555,
|
930 |
+
"grad_norm": 0.05148697040730548,
|
931 |
+
"learning_rate": 6.715640313457733e-05,
|
932 |
+
"loss": 0.3767,
|
933 |
+
"step": 262
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.6884984025559104,
|
937 |
+
"grad_norm": 0.05318569591896447,
|
938 |
+
"learning_rate": 6.665698973710288e-05,
|
939 |
+
"loss": 0.3708,
|
940 |
+
"step": 264
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.7012779552715656,
|
944 |
+
"grad_norm": 0.05196719070381999,
|
945 |
+
"learning_rate": 6.615570001160626e-05,
|
946 |
+
"loss": 0.4042,
|
947 |
+
"step": 266
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.7140575079872205,
|
951 |
+
"grad_norm": 0.05632881769869459,
|
952 |
+
"learning_rate": 6.565259042591113e-05,
|
953 |
+
"loss": 0.3987,
|
954 |
+
"step": 268
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.7268370607028753,
|
958 |
+
"grad_norm": 0.05470059818193366,
|
959 |
+
"learning_rate": 6.514771765283942e-05,
|
960 |
+
"loss": 0.3973,
|
961 |
+
"step": 270
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.7396166134185305,
|
965 |
+
"grad_norm": 0.056351811449582394,
|
966 |
+
"learning_rate": 6.464113856382752e-05,
|
967 |
+
"loss": 0.3864,
|
968 |
+
"step": 272
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.7523961661341851,
|
972 |
+
"grad_norm": 0.05831258279981057,
|
973 |
+
"learning_rate": 6.413291022251989e-05,
|
974 |
+
"loss": 0.4041,
|
975 |
+
"step": 274
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.7651757188498403,
|
979 |
+
"grad_norm": 0.053467450310740065,
|
980 |
+
"learning_rate": 6.362308987834115e-05,
|
981 |
+
"loss": 0.3814,
|
982 |
+
"step": 276
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.7779552715654952,
|
986 |
+
"grad_norm": 0.051287152623381335,
|
987 |
+
"learning_rate": 6.311173496004723e-05,
|
988 |
+
"loss": 0.395,
|
989 |
+
"step": 278
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.79073482428115,
|
993 |
+
"grad_norm": 0.05429714498773308,
|
994 |
+
"learning_rate": 6.259890306925627e-05,
|
995 |
+
"loss": 0.3821,
|
996 |
+
"step": 280
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.8035143769968052,
|
1000 |
+
"grad_norm": 0.057523653580626326,
|
1001 |
+
"learning_rate": 6.208465197396013e-05,
|
1002 |
+
"loss": 0.3984,
|
1003 |
+
"step": 282
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.81629392971246,
|
1007 |
+
"grad_norm": 0.05724842136937287,
|
1008 |
+
"learning_rate": 6.156903960201709e-05,
|
1009 |
+
"loss": 0.4181,
|
1010 |
+
"step": 284
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.829073482428115,
|
1014 |
+
"grad_norm": 0.052227309043480996,
|
1015 |
+
"learning_rate": 6.105212403462651e-05,
|
1016 |
+
"loss": 0.4049,
|
1017 |
+
"step": 286
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.84185303514377,
|
1021 |
+
"grad_norm": 0.04967908325326877,
|
1022 |
+
"learning_rate": 6.0533963499786314e-05,
|
1023 |
+
"loss": 0.4117,
|
1024 |
+
"step": 288
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.854632587859425,
|
1028 |
+
"grad_norm": 0.05539898234566285,
|
1029 |
+
"learning_rate": 6.001461636573397e-05,
|
1030 |
+
"loss": 0.4006,
|
1031 |
+
"step": 290
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.8674121405750799,
|
1035 |
+
"grad_norm": 0.05795414669880149,
|
1036 |
+
"learning_rate": 5.949414113437142e-05,
|
1037 |
+
"loss": 0.386,
|
1038 |
+
"step": 292
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.880191693290735,
|
1042 |
+
"grad_norm": 0.050446841270231885,
|
1043 |
+
"learning_rate": 5.897259643467527e-05,
|
1044 |
+
"loss": 0.3842,
|
1045 |
+
"step": 294
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.8929712460063897,
|
1049 |
+
"grad_norm": 0.052453051506198604,
|
1050 |
+
"learning_rate": 5.8450041016092464e-05,
|
1051 |
+
"loss": 0.3525,
|
1052 |
+
"step": 296
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.9057507987220448,
|
1056 |
+
"grad_norm": 0.052803823491155276,
|
1057 |
+
"learning_rate": 5.792653374192245e-05,
|
1058 |
+
"loss": 0.3963,
|
1059 |
+
"step": 298
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.9185303514376997,
|
1063 |
+
"grad_norm": 0.05180901601155745,
|
1064 |
+
"learning_rate": 5.7402133582686576e-05,
|
1065 |
+
"loss": 0.3798,
|
1066 |
+
"step": 300
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.9313099041533546,
|
1070 |
+
"grad_norm": 0.05166645429890597,
|
1071 |
+
"learning_rate": 5.6876899609485256e-05,
|
1072 |
+
"loss": 0.3838,
|
1073 |
+
"step": 302
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.9440894568690097,
|
1077 |
+
"grad_norm": 0.05306354741968808,
|
1078 |
+
"learning_rate": 5.6350890987343944e-05,
|
1079 |
+
"loss": 0.4165,
|
1080 |
+
"step": 304
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.9568690095846646,
|
1084 |
+
"grad_norm": 0.0860975722690725,
|
1085 |
+
"learning_rate": 5.582416696854853e-05,
|
1086 |
+
"loss": 0.3737,
|
1087 |
+
"step": 306
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.9696485623003195,
|
1091 |
+
"grad_norm": 0.05323286133666828,
|
1092 |
+
"learning_rate": 5.5296786885970805e-05,
|
1093 |
+
"loss": 0.3889,
|
1094 |
+
"step": 308
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.9824281150159746,
|
1098 |
+
"grad_norm": 0.05299665331057226,
|
1099 |
+
"learning_rate": 5.476881014638491e-05,
|
1100 |
+
"loss": 0.3896,
|
1101 |
+
"step": 310
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.9952076677316293,
|
1105 |
+
"grad_norm": 0.05157945275339266,
|
1106 |
+
"learning_rate": 5.4240296223775465e-05,
|
1107 |
+
"loss": 0.3637,
|
1108 |
+
"step": 312
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 2.009584664536741,
|
1112 |
+
"grad_norm": 0.09139947660133817,
|
1113 |
+
"learning_rate": 5.3711304652638126e-05,
|
1114 |
+
"loss": 0.3775,
|
1115 |
+
"step": 314
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 2.022364217252396,
|
1119 |
+
"grad_norm": 0.10130414532724454,
|
1120 |
+
"learning_rate": 5.318189502127332e-05,
|
1121 |
+
"loss": 0.2112,
|
1122 |
+
"step": 316
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 2.0351437699680512,
|
1126 |
+
"grad_norm": 0.0633333619180165,
|
1127 |
+
"learning_rate": 5.265212696507387e-05,
|
1128 |
+
"loss": 0.2004,
|
1129 |
+
"step": 318
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 2.047923322683706,
|
1133 |
+
"grad_norm": 0.0668276114954086,
|
1134 |
+
"learning_rate": 5.212206015980742e-05,
|
1135 |
+
"loss": 0.2019,
|
1136 |
+
"step": 320
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 2.060702875399361,
|
1140 |
+
"grad_norm": 0.05942503367303514,
|
1141 |
+
"learning_rate": 5.159175431489424e-05,
|
1142 |
+
"loss": 0.1978,
|
1143 |
+
"step": 322
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 2.073482428115016,
|
1147 |
+
"grad_norm": 0.07284145764738766,
|
1148 |
+
"learning_rate": 5.1061269166681183e-05,
|
1149 |
+
"loss": 0.1935,
|
1150 |
+
"step": 324
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 2.086261980830671,
|
1154 |
+
"grad_norm": 0.052260140697323494,
|
1155 |
+
"learning_rate": 5.053066447171282e-05,
|
1156 |
+
"loss": 0.1854,
|
1157 |
+
"step": 326
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 2.099041533546326,
|
1161 |
+
"grad_norm": 0.05754923159453662,
|
1162 |
+
"learning_rate": 5e-05,
|
1163 |
+
"loss": 0.1965,
|
1164 |
+
"step": 328
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 2.1118210862619806,
|
1168 |
+
"grad_norm": 0.05500397186780569,
|
1169 |
+
"learning_rate": 4.94693355282872e-05,
|
1170 |
+
"loss": 0.1827,
|
1171 |
+
"step": 330
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 2.1246006389776357,
|
1175 |
+
"grad_norm": 0.061606661346763424,
|
1176 |
+
"learning_rate": 4.893873083331882e-05,
|
1177 |
+
"loss": 0.2008,
|
1178 |
+
"step": 332
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 2.137380191693291,
|
1182 |
+
"grad_norm": 0.05678242709297541,
|
1183 |
+
"learning_rate": 4.840824568510579e-05,
|
1184 |
+
"loss": 0.1853,
|
1185 |
+
"step": 334
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 2.1501597444089455,
|
1189 |
+
"grad_norm": 0.054080318070508115,
|
1190 |
+
"learning_rate": 4.78779398401926e-05,
|
1191 |
+
"loss": 0.1952,
|
1192 |
+
"step": 336
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 2.1629392971246006,
|
1196 |
+
"grad_norm": 0.057204881343756786,
|
1197 |
+
"learning_rate": 4.734787303492615e-05,
|
1198 |
+
"loss": 0.1778,
|
1199 |
+
"step": 338
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 2.1757188498402558,
|
1203 |
+
"grad_norm": 0.6941487667655994,
|
1204 |
+
"learning_rate": 4.6818104978726685e-05,
|
1205 |
+
"loss": 0.219,
|
1206 |
+
"step": 340
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 2.1884984025559104,
|
1210 |
+
"grad_norm": 0.06999590590614403,
|
1211 |
+
"learning_rate": 4.628869534736187e-05,
|
1212 |
+
"loss": 0.181,
|
1213 |
+
"step": 342
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 2.2012779552715656,
|
1217 |
+
"grad_norm": 0.07558854262088241,
|
1218 |
+
"learning_rate": 4.575970377622456e-05,
|
1219 |
+
"loss": 0.2349,
|
1220 |
+
"step": 344
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 2.2140575079872207,
|
1224 |
+
"grad_norm": 0.07120027160683609,
|
1225 |
+
"learning_rate": 4.52311898536151e-05,
|
1226 |
+
"loss": 0.1993,
|
1227 |
+
"step": 346
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 2.2268370607028753,
|
1231 |
+
"grad_norm": 0.05697032990090494,
|
1232 |
+
"learning_rate": 4.47032131140292e-05,
|
1233 |
+
"loss": 0.1739,
|
1234 |
+
"step": 348
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 2.2396166134185305,
|
1238 |
+
"grad_norm": 0.06092977319118132,
|
1239 |
+
"learning_rate": 4.4175833031451473e-05,
|
1240 |
+
"loss": 0.188,
|
1241 |
+
"step": 350
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 2.252396166134185,
|
1245 |
+
"grad_norm": 0.05900721095602371,
|
1246 |
+
"learning_rate": 4.364910901265606e-05,
|
1247 |
+
"loss": 0.1778,
|
1248 |
+
"step": 352
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 2.2651757188498403,
|
1252 |
+
"grad_norm": 0.08992850669862418,
|
1253 |
+
"learning_rate": 4.3123100390514756e-05,
|
1254 |
+
"loss": 0.1838,
|
1255 |
+
"step": 354
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 2.2779552715654954,
|
1259 |
+
"grad_norm": 0.059213794143429914,
|
1260 |
+
"learning_rate": 4.2597866417313436e-05,
|
1261 |
+
"loss": 0.1902,
|
1262 |
+
"step": 356
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 2.29073482428115,
|
1266 |
+
"grad_norm": 0.051525349318871976,
|
1267 |
+
"learning_rate": 4.207346625807756e-05,
|
1268 |
+
"loss": 0.1784,
|
1269 |
+
"step": 358
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 2.303514376996805,
|
1273 |
+
"grad_norm": 0.055922862481655594,
|
1274 |
+
"learning_rate": 4.1549958983907555e-05,
|
1275 |
+
"loss": 0.1827,
|
1276 |
+
"step": 360
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 2.31629392971246,
|
1280 |
+
"grad_norm": 0.054189632126131766,
|
1281 |
+
"learning_rate": 4.102740356532473e-05,
|
1282 |
+
"loss": 0.186,
|
1283 |
+
"step": 362
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 2.329073482428115,
|
1287 |
+
"grad_norm": 0.06298745746452741,
|
1288 |
+
"learning_rate": 4.050585886562858e-05,
|
1289 |
+
"loss": 0.1854,
|
1290 |
+
"step": 364
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 2.34185303514377,
|
1294 |
+
"grad_norm": 0.06476475169367538,
|
1295 |
+
"learning_rate": 3.998538363426605e-05,
|
1296 |
+
"loss": 0.1794,
|
1297 |
+
"step": 366
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 2.3546325878594248,
|
1301 |
+
"grad_norm": 0.05187178001518817,
|
1302 |
+
"learning_rate": 3.94660365002137e-05,
|
1303 |
+
"loss": 0.1817,
|
1304 |
+
"step": 368
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 2.36741214057508,
|
1308 |
+
"grad_norm": 0.05110076217610542,
|
1309 |
+
"learning_rate": 3.894787596537352e-05,
|
1310 |
+
"loss": 0.1757,
|
1311 |
+
"step": 370
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 2.380191693290735,
|
1315 |
+
"grad_norm": 0.061027606854849537,
|
1316 |
+
"learning_rate": 3.843096039798293e-05,
|
1317 |
+
"loss": 0.1888,
|
1318 |
+
"step": 372
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 2.3929712460063897,
|
1322 |
+
"grad_norm": 0.05689282057128392,
|
1323 |
+
"learning_rate": 3.791534802603988e-05,
|
1324 |
+
"loss": 0.1972,
|
1325 |
+
"step": 374
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 2.405750798722045,
|
1329 |
+
"grad_norm": 0.05144327012401281,
|
1330 |
+
"learning_rate": 3.740109693074375e-05,
|
1331 |
+
"loss": 0.1975,
|
1332 |
+
"step": 376
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 2.4185303514377,
|
1336 |
+
"grad_norm": 0.07243681779987425,
|
1337 |
+
"learning_rate": 3.68882650399528e-05,
|
1338 |
+
"loss": 0.1865,
|
1339 |
+
"step": 378
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 2.4313099041533546,
|
1343 |
+
"grad_norm": 0.11601839655528177,
|
1344 |
+
"learning_rate": 3.637691012165886e-05,
|
1345 |
+
"loss": 0.1977,
|
1346 |
+
"step": 380
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 2.4440894568690097,
|
1350 |
+
"grad_norm": 0.05323975029748036,
|
1351 |
+
"learning_rate": 3.586708977748012e-05,
|
1352 |
+
"loss": 0.1873,
|
1353 |
+
"step": 382
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 2.4568690095846644,
|
1357 |
+
"grad_norm": 0.0499469664737551,
|
1358 |
+
"learning_rate": 3.5358861436172485e-05,
|
1359 |
+
"loss": 0.1832,
|
1360 |
+
"step": 384
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 2.4696485623003195,
|
1364 |
+
"grad_norm": 0.05043024991533826,
|
1365 |
+
"learning_rate": 3.485228234716058e-05,
|
1366 |
+
"loss": 0.1821,
|
1367 |
+
"step": 386
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 2.4824281150159746,
|
1371 |
+
"grad_norm": 0.054685112352780986,
|
1372 |
+
"learning_rate": 3.434740957408889e-05,
|
1373 |
+
"loss": 0.1816,
|
1374 |
+
"step": 388
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 2.4952076677316293,
|
1378 |
+
"grad_norm": 0.057237969167094144,
|
1379 |
+
"learning_rate": 3.3844299988393755e-05,
|
1380 |
+
"loss": 0.1909,
|
1381 |
+
"step": 390
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 2.5079872204472844,
|
1385 |
+
"grad_norm": 0.05134273506646416,
|
1386 |
+
"learning_rate": 3.334301026289712e-05,
|
1387 |
+
"loss": 0.1782,
|
1388 |
+
"step": 392
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 2.520766773162939,
|
1392 |
+
"grad_norm": 0.049993934417102925,
|
1393 |
+
"learning_rate": 3.284359686542269e-05,
|
1394 |
+
"loss": 0.1928,
|
1395 |
+
"step": 394
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 2.533546325878594,
|
1399 |
+
"grad_norm": 0.06457823051474779,
|
1400 |
+
"learning_rate": 3.234611605243496e-05,
|
1401 |
+
"loss": 0.196,
|
1402 |
+
"step": 396
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 2.5463258785942493,
|
1406 |
+
"grad_norm": 0.051805062617152425,
|
1407 |
+
"learning_rate": 3.1850623862702344e-05,
|
1408 |
+
"loss": 0.1881,
|
1409 |
+
"step": 398
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 2.559105431309904,
|
1413 |
+
"grad_norm": 0.049188541484928724,
|
1414 |
+
"learning_rate": 3.135717611098458e-05,
|
1415 |
+
"loss": 0.1806,
|
1416 |
+
"step": 400
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 2.571884984025559,
|
1420 |
+
"grad_norm": 0.05687592017078177,
|
1421 |
+
"learning_rate": 3.086582838174551e-05,
|
1422 |
+
"loss": 0.1784,
|
1423 |
+
"step": 402
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 2.584664536741214,
|
1427 |
+
"grad_norm": 0.05098573657706369,
|
1428 |
+
"learning_rate": 3.0376636022891812e-05,
|
1429 |
+
"loss": 0.1932,
|
1430 |
+
"step": 404
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 2.597444089456869,
|
1434 |
+
"grad_norm": 0.052376381772842893,
|
1435 |
+
"learning_rate": 2.9889654139538246e-05,
|
1436 |
+
"loss": 0.1889,
|
1437 |
+
"step": 406
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 2.610223642172524,
|
1441 |
+
"grad_norm": 0.05031660077056393,
|
1442 |
+
"learning_rate": 2.9404937587800375e-05,
|
1443 |
+
"loss": 0.1769,
|
1444 |
+
"step": 408
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 2.623003194888179,
|
1448 |
+
"grad_norm": 0.04930354808056054,
|
1449 |
+
"learning_rate": 2.8922540968615286e-05,
|
1450 |
+
"loss": 0.1685,
|
1451 |
+
"step": 410
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 2.635782747603834,
|
1455 |
+
"grad_norm": 0.06709139465230578,
|
1456 |
+
"learning_rate": 2.8442518621591086e-05,
|
1457 |
+
"loss": 0.1785,
|
1458 |
+
"step": 412
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 2.648562300319489,
|
1462 |
+
"grad_norm": 0.0503489735828908,
|
1463 |
+
"learning_rate": 2.7964924618885778e-05,
|
1464 |
+
"loss": 0.1689,
|
1465 |
+
"step": 414
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 2.661341853035144,
|
1469 |
+
"grad_norm": 0.05047783892143097,
|
1470 |
+
"learning_rate": 2.748981275911633e-05,
|
1471 |
+
"loss": 0.1808,
|
1472 |
+
"step": 416
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 2.6741214057507987,
|
1476 |
+
"grad_norm": 0.04955419672921838,
|
1477 |
+
"learning_rate": 2.701723656129851e-05,
|
1478 |
+
"loss": 0.1727,
|
1479 |
+
"step": 418
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 2.686900958466454,
|
1483 |
+
"grad_norm": 0.04769759775271665,
|
1484 |
+
"learning_rate": 2.6547249258818164e-05,
|
1485 |
+
"loss": 0.1708,
|
1486 |
+
"step": 420
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 2.6996805111821085,
|
1490 |
+
"grad_norm": 0.050324696099913684,
|
1491 |
+
"learning_rate": 2.607990379343489e-05,
|
1492 |
+
"loss": 0.1817,
|
1493 |
+
"step": 422
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 2.7124600638977636,
|
1497 |
+
"grad_norm": 0.05249496210993974,
|
1498 |
+
"learning_rate": 2.5615252809318284e-05,
|
1499 |
+
"loss": 0.1836,
|
1500 |
+
"step": 424
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 2.7252396166134183,
|
1504 |
+
"grad_norm": 0.0472378188955872,
|
1505 |
+
"learning_rate": 2.5153348647117857e-05,
|
1506 |
+
"loss": 0.1736,
|
1507 |
+
"step": 426
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 2.7380191693290734,
|
1511 |
+
"grad_norm": 0.049243154928981264,
|
1512 |
+
"learning_rate": 2.469424333806718e-05,
|
1513 |
+
"loss": 0.1675,
|
1514 |
+
"step": 428
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 2.7507987220447285,
|
1518 |
+
"grad_norm": 0.05096273109137321,
|
1519 |
+
"learning_rate": 2.4237988598122752e-05,
|
1520 |
+
"loss": 0.1658,
|
1521 |
+
"step": 430
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 2.763578274760383,
|
1525 |
+
"grad_norm": 0.0514806212844811,
|
1526 |
+
"learning_rate": 2.3784635822138424e-05,
|
1527 |
+
"loss": 0.1922,
|
1528 |
+
"step": 432
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 2.7763578274760383,
|
1532 |
+
"grad_norm": 0.05006269553229606,
|
1533 |
+
"learning_rate": 2.333423607807613e-05,
|
1534 |
+
"loss": 0.1887,
|
1535 |
+
"step": 434
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 2.7891373801916934,
|
1539 |
+
"grad_norm": 0.04935551516167026,
|
1540 |
+
"learning_rate": 2.288684010125325e-05,
|
1541 |
+
"loss": 0.1763,
|
1542 |
+
"step": 436
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 2.801916932907348,
|
1546 |
+
"grad_norm": 0.05353903496894845,
|
1547 |
+
"learning_rate": 2.2442498288627556e-05,
|
1548 |
+
"loss": 0.1944,
|
1549 |
+
"step": 438
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 2.8146964856230032,
|
1553 |
+
"grad_norm": 0.04697149845887787,
|
1554 |
+
"learning_rate": 2.2001260693120233e-05,
|
1555 |
+
"loss": 0.1672,
|
1556 |
+
"step": 440
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 2.8274760383386583,
|
1560 |
+
"grad_norm": 0.054384654770629585,
|
1561 |
+
"learning_rate": 2.156317701797766e-05,
|
1562 |
+
"loss": 0.1807,
|
1563 |
+
"step": 442
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 2.840255591054313,
|
1567 |
+
"grad_norm": 0.04684823569442938,
|
1568 |
+
"learning_rate": 2.1128296611172593e-05,
|
1569 |
+
"loss": 0.171,
|
1570 |
+
"step": 444
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 2.853035143769968,
|
1574 |
+
"grad_norm": 0.0498371244165766,
|
1575 |
+
"learning_rate": 2.0696668459845355e-05,
|
1576 |
+
"loss": 0.1827,
|
1577 |
+
"step": 446
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 2.8658146964856233,
|
1581 |
+
"grad_norm": 0.04969475724913098,
|
1582 |
+
"learning_rate": 2.026834118478567e-05,
|
1583 |
+
"loss": 0.1749,
|
1584 |
+
"step": 448
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 2.878594249201278,
|
1588 |
+
"grad_norm": 0.051902756416916496,
|
1589 |
+
"learning_rate": 1.98433630349558e-05,
|
1590 |
+
"loss": 0.1891,
|
1591 |
+
"step": 450
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 2.891373801916933,
|
1595 |
+
"grad_norm": 0.05102564026340021,
|
1596 |
+
"learning_rate": 1.9421781882055444e-05,
|
1597 |
+
"loss": 0.1849,
|
1598 |
+
"step": 452
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 2.9041533546325877,
|
1602 |
+
"grad_norm": 0.05200929870376942,
|
1603 |
+
"learning_rate": 1.9003645215129355e-05,
|
1604 |
+
"loss": 0.1891,
|
1605 |
+
"step": 454
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 2.916932907348243,
|
1609 |
+
"grad_norm": 0.05083154953396676,
|
1610 |
+
"learning_rate": 1.858900013521788e-05,
|
1611 |
+
"loss": 0.179,
|
1612 |
+
"step": 456
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 2.9297124600638975,
|
1616 |
+
"grad_norm": 0.049127219472404525,
|
1617 |
+
"learning_rate": 1.817789335005121e-05,
|
1618 |
+
"loss": 0.17,
|
1619 |
+
"step": 458
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 2.9424920127795526,
|
1623 |
+
"grad_norm": 0.049677004679461886,
|
1624 |
+
"learning_rate": 1.777037116878804e-05,
|
1625 |
+
"loss": 0.1831,
|
1626 |
+
"step": 460
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 2.9552715654952078,
|
1630 |
+
"grad_norm": 0.054496479788018075,
|
1631 |
+
"learning_rate": 1.7366479496799077e-05,
|
1632 |
+
"loss": 0.1843,
|
1633 |
+
"step": 462
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 2.9680511182108624,
|
1637 |
+
"grad_norm": 0.04820092295738451,
|
1638 |
+
"learning_rate": 1.6966263830495936e-05,
|
1639 |
+
"loss": 0.1685,
|
1640 |
+
"step": 464
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 2.9808306709265175,
|
1644 |
+
"grad_norm": 0.04915420841884947,
|
1645 |
+
"learning_rate": 1.656976925220633e-05,
|
1646 |
+
"loss": 0.1875,
|
1647 |
+
"step": 466
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 2.9936102236421727,
|
1651 |
+
"grad_norm": 0.07661474807504913,
|
1652 |
+
"learning_rate": 1.6177040425095662e-05,
|
1653 |
+
"loss": 0.1891,
|
1654 |
+
"step": 468
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 3.0079872204472844,
|
1658 |
+
"grad_norm": 0.07655695803476695,
|
1659 |
+
"learning_rate": 1.5788121588135975e-05,
|
1660 |
+
"loss": 0.1837,
|
1661 |
+
"step": 470
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 3.0207667731629395,
|
1665 |
+
"grad_norm": 0.060916330302725,
|
1666 |
+
"learning_rate": 1.5403056551122697e-05,
|
1667 |
+
"loss": 0.0872,
|
1668 |
+
"step": 472
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 3.033546325878594,
|
1672 |
+
"grad_norm": 0.052542395235648506,
|
1673 |
+
"learning_rate": 1.5021888689739549e-05,
|
1674 |
+
"loss": 0.0778,
|
1675 |
+
"step": 474
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 3.0463258785942493,
|
1679 |
+
"grad_norm": 0.20368087770560855,
|
1680 |
+
"learning_rate": 1.4644660940672627e-05,
|
1681 |
+
"loss": 0.102,
|
1682 |
+
"step": 476
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 3.059105431309904,
|
1686 |
+
"grad_norm": 0.10396707161226072,
|
1687 |
+
"learning_rate": 1.427141579677374e-05,
|
1688 |
+
"loss": 0.083,
|
1689 |
+
"step": 478
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 3.071884984025559,
|
1693 |
+
"grad_norm": 0.04599720220665865,
|
1694 |
+
"learning_rate": 1.3902195302273779e-05,
|
1695 |
+
"loss": 0.0757,
|
1696 |
+
"step": 480
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 3.084664536741214,
|
1700 |
+
"grad_norm": 0.056109340867354925,
|
1701 |
+
"learning_rate": 1.3537041048046695e-05,
|
1702 |
+
"loss": 0.081,
|
1703 |
+
"step": 482
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 3.097444089456869,
|
1707 |
+
"grad_norm": 0.048015102375770044,
|
1708 |
+
"learning_rate": 1.3175994166924394e-05,
|
1709 |
+
"loss": 0.0802,
|
1710 |
+
"step": 484
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 3.110223642172524,
|
1714 |
+
"grad_norm": 0.04645228076024571,
|
1715 |
+
"learning_rate": 1.2819095329063469e-05,
|
1716 |
+
"loss": 0.0787,
|
1717 |
+
"step": 486
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 3.123003194888179,
|
1721 |
+
"grad_norm": 0.04637085498651796,
|
1722 |
+
"learning_rate": 1.246638473736378e-05,
|
1723 |
+
"loss": 0.0839,
|
1724 |
+
"step": 488
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 3.135782747603834,
|
1728 |
+
"grad_norm": 0.05039074009256794,
|
1729 |
+
"learning_rate": 1.2117902122939861e-05,
|
1730 |
+
"loss": 0.0812,
|
1731 |
+
"step": 490
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 3.148562300319489,
|
1735 |
+
"grad_norm": 0.05079569512274489,
|
1736 |
+
"learning_rate": 1.1773686740645384e-05,
|
1737 |
+
"loss": 0.0797,
|
1738 |
+
"step": 492
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 3.1613418530351436,
|
1742 |
+
"grad_norm": 0.04286375870307716,
|
1743 |
+
"learning_rate": 1.1433777364651271e-05,
|
1744 |
+
"loss": 0.0737,
|
1745 |
+
"step": 494
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 3.1741214057507987,
|
1749 |
+
"grad_norm": 0.03982951021947898,
|
1750 |
+
"learning_rate": 1.1098212284078036e-05,
|
1751 |
+
"loss": 0.0722,
|
1752 |
+
"step": 496
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 3.186900958466454,
|
1756 |
+
"grad_norm": 0.0446624849328897,
|
1757 |
+
"learning_rate": 1.076702929868264e-05,
|
1758 |
+
"loss": 0.079,
|
1759 |
+
"step": 498
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 3.1996805111821085,
|
1763 |
+
"grad_norm": 0.04376807908723891,
|
1764 |
+
"learning_rate": 1.0440265714600572e-05,
|
1765 |
+
"loss": 0.0837,
|
1766 |
+
"step": 500
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 3.2124600638977636,
|
1770 |
+
"grad_norm": 0.04087367539850916,
|
1771 |
+
"learning_rate": 1.0117958340143507e-05,
|
1772 |
+
"loss": 0.076,
|
1773 |
+
"step": 502
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 3.2252396166134187,
|
1777 |
+
"grad_norm": 0.04066584417219993,
|
1778 |
+
"learning_rate": 9.800143481652979e-06,
|
1779 |
+
"loss": 0.0701,
|
1780 |
+
"step": 504
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 3.2380191693290734,
|
1784 |
+
"grad_norm": 0.08215263649470263,
|
1785 |
+
"learning_rate": 9.48685693941067e-06,
|
1786 |
+
"loss": 0.0776,
|
1787 |
+
"step": 506
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 3.2507987220447285,
|
1791 |
+
"grad_norm": 0.0437601284673361,
|
1792 |
+
"learning_rate": 9.17813400360572e-06,
|
1793 |
+
"loss": 0.0764,
|
1794 |
+
"step": 508
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 3.263578274760383,
|
1798 |
+
"grad_norm": 0.04382435518426366,
|
1799 |
+
"learning_rate": 8.874009450359427e-06,
|
1800 |
+
"loss": 0.0826,
|
1801 |
+
"step": 510
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 3.2763578274760383,
|
1805 |
+
"grad_norm": 0.04095610913441161,
|
1806 |
+
"learning_rate": 8.574517537807897e-06,
|
1807 |
+
"loss": 0.0753,
|
1808 |
+
"step": 512
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 3.2891373801916934,
|
1812 |
+
"grad_norm": 0.040525949300480126,
|
1813 |
+
"learning_rate": 8.279692002243027e-06,
|
1814 |
+
"loss": 0.0764,
|
1815 |
+
"step": 514
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 3.301916932907348,
|
1819 |
+
"grad_norm": 0.043675586209021296,
|
1820 |
+
"learning_rate": 7.989566054312287e-06,
|
1821 |
+
"loss": 0.0817,
|
1822 |
+
"step": 516
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 3.3146964856230032,
|
1826 |
+
"grad_norm": 0.04319420448553361,
|
1827 |
+
"learning_rate": 7.704172375277691e-06,
|
1828 |
+
"loss": 0.0759,
|
1829 |
+
"step": 518
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 3.3274760383386583,
|
1833 |
+
"grad_norm": 0.044446852802239034,
|
1834 |
+
"learning_rate": 7.423543113334436e-06,
|
1835 |
+
"loss": 0.0813,
|
1836 |
+
"step": 520
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 3.340255591054313,
|
1840 |
+
"grad_norm": 0.09121973616663154,
|
1841 |
+
"learning_rate": 7.14770987998954e-06,
|
1842 |
+
"loss": 0.0838,
|
1843 |
+
"step": 522
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 3.353035143769968,
|
1847 |
+
"grad_norm": 0.05879997473879583,
|
1848 |
+
"learning_rate": 6.876703746500984e-06,
|
1849 |
+
"loss": 0.0738,
|
1850 |
+
"step": 524
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 3.365814696485623,
|
1854 |
+
"grad_norm": 0.04667273388126841,
|
1855 |
+
"learning_rate": 6.610555240377652e-06,
|
1856 |
+
"loss": 0.0787,
|
1857 |
+
"step": 526
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 3.378594249201278,
|
1861 |
+
"grad_norm": 0.042105033545020404,
|
1862 |
+
"learning_rate": 6.349294341940593e-06,
|
1863 |
+
"loss": 0.0801,
|
1864 |
+
"step": 528
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 3.391373801916933,
|
1868 |
+
"grad_norm": 0.0407975465413022,
|
1869 |
+
"learning_rate": 6.092950480945897e-06,
|
1870 |
+
"loss": 0.0735,
|
1871 |
+
"step": 530
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 3.4041533546325877,
|
1875 |
+
"grad_norm": 0.04234912863253251,
|
1876 |
+
"learning_rate": 5.841552533269534e-06,
|
1877 |
+
"loss": 0.0772,
|
1878 |
+
"step": 532
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 3.416932907348243,
|
1882 |
+
"grad_norm": 0.04032120711392374,
|
1883 |
+
"learning_rate": 5.595128817654638e-06,
|
1884 |
+
"loss": 0.0749,
|
1885 |
+
"step": 534
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 3.4297124600638975,
|
1889 |
+
"grad_norm": 0.041050930036482094,
|
1890 |
+
"learning_rate": 5.353707092521582e-06,
|
1891 |
+
"loss": 0.0769,
|
1892 |
+
"step": 536
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 3.4424920127795526,
|
1896 |
+
"grad_norm": 0.043382176933190755,
|
1897 |
+
"learning_rate": 5.117314552841052e-06,
|
1898 |
+
"loss": 0.0767,
|
1899 |
+
"step": 538
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 3.4552715654952078,
|
1903 |
+
"grad_norm": 0.039240502138117625,
|
1904 |
+
"learning_rate": 4.885977827070748e-06,
|
1905 |
+
"loss": 0.0721,
|
1906 |
+
"step": 540
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 3.4680511182108624,
|
1910 |
+
"grad_norm": 0.040812347040587296,
|
1911 |
+
"learning_rate": 4.659722974155767e-06,
|
1912 |
+
"loss": 0.1114,
|
1913 |
+
"step": 542
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 3.4808306709265175,
|
1917 |
+
"grad_norm": 0.0423787622918925,
|
1918 |
+
"learning_rate": 4.43857548059321e-06,
|
1919 |
+
"loss": 0.0778,
|
1920 |
+
"step": 544
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 3.4936102236421727,
|
1924 |
+
"grad_norm": 0.042228923687598445,
|
1925 |
+
"learning_rate": 4.2225602575612755e-06,
|
1926 |
+
"loss": 0.0814,
|
1927 |
+
"step": 546
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 3.5063897763578273,
|
1931 |
+
"grad_norm": 0.0407267289339222,
|
1932 |
+
"learning_rate": 4.011701638113063e-06,
|
1933 |
+
"loss": 0.0782,
|
1934 |
+
"step": 548
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 3.5191693290734825,
|
1938 |
+
"grad_norm": 0.0389855165359938,
|
1939 |
+
"learning_rate": 3.8060233744356633e-06,
|
1940 |
+
"loss": 0.0789,
|
1941 |
+
"step": 550
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 3.5319488817891376,
|
1945 |
+
"grad_norm": 0.040904703617676376,
|
1946 |
+
"learning_rate": 3.605548635174533e-06,
|
1947 |
+
"loss": 0.078,
|
1948 |
+
"step": 552
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 3.5447284345047922,
|
1952 |
+
"grad_norm": 0.04093280012624571,
|
1953 |
+
"learning_rate": 3.410300002823691e-06,
|
1954 |
+
"loss": 0.0777,
|
1955 |
+
"step": 554
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 3.5575079872204474,
|
1959 |
+
"grad_norm": 0.042904856841507744,
|
1960 |
+
"learning_rate": 3.220299471181898e-06,
|
1961 |
+
"loss": 0.0757,
|
1962 |
+
"step": 556
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 3.5702875399361025,
|
1966 |
+
"grad_norm": 0.0436449067886704,
|
1967 |
+
"learning_rate": 3.035568442875136e-06,
|
1968 |
+
"loss": 0.0798,
|
1969 |
+
"step": 558
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 3.583067092651757,
|
1973 |
+
"grad_norm": 0.035664776931118955,
|
1974 |
+
"learning_rate": 2.85612772694579e-06,
|
1975 |
+
"loss": 0.0632,
|
1976 |
+
"step": 560
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 3.5958466453674123,
|
1980 |
+
"grad_norm": 0.03847526723825484,
|
1981 |
+
"learning_rate": 2.6819975365085237e-06,
|
1982 |
+
"loss": 0.0744,
|
1983 |
+
"step": 562
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 3.608626198083067,
|
1987 |
+
"grad_norm": 0.039939236612970476,
|
1988 |
+
"learning_rate": 2.5131974864734066e-06,
|
1989 |
+
"loss": 0.0794,
|
1990 |
+
"step": 564
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 3.621405750798722,
|
1994 |
+
"grad_norm": 0.040388305870748,
|
1995 |
+
"learning_rate": 2.349746591336405e-06,
|
1996 |
+
"loss": 0.0718,
|
1997 |
+
"step": 566
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 3.6341853035143767,
|
2001 |
+
"grad_norm": 0.04232813426430434,
|
2002 |
+
"learning_rate": 2.191663263037458e-06,
|
2003 |
+
"loss": 0.0769,
|
2004 |
+
"step": 568
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 3.646964856230032,
|
2008 |
+
"grad_norm": 0.04213845492527589,
|
2009 |
+
"learning_rate": 2.0389653088865036e-06,
|
2010 |
+
"loss": 0.0728,
|
2011 |
+
"step": 570
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 3.659744408945687,
|
2015 |
+
"grad_norm": 0.04098999517730541,
|
2016 |
+
"learning_rate": 1.8916699295575324e-06,
|
2017 |
+
"loss": 0.0724,
|
2018 |
+
"step": 572
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 3.6725239616613417,
|
2022 |
+
"grad_norm": 0.037533240934183365,
|
2023 |
+
"learning_rate": 1.7497937171510547e-06,
|
2024 |
+
"loss": 0.0709,
|
2025 |
+
"step": 574
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 3.6853035143769968,
|
2029 |
+
"grad_norm": 0.039040304607963414,
|
2030 |
+
"learning_rate": 1.6133526533250565e-06,
|
2031 |
+
"loss": 0.0756,
|
2032 |
+
"step": 576
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 3.698083067092652,
|
2036 |
+
"grad_norm": 0.04065729024121047,
|
2037 |
+
"learning_rate": 1.4823621074947503e-06,
|
2038 |
+
"loss": 0.0774,
|
2039 |
+
"step": 578
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 3.7108626198083066,
|
2043 |
+
"grad_norm": 0.04252602887603373,
|
2044 |
+
"learning_rate": 1.3568368351012717e-06,
|
2045 |
+
"loss": 0.0824,
|
2046 |
+
"step": 580
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 3.7236421725239617,
|
2050 |
+
"grad_norm": 0.04343672134882273,
|
2051 |
+
"learning_rate": 1.236790975949592e-06,
|
2052 |
+
"loss": 0.074,
|
2053 |
+
"step": 582
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 3.736421725239617,
|
2057 |
+
"grad_norm": 0.0403766223584342,
|
2058 |
+
"learning_rate": 1.1222380526156928e-06,
|
2059 |
+
"loss": 0.0755,
|
2060 |
+
"step": 584
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 3.7492012779552715,
|
2064 |
+
"grad_norm": 0.04234625541762105,
|
2065 |
+
"learning_rate": 1.0131909689233442e-06,
|
2066 |
+
"loss": 0.0814,
|
2067 |
+
"step": 586
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 3.7619808306709266,
|
2071 |
+
"grad_norm": 0.03861507912847567,
|
2072 |
+
"learning_rate": 9.096620084905472e-07,
|
2073 |
+
"loss": 0.0664,
|
2074 |
+
"step": 588
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 3.7747603833865817,
|
2078 |
+
"grad_norm": 0.041892733843973705,
|
2079 |
+
"learning_rate": 8.11662833345822e-07,
|
2080 |
+
"loss": 0.0832,
|
2081 |
+
"step": 590
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 3.7875399361022364,
|
2085 |
+
"grad_norm": 0.05413889236863839,
|
2086 |
+
"learning_rate": 7.192044826145771e-07,
|
2087 |
+
"loss": 0.0921,
|
2088 |
+
"step": 592
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 3.8003194888178915,
|
2092 |
+
"grad_norm": 0.04010280150213322,
|
2093 |
+
"learning_rate": 6.322973712755697e-07,
|
2094 |
+
"loss": 0.0752,
|
2095 |
+
"step": 594
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 3.813099041533546,
|
2099 |
+
"grad_norm": 0.04321423418162425,
|
2100 |
+
"learning_rate": 5.509512889877333e-07,
|
2101 |
+
"loss": 0.0781,
|
2102 |
+
"step": 596
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 3.8258785942492013,
|
2106 |
+
"grad_norm": 0.04049679761598481,
|
2107 |
+
"learning_rate": 4.7517539898741524e-07,
|
2108 |
+
"loss": 0.0694,
|
2109 |
+
"step": 598
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 3.838658146964856,
|
2113 |
+
"grad_norm": 0.04258434666712487,
|
2114 |
+
"learning_rate": 4.049782370561583e-07,
|
2115 |
+
"loss": 0.0756,
|
2116 |
+
"step": 600
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 3.851437699680511,
|
2120 |
+
"grad_norm": 0.03927978960342531,
|
2121 |
+
"learning_rate": 3.4036771055923066e-07,
|
2122 |
+
"loss": 0.075,
|
2123 |
+
"step": 602
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 3.864217252396166,
|
2127 |
+
"grad_norm": 0.04093422273122725,
|
2128 |
+
"learning_rate": 2.813510975548772e-07,
|
2129 |
+
"loss": 0.0793,
|
2130 |
+
"step": 604
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 3.876996805111821,
|
2134 |
+
"grad_norm": 0.0433141394014271,
|
2135 |
+
"learning_rate": 2.2793504597447002e-07,
|
2136 |
+
"loss": 0.0796,
|
2137 |
+
"step": 606
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 3.889776357827476,
|
2141 |
+
"grad_norm": 0.04198937065288365,
|
2142 |
+
"learning_rate": 1.8012557287367392e-07,
|
2143 |
+
"loss": 0.0753,
|
2144 |
+
"step": 608
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 3.902555910543131,
|
2148 |
+
"grad_norm": 0.043002763720086865,
|
2149 |
+
"learning_rate": 1.379280637546443e-07,
|
2150 |
+
"loss": 0.0917,
|
2151 |
+
"step": 610
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 3.915335463258786,
|
2155 |
+
"grad_norm": 0.042376326172823574,
|
2156 |
+
"learning_rate": 1.0134727195937333e-07,
|
2157 |
+
"loss": 0.0747,
|
2158 |
+
"step": 612
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 3.928115015974441,
|
2162 |
+
"grad_norm": 0.040600294489722695,
|
2163 |
+
"learning_rate": 7.038731813426291e-08,
|
2164 |
+
"loss": 0.0714,
|
2165 |
+
"step": 614
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 3.940894568690096,
|
2169 |
+
"grad_norm": 0.0395711578920217,
|
2170 |
+
"learning_rate": 4.5051689765929214e-08,
|
2171 |
+
"loss": 0.0801,
|
2172 |
+
"step": 616
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 3.9536741214057507,
|
2176 |
+
"grad_norm": 0.03943811103107873,
|
2177 |
+
"learning_rate": 2.534324078837802e-08,
|
2178 |
+
"loss": 0.074,
|
2179 |
+
"step": 618
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 3.966453674121406,
|
2183 |
+
"grad_norm": 0.041905340316324986,
|
2184 |
+
"learning_rate": 1.1264191261528557e-08,
|
2185 |
+
"loss": 0.0771,
|
2186 |
+
"step": 620
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 3.979233226837061,
|
2190 |
+
"grad_norm": 0.06686218682304546,
|
2191 |
+
"learning_rate": 2.8161271211024633e-09,
|
2192 |
+
"loss": 0.0811,
|
2193 |
+
"step": 622
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 3.9920127795527156,
|
2197 |
+
"grad_norm": 0.03876030687059135,
|
2198 |
+
"learning_rate": 0.0,
|
2199 |
+
"loss": 0.076,
|
2200 |
+
"step": 624
|
2201 |
+
}
|
2202 |
+
],
|
2203 |
+
"logging_steps": 2,
|
2204 |
+
"max_steps": 624,
|
2205 |
+
"num_input_tokens_seen": 0,
|
2206 |
+
"num_train_epochs": 4,
|
2207 |
+
"save_steps": 500,
|
2208 |
+
"stateful_callbacks": {
|
2209 |
+
"TrainerControl": {
|
2210 |
+
"args": {
|
2211 |
+
"should_epoch_stop": false,
|
2212 |
+
"should_evaluate": false,
|
2213 |
+
"should_log": false,
|
2214 |
+
"should_save": true,
|
2215 |
+
"should_training_stop": true
|
2216 |
+
},
|
2217 |
+
"attributes": {}
|
2218 |
+
}
|
2219 |
+
},
|
2220 |
+
"total_flos": 2.5262683933881926e+19,
|
2221 |
+
"train_batch_size": 2,
|
2222 |
+
"trial_name": null,
|
2223 |
+
"trial_params": null
|
2224 |
+
}
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbc6c15cc6de09ed10b88b2483f84e85b7b1119b7dd63c1e2d29d8ad02f02dab
|
3 |
+
size 7352
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|