tktung commited on
Commit
4326884
·
verified ·
1 Parent(s): 3c4381f

Upload folder using huggingface_hub

Browse files
Files changed (26) hide show
  1. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/config.json +30 -0
  2. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/generation_config.json +10 -0
  3. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/latest +1 -0
  4. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00001-of-00006.safetensors +3 -0
  5. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00002-of-00006.safetensors +3 -0
  6. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00003-of-00006.safetensors +3 -0
  7. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00004-of-00006.safetensors +3 -0
  8. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00005-of-00006.safetensors +3 -0
  9. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00006-of-00006.safetensors +3 -0
  10. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model.safetensors.index.json +370 -0
  11. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_0.pth +3 -0
  12. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_1.pth +3 -0
  13. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_2.pth +3 -0
  14. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_3.pth +3 -0
  15. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_4.pth +3 -0
  16. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_5.pth +3 -0
  17. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_6.pth +3 -0
  18. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_7.pth +3 -0
  19. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/scheduler.pt +3 -0
  20. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/special_tokens_map.json +24 -0
  21. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer.json +0 -0
  22. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer.model +3 -0
  23. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer_config.json +43 -0
  24. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/trainer_state.json +2224 -0
  25. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/training_args.bin +3 -0
  26. uccix_v2_instruct_191224_lr1e-4/checkpoint-624/zero_to_fp32.py +592 -0
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/data/tungtran/output_model/irish_llama2_data_v3/checkpoint-2200",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 13824,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_key_value_heads": 40,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.46.3",
28
+ "use_cache": true,
29
+ "vocab_size": 35483
30
+ }
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.46.3"
10
+ }
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step624
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b82608b73af1630f7ec9af236bbbfe1947b0be2c00fbc0954923f672569ce0a
3
+ size 4961502800
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8a71801cee916a77a0c67ee2372e687e7110fe7340ba71b084e8978d353db54
3
+ size 4970422232
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6aaa9c6184e45f53efb72aaaa8112127b9772c7af87f98a7e1cd6d9c4ea3c08
3
+ size 4881272584
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35dfda0dd3e0ae4c7d66d066bd68333dee7b04445da805c5d32ea958c7ee87cb
3
+ size 4933722216
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:025d430bc53976d95aacaa1616ee456009fd541885bd7830cf9051ae8876e4bf
3
+ size 4933722208
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d11f72a32e119049321b1d8d9ab06c8de75936fdb0d16f1983d792d416ff592
3
+ size 1422460712
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26103060480
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
368
+ "model.norm.weight": "model-00006-of-00006.safetensors"
369
+ }
370
+ }
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:994d0a15e56df433a908d139d0b7caea59dbf6eb9e109191d3df763b430de5e7
3
+ size 15984
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:480b1090b0e942f0994b95fcb4e2d0fd8effca2892f351ff441a70d9143b06a1
3
+ size 15984
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f47f7d835b04b9510790640491f19ac37f3c0ee7f9720eea68e19f9a59f001be
3
+ size 15984
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:179ed45c9b836e74595a5ee6959682569c15e17748ff046457798aba5998c99b
3
+ size 15984
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc9918d8e550835f34df7f403c41b632703a623c1cce2bc21b2e28df805b1646
3
+ size 15984
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e604fb5f644f8e388e5522212cf891a6f957b1a30b9e4a282a72c84bf68b615f
3
+ size 15984
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5df3cd0dacde7148beb677c7d6a1bfc9b7a20b4c8e6818da432855cfe7ef80ac
3
+ size 15984
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00a4d1cc819f2b1045d34a95b3504b61b35cfdcc4ee5cba30b1708f4e3cfc599
3
+ size 15984
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b1e57508d3ad0384901652c36aeb55b1e17a89f8371cd3bd79dd388951df1b8
3
+ size 1064
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d1f5d0342153f3e3bbb37b2026ba64d0b25583df351345f87cd8b9a5658c2fb
3
+ size 558602
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.' %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/trainer_state.json ADDED
@@ -0,0 +1,2224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.9920127795527156,
5
+ "eval_steps": 500,
6
+ "global_step": 624,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006389776357827476,
13
+ "grad_norm": 2.055291493195234,
14
+ "learning_rate": 3.125e-06,
15
+ "loss": 1.695,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.012779552715654952,
20
+ "grad_norm": 2.0685233500522586,
21
+ "learning_rate": 6.25e-06,
22
+ "loss": 1.6748,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.025559105431309903,
27
+ "grad_norm": 2.325735299422439,
28
+ "learning_rate": 1.25e-05,
29
+ "loss": 1.6964,
30
+ "step": 4
31
+ },
32
+ {
33
+ "epoch": 0.038338658146964855,
34
+ "grad_norm": 0.4729866673863026,
35
+ "learning_rate": 1.8750000000000002e-05,
36
+ "loss": 1.4325,
37
+ "step": 6
38
+ },
39
+ {
40
+ "epoch": 0.051118210862619806,
41
+ "grad_norm": 0.482620239981458,
42
+ "learning_rate": 2.5e-05,
43
+ "loss": 1.3874,
44
+ "step": 8
45
+ },
46
+ {
47
+ "epoch": 0.06389776357827476,
48
+ "grad_norm": 1.6728433474079003,
49
+ "learning_rate": 3.125e-05,
50
+ "loss": 1.4689,
51
+ "step": 10
52
+ },
53
+ {
54
+ "epoch": 0.07667731629392971,
55
+ "grad_norm": 0.3405987431283081,
56
+ "learning_rate": 3.7500000000000003e-05,
57
+ "loss": 1.3127,
58
+ "step": 12
59
+ },
60
+ {
61
+ "epoch": 0.08945686900958466,
62
+ "grad_norm": 0.2323496464888272,
63
+ "learning_rate": 4.375e-05,
64
+ "loss": 1.2639,
65
+ "step": 14
66
+ },
67
+ {
68
+ "epoch": 0.10223642172523961,
69
+ "grad_norm": 0.18809974511784008,
70
+ "learning_rate": 5e-05,
71
+ "loss": 1.2401,
72
+ "step": 16
73
+ },
74
+ {
75
+ "epoch": 0.11501597444089456,
76
+ "grad_norm": 0.18997340619225084,
77
+ "learning_rate": 5.6250000000000005e-05,
78
+ "loss": 1.2084,
79
+ "step": 18
80
+ },
81
+ {
82
+ "epoch": 0.12779552715654952,
83
+ "grad_norm": 0.15504216343509883,
84
+ "learning_rate": 6.25e-05,
85
+ "loss": 1.1855,
86
+ "step": 20
87
+ },
88
+ {
89
+ "epoch": 0.14057507987220447,
90
+ "grad_norm": 0.12848416587626313,
91
+ "learning_rate": 6.875e-05,
92
+ "loss": 1.146,
93
+ "step": 22
94
+ },
95
+ {
96
+ "epoch": 0.15335463258785942,
97
+ "grad_norm": 0.09889252813730416,
98
+ "learning_rate": 7.500000000000001e-05,
99
+ "loss": 1.1357,
100
+ "step": 24
101
+ },
102
+ {
103
+ "epoch": 0.16613418530351437,
104
+ "grad_norm": 0.09024188902019939,
105
+ "learning_rate": 8.125000000000001e-05,
106
+ "loss": 1.1096,
107
+ "step": 26
108
+ },
109
+ {
110
+ "epoch": 0.17891373801916932,
111
+ "grad_norm": 0.08133676595279006,
112
+ "learning_rate": 8.75e-05,
113
+ "loss": 1.0913,
114
+ "step": 28
115
+ },
116
+ {
117
+ "epoch": 0.19169329073482427,
118
+ "grad_norm": 0.0978463769637292,
119
+ "learning_rate": 9.375e-05,
120
+ "loss": 1.0679,
121
+ "step": 30
122
+ },
123
+ {
124
+ "epoch": 0.20447284345047922,
125
+ "grad_norm": 0.07943889170723487,
126
+ "learning_rate": 0.0001,
127
+ "loss": 1.075,
128
+ "step": 32
129
+ },
130
+ {
131
+ "epoch": 0.21725239616613418,
132
+ "grad_norm": 0.08240884428512509,
133
+ "learning_rate": 9.99971838728789e-05,
134
+ "loss": 1.075,
135
+ "step": 34
136
+ },
137
+ {
138
+ "epoch": 0.23003194888178913,
139
+ "grad_norm": 0.08253986997481327,
140
+ "learning_rate": 9.998873580873848e-05,
141
+ "loss": 1.0652,
142
+ "step": 36
143
+ },
144
+ {
145
+ "epoch": 0.24281150159744408,
146
+ "grad_norm": 0.07954648039103362,
147
+ "learning_rate": 9.997465675921163e-05,
148
+ "loss": 1.0519,
149
+ "step": 38
150
+ },
151
+ {
152
+ "epoch": 0.25559105431309903,
153
+ "grad_norm": 0.0776223200815433,
154
+ "learning_rate": 9.995494831023409e-05,
155
+ "loss": 1.0094,
156
+ "step": 40
157
+ },
158
+ {
159
+ "epoch": 0.268370607028754,
160
+ "grad_norm": 0.08000844411167178,
161
+ "learning_rate": 9.992961268186573e-05,
162
+ "loss": 1.0074,
163
+ "step": 42
164
+ },
165
+ {
166
+ "epoch": 0.28115015974440893,
167
+ "grad_norm": 0.0689657212250583,
168
+ "learning_rate": 9.989865272804063e-05,
169
+ "loss": 1.0087,
170
+ "step": 44
171
+ },
172
+ {
173
+ "epoch": 0.2939297124600639,
174
+ "grad_norm": 0.0722150479128947,
175
+ "learning_rate": 9.986207193624536e-05,
176
+ "loss": 1.0067,
177
+ "step": 46
178
+ },
179
+ {
180
+ "epoch": 0.30670926517571884,
181
+ "grad_norm": 0.06646168454668608,
182
+ "learning_rate": 9.981987442712633e-05,
183
+ "loss": 0.9837,
184
+ "step": 48
185
+ },
186
+ {
187
+ "epoch": 0.3194888178913738,
188
+ "grad_norm": 0.06815852582234988,
189
+ "learning_rate": 9.977206495402554e-05,
190
+ "loss": 1.0024,
191
+ "step": 50
192
+ },
193
+ {
194
+ "epoch": 0.33226837060702874,
195
+ "grad_norm": 0.07469571057420442,
196
+ "learning_rate": 9.971864890244513e-05,
197
+ "loss": 0.9606,
198
+ "step": 52
199
+ },
200
+ {
201
+ "epoch": 0.3450479233226837,
202
+ "grad_norm": 0.07160841663430713,
203
+ "learning_rate": 9.965963228944078e-05,
204
+ "loss": 0.9681,
205
+ "step": 54
206
+ },
207
+ {
208
+ "epoch": 0.35782747603833864,
209
+ "grad_norm": 0.06954866095292117,
210
+ "learning_rate": 9.959502176294383e-05,
211
+ "loss": 0.951,
212
+ "step": 56
213
+ },
214
+ {
215
+ "epoch": 0.3706070287539936,
216
+ "grad_norm": 0.06598684065212063,
217
+ "learning_rate": 9.95248246010126e-05,
218
+ "loss": 0.9501,
219
+ "step": 58
220
+ },
221
+ {
222
+ "epoch": 0.38338658146964855,
223
+ "grad_norm": 0.12103302407814338,
224
+ "learning_rate": 9.944904871101228e-05,
225
+ "loss": 0.9713,
226
+ "step": 60
227
+ },
228
+ {
229
+ "epoch": 0.3961661341853035,
230
+ "grad_norm": 0.07330981053456032,
231
+ "learning_rate": 9.936770262872443e-05,
232
+ "loss": 0.9283,
233
+ "step": 62
234
+ },
235
+ {
236
+ "epoch": 0.40894568690095845,
237
+ "grad_norm": 0.06537535724415816,
238
+ "learning_rate": 9.928079551738543e-05,
239
+ "loss": 0.9118,
240
+ "step": 64
241
+ },
242
+ {
243
+ "epoch": 0.4217252396166134,
244
+ "grad_norm": 0.07457609795137939,
245
+ "learning_rate": 9.918833716665419e-05,
246
+ "loss": 0.9279,
247
+ "step": 66
248
+ },
249
+ {
250
+ "epoch": 0.43450479233226835,
251
+ "grad_norm": 0.07491122165043795,
252
+ "learning_rate": 9.909033799150946e-05,
253
+ "loss": 0.935,
254
+ "step": 68
255
+ },
256
+ {
257
+ "epoch": 0.4472843450479233,
258
+ "grad_norm": 0.06781283989008571,
259
+ "learning_rate": 9.898680903107666e-05,
260
+ "loss": 0.9361,
261
+ "step": 70
262
+ },
263
+ {
264
+ "epoch": 0.46006389776357826,
265
+ "grad_norm": 0.07160916695151898,
266
+ "learning_rate": 9.887776194738432e-05,
267
+ "loss": 0.9159,
268
+ "step": 72
269
+ },
270
+ {
271
+ "epoch": 0.4728434504792332,
272
+ "grad_norm": 0.0681941013678725,
273
+ "learning_rate": 9.876320902405042e-05,
274
+ "loss": 0.8779,
275
+ "step": 74
276
+ },
277
+ {
278
+ "epoch": 0.48562300319488816,
279
+ "grad_norm": 0.07482319269062407,
280
+ "learning_rate": 9.864316316489873e-05,
281
+ "loss": 0.8825,
282
+ "step": 76
283
+ },
284
+ {
285
+ "epoch": 0.4984025559105431,
286
+ "grad_norm": 0.08697975313543096,
287
+ "learning_rate": 9.851763789250525e-05,
288
+ "loss": 0.922,
289
+ "step": 78
290
+ },
291
+ {
292
+ "epoch": 0.5111821086261981,
293
+ "grad_norm": 0.09978612068745818,
294
+ "learning_rate": 9.838664734667495e-05,
295
+ "loss": 0.8894,
296
+ "step": 80
297
+ },
298
+ {
299
+ "epoch": 0.5239616613418531,
300
+ "grad_norm": 0.09384667638421956,
301
+ "learning_rate": 9.825020628284896e-05,
302
+ "loss": 0.8593,
303
+ "step": 82
304
+ },
305
+ {
306
+ "epoch": 0.536741214057508,
307
+ "grad_norm": 0.06932081799385038,
308
+ "learning_rate": 9.810833007044247e-05,
309
+ "loss": 0.8662,
310
+ "step": 84
311
+ },
312
+ {
313
+ "epoch": 0.549520766773163,
314
+ "grad_norm": 0.10358699944795004,
315
+ "learning_rate": 9.796103469111351e-05,
316
+ "loss": 0.8723,
317
+ "step": 86
318
+ },
319
+ {
320
+ "epoch": 0.5623003194888179,
321
+ "grad_norm": 0.07169243369499742,
322
+ "learning_rate": 9.780833673696254e-05,
323
+ "loss": 0.8482,
324
+ "step": 88
325
+ },
326
+ {
327
+ "epoch": 0.5750798722044729,
328
+ "grad_norm": 0.1050406308556227,
329
+ "learning_rate": 9.76502534086636e-05,
330
+ "loss": 0.8496,
331
+ "step": 90
332
+ },
333
+ {
334
+ "epoch": 0.5878594249201278,
335
+ "grad_norm": 0.07201905690967678,
336
+ "learning_rate": 9.74868025135266e-05,
337
+ "loss": 0.8291,
338
+ "step": 92
339
+ },
340
+ {
341
+ "epoch": 0.6006389776357828,
342
+ "grad_norm": 1.2625349021090781,
343
+ "learning_rate": 9.731800246349148e-05,
344
+ "loss": 0.8503,
345
+ "step": 94
346
+ },
347
+ {
348
+ "epoch": 0.6134185303514377,
349
+ "grad_norm": 0.17981258022070712,
350
+ "learning_rate": 9.714387227305422e-05,
351
+ "loss": 0.8231,
352
+ "step": 96
353
+ },
354
+ {
355
+ "epoch": 0.6261980830670927,
356
+ "grad_norm": 0.07561478832740967,
357
+ "learning_rate": 9.696443155712486e-05,
358
+ "loss": 0.8119,
359
+ "step": 98
360
+ },
361
+ {
362
+ "epoch": 0.6389776357827476,
363
+ "grad_norm": 0.08195686915168865,
364
+ "learning_rate": 9.67797005288181e-05,
365
+ "loss": 0.7926,
366
+ "step": 100
367
+ },
368
+ {
369
+ "epoch": 0.6517571884984026,
370
+ "grad_norm": 0.0890476280007116,
371
+ "learning_rate": 9.65896999971763e-05,
372
+ "loss": 0.8039,
373
+ "step": 102
374
+ },
375
+ {
376
+ "epoch": 0.6645367412140575,
377
+ "grad_norm": 0.07738578891457887,
378
+ "learning_rate": 9.639445136482548e-05,
379
+ "loss": 0.7721,
380
+ "step": 104
381
+ },
382
+ {
383
+ "epoch": 0.6773162939297125,
384
+ "grad_norm": 0.0743037172920425,
385
+ "learning_rate": 9.619397662556435e-05,
386
+ "loss": 0.794,
387
+ "step": 106
388
+ },
389
+ {
390
+ "epoch": 0.6900958466453674,
391
+ "grad_norm": 0.08803835897602165,
392
+ "learning_rate": 9.598829836188694e-05,
393
+ "loss": 0.7721,
394
+ "step": 108
395
+ },
396
+ {
397
+ "epoch": 0.7028753993610224,
398
+ "grad_norm": 0.07702819696223887,
399
+ "learning_rate": 9.577743974243874e-05,
400
+ "loss": 0.7765,
401
+ "step": 110
402
+ },
403
+ {
404
+ "epoch": 0.7156549520766773,
405
+ "grad_norm": 0.07473535070111323,
406
+ "learning_rate": 9.55614245194068e-05,
407
+ "loss": 0.7598,
408
+ "step": 112
409
+ },
410
+ {
411
+ "epoch": 0.7284345047923323,
412
+ "grad_norm": 0.08433756541496004,
413
+ "learning_rate": 9.534027702584425e-05,
414
+ "loss": 0.7727,
415
+ "step": 114
416
+ },
417
+ {
418
+ "epoch": 0.7412140575079872,
419
+ "grad_norm": 0.07483257658817612,
420
+ "learning_rate": 9.511402217292926e-05,
421
+ "loss": 0.7465,
422
+ "step": 116
423
+ },
424
+ {
425
+ "epoch": 0.7539936102236422,
426
+ "grad_norm": 0.0880318685591304,
427
+ "learning_rate": 9.488268544715896e-05,
428
+ "loss": 0.7321,
429
+ "step": 118
430
+ },
431
+ {
432
+ "epoch": 0.7667731629392971,
433
+ "grad_norm": 0.07719604899450865,
434
+ "learning_rate": 9.464629290747842e-05,
435
+ "loss": 0.7624,
436
+ "step": 120
437
+ },
438
+ {
439
+ "epoch": 0.7795527156549521,
440
+ "grad_norm": 0.0733176421376437,
441
+ "learning_rate": 9.440487118234535e-05,
442
+ "loss": 0.6975,
443
+ "step": 122
444
+ },
445
+ {
446
+ "epoch": 0.792332268370607,
447
+ "grad_norm": 0.07051701385784455,
448
+ "learning_rate": 9.415844746673047e-05,
449
+ "loss": 0.7127,
450
+ "step": 124
451
+ },
452
+ {
453
+ "epoch": 0.805111821086262,
454
+ "grad_norm": 0.0729787562181977,
455
+ "learning_rate": 9.390704951905411e-05,
456
+ "loss": 0.7503,
457
+ "step": 126
458
+ },
459
+ {
460
+ "epoch": 0.8178913738019169,
461
+ "grad_norm": 0.07128874732953779,
462
+ "learning_rate": 9.365070565805941e-05,
463
+ "loss": 0.6941,
464
+ "step": 128
465
+ },
466
+ {
467
+ "epoch": 0.8306709265175719,
468
+ "grad_norm": 0.07804844381711577,
469
+ "learning_rate": 9.338944475962237e-05,
470
+ "loss": 0.7197,
471
+ "step": 130
472
+ },
473
+ {
474
+ "epoch": 0.8434504792332268,
475
+ "grad_norm": 0.08207580744924538,
476
+ "learning_rate": 9.312329625349902e-05,
477
+ "loss": 0.7134,
478
+ "step": 132
479
+ },
480
+ {
481
+ "epoch": 0.8562300319488818,
482
+ "grad_norm": 0.10268159904999394,
483
+ "learning_rate": 9.285229012001047e-05,
484
+ "loss": 0.705,
485
+ "step": 134
486
+ },
487
+ {
488
+ "epoch": 0.8690095846645367,
489
+ "grad_norm": 0.07097527094154266,
490
+ "learning_rate": 9.257645688666556e-05,
491
+ "loss": 0.7036,
492
+ "step": 136
493
+ },
494
+ {
495
+ "epoch": 0.8817891373801917,
496
+ "grad_norm": 0.07284443178958877,
497
+ "learning_rate": 9.22958276247223e-05,
498
+ "loss": 0.7313,
499
+ "step": 138
500
+ },
501
+ {
502
+ "epoch": 0.8945686900958466,
503
+ "grad_norm": 0.07294697279525543,
504
+ "learning_rate": 9.201043394568773e-05,
505
+ "loss": 0.6847,
506
+ "step": 140
507
+ },
508
+ {
509
+ "epoch": 0.9073482428115016,
510
+ "grad_norm": 0.0725032039002937,
511
+ "learning_rate": 9.172030799775699e-05,
512
+ "loss": 0.6877,
513
+ "step": 142
514
+ },
515
+ {
516
+ "epoch": 0.9201277955271565,
517
+ "grad_norm": 0.06708836437156662,
518
+ "learning_rate": 9.142548246219212e-05,
519
+ "loss": 0.6837,
520
+ "step": 144
521
+ },
522
+ {
523
+ "epoch": 0.9329073482428115,
524
+ "grad_norm": 0.07361178534656698,
525
+ "learning_rate": 9.112599054964057e-05,
526
+ "loss": 0.6522,
527
+ "step": 146
528
+ },
529
+ {
530
+ "epoch": 0.9456869009584664,
531
+ "grad_norm": 0.06961060997060975,
532
+ "learning_rate": 9.082186599639428e-05,
533
+ "loss": 0.6732,
534
+ "step": 148
535
+ },
536
+ {
537
+ "epoch": 0.9584664536741214,
538
+ "grad_norm": 0.06369267112915664,
539
+ "learning_rate": 9.051314306058933e-05,
540
+ "loss": 0.6615,
541
+ "step": 150
542
+ },
543
+ {
544
+ "epoch": 0.9712460063897763,
545
+ "grad_norm": 0.06667729772792583,
546
+ "learning_rate": 9.019985651834703e-05,
547
+ "loss": 0.6742,
548
+ "step": 152
549
+ },
550
+ {
551
+ "epoch": 0.9840255591054313,
552
+ "grad_norm": 0.07052786453330319,
553
+ "learning_rate": 8.988204165985649e-05,
554
+ "loss": 0.6365,
555
+ "step": 154
556
+ },
557
+ {
558
+ "epoch": 0.9968051118210862,
559
+ "grad_norm": 0.06352217971127558,
560
+ "learning_rate": 8.955973428539944e-05,
561
+ "loss": 0.6531,
562
+ "step": 156
563
+ },
564
+ {
565
+ "epoch": 1.011182108626198,
566
+ "grad_norm": 0.0907023898699884,
567
+ "learning_rate": 8.923297070131737e-05,
568
+ "loss": 0.6986,
569
+ "step": 158
570
+ },
571
+ {
572
+ "epoch": 1.023961661341853,
573
+ "grad_norm": 0.06588723514264389,
574
+ "learning_rate": 8.890178771592199e-05,
575
+ "loss": 0.4221,
576
+ "step": 160
577
+ },
578
+ {
579
+ "epoch": 1.036741214057508,
580
+ "grad_norm": 0.07457104912562523,
581
+ "learning_rate": 8.856622263534875e-05,
582
+ "loss": 0.4375,
583
+ "step": 162
584
+ },
585
+ {
586
+ "epoch": 1.049520766773163,
587
+ "grad_norm": 0.08716030746078077,
588
+ "learning_rate": 8.822631325935463e-05,
589
+ "loss": 0.4633,
590
+ "step": 164
591
+ },
592
+ {
593
+ "epoch": 1.0623003194888179,
594
+ "grad_norm": 0.07564657660605784,
595
+ "learning_rate": 8.788209787706015e-05,
596
+ "loss": 0.4149,
597
+ "step": 166
598
+ },
599
+ {
600
+ "epoch": 1.0750798722044728,
601
+ "grad_norm": 0.2601478494309565,
602
+ "learning_rate": 8.753361526263621e-05,
603
+ "loss": 0.4644,
604
+ "step": 168
605
+ },
606
+ {
607
+ "epoch": 1.0878594249201279,
608
+ "grad_norm": 0.07236244361689621,
609
+ "learning_rate": 8.718090467093654e-05,
610
+ "loss": 0.445,
611
+ "step": 170
612
+ },
613
+ {
614
+ "epoch": 1.1006389776357828,
615
+ "grad_norm": 0.07360308087849284,
616
+ "learning_rate": 8.682400583307562e-05,
617
+ "loss": 0.4189,
618
+ "step": 172
619
+ },
620
+ {
621
+ "epoch": 1.1134185303514377,
622
+ "grad_norm": 0.06934965586236702,
623
+ "learning_rate": 8.646295895195333e-05,
624
+ "loss": 0.4168,
625
+ "step": 174
626
+ },
627
+ {
628
+ "epoch": 1.1261980830670926,
629
+ "grad_norm": 0.06652725595095291,
630
+ "learning_rate": 8.609780469772623e-05,
631
+ "loss": 0.4332,
632
+ "step": 176
633
+ },
634
+ {
635
+ "epoch": 1.1389776357827477,
636
+ "grad_norm": 0.06493423808775205,
637
+ "learning_rate": 8.572858420322627e-05,
638
+ "loss": 0.4126,
639
+ "step": 178
640
+ },
641
+ {
642
+ "epoch": 1.1517571884984026,
643
+ "grad_norm": 0.07224306242862681,
644
+ "learning_rate": 8.535533905932738e-05,
645
+ "loss": 0.4639,
646
+ "step": 180
647
+ },
648
+ {
649
+ "epoch": 1.1645367412140575,
650
+ "grad_norm": 0.06325420247080109,
651
+ "learning_rate": 8.497811131026046e-05,
652
+ "loss": 0.4097,
653
+ "step": 182
654
+ },
655
+ {
656
+ "epoch": 1.1773162939297124,
657
+ "grad_norm": 0.05960690196531746,
658
+ "learning_rate": 8.459694344887732e-05,
659
+ "loss": 0.4258,
660
+ "step": 184
661
+ },
662
+ {
663
+ "epoch": 1.1900958466453675,
664
+ "grad_norm": 0.06526403248406679,
665
+ "learning_rate": 8.421187841186402e-05,
666
+ "loss": 0.4453,
667
+ "step": 186
668
+ },
669
+ {
670
+ "epoch": 1.2028753993610224,
671
+ "grad_norm": 0.06754636177295095,
672
+ "learning_rate": 8.382295957490436e-05,
673
+ "loss": 0.4277,
674
+ "step": 188
675
+ },
676
+ {
677
+ "epoch": 1.2156549520766773,
678
+ "grad_norm": 0.11883404710840821,
679
+ "learning_rate": 8.343023074779368e-05,
680
+ "loss": 0.4386,
681
+ "step": 190
682
+ },
683
+ {
684
+ "epoch": 1.2284345047923322,
685
+ "grad_norm": 0.07793571463351197,
686
+ "learning_rate": 8.303373616950408e-05,
687
+ "loss": 0.4072,
688
+ "step": 192
689
+ },
690
+ {
691
+ "epoch": 1.2412140575079873,
692
+ "grad_norm": 0.06518657342856102,
693
+ "learning_rate": 8.263352050320094e-05,
694
+ "loss": 0.4396,
695
+ "step": 194
696
+ },
697
+ {
698
+ "epoch": 1.2539936102236422,
699
+ "grad_norm": 0.05974282037032855,
700
+ "learning_rate": 8.222962883121196e-05,
701
+ "loss": 0.4016,
702
+ "step": 196
703
+ },
704
+ {
705
+ "epoch": 1.266773162939297,
706
+ "grad_norm": 0.0693639502217822,
707
+ "learning_rate": 8.182210664994878e-05,
708
+ "loss": 0.3808,
709
+ "step": 198
710
+ },
711
+ {
712
+ "epoch": 1.279552715654952,
713
+ "grad_norm": 0.06127831754623801,
714
+ "learning_rate": 8.141099986478212e-05,
715
+ "loss": 0.3961,
716
+ "step": 200
717
+ },
718
+ {
719
+ "epoch": 1.292332268370607,
720
+ "grad_norm": 0.06755312065722066,
721
+ "learning_rate": 8.099635478487064e-05,
722
+ "loss": 0.3894,
723
+ "step": 202
724
+ },
725
+ {
726
+ "epoch": 1.305111821086262,
727
+ "grad_norm": 0.0584212869146413,
728
+ "learning_rate": 8.057821811794458e-05,
729
+ "loss": 0.414,
730
+ "step": 204
731
+ },
732
+ {
733
+ "epoch": 1.317891373801917,
734
+ "grad_norm": 0.05983512956529008,
735
+ "learning_rate": 8.015663696504422e-05,
736
+ "loss": 0.3634,
737
+ "step": 206
738
+ },
739
+ {
740
+ "epoch": 1.330670926517572,
741
+ "grad_norm": 0.05778218969166584,
742
+ "learning_rate": 7.973165881521434e-05,
743
+ "loss": 0.4233,
744
+ "step": 208
745
+ },
746
+ {
747
+ "epoch": 1.343450479233227,
748
+ "grad_norm": 0.058310021079803646,
749
+ "learning_rate": 7.930333154015466e-05,
750
+ "loss": 0.4061,
751
+ "step": 210
752
+ },
753
+ {
754
+ "epoch": 1.3562300319488818,
755
+ "grad_norm": 0.0642143238679532,
756
+ "learning_rate": 7.88717033888274e-05,
757
+ "loss": 0.4083,
758
+ "step": 212
759
+ },
760
+ {
761
+ "epoch": 1.3690095846645367,
762
+ "grad_norm": 0.05656381877721736,
763
+ "learning_rate": 7.843682298202235e-05,
764
+ "loss": 0.4033,
765
+ "step": 214
766
+ },
767
+ {
768
+ "epoch": 1.3817891373801916,
769
+ "grad_norm": 0.05518190162844295,
770
+ "learning_rate": 7.799873930687978e-05,
771
+ "loss": 0.3953,
772
+ "step": 216
773
+ },
774
+ {
775
+ "epoch": 1.3945686900958467,
776
+ "grad_norm": 0.05903661851778338,
777
+ "learning_rate": 7.755750171137246e-05,
778
+ "loss": 0.4096,
779
+ "step": 218
780
+ },
781
+ {
782
+ "epoch": 1.4073482428115016,
783
+ "grad_norm": 0.05833074145436464,
784
+ "learning_rate": 7.711315989874677e-05,
785
+ "loss": 0.4151,
786
+ "step": 220
787
+ },
788
+ {
789
+ "epoch": 1.4201277955271565,
790
+ "grad_norm": 0.05919878363690307,
791
+ "learning_rate": 7.666576392192389e-05,
792
+ "loss": 0.39,
793
+ "step": 222
794
+ },
795
+ {
796
+ "epoch": 1.4329073482428116,
797
+ "grad_norm": 0.05913664327254173,
798
+ "learning_rate": 7.621536417786159e-05,
799
+ "loss": 0.4005,
800
+ "step": 224
801
+ },
802
+ {
803
+ "epoch": 1.4456869009584665,
804
+ "grad_norm": 0.0640842931075253,
805
+ "learning_rate": 7.576201140187727e-05,
806
+ "loss": 0.4165,
807
+ "step": 226
808
+ },
809
+ {
810
+ "epoch": 1.4584664536741214,
811
+ "grad_norm": 0.062131879810909965,
812
+ "learning_rate": 7.530575666193283e-05,
813
+ "loss": 0.3891,
814
+ "step": 228
815
+ },
816
+ {
817
+ "epoch": 1.4712460063897763,
818
+ "grad_norm": 0.06992276137309804,
819
+ "learning_rate": 7.484665135288213e-05,
820
+ "loss": 0.3971,
821
+ "step": 230
822
+ },
823
+ {
824
+ "epoch": 1.4840255591054312,
825
+ "grad_norm": 0.06078790664861669,
826
+ "learning_rate": 7.438474719068173e-05,
827
+ "loss": 0.3961,
828
+ "step": 232
829
+ },
830
+ {
831
+ "epoch": 1.4968051118210863,
832
+ "grad_norm": 0.06922648734675908,
833
+ "learning_rate": 7.392009620656513e-05,
834
+ "loss": 0.4331,
835
+ "step": 234
836
+ },
837
+ {
838
+ "epoch": 1.5095846645367412,
839
+ "grad_norm": 0.05766139832102871,
840
+ "learning_rate": 7.345275074118185e-05,
841
+ "loss": 0.4182,
842
+ "step": 236
843
+ },
844
+ {
845
+ "epoch": 1.5223642172523961,
846
+ "grad_norm": 0.06292873231888371,
847
+ "learning_rate": 7.298276343870151e-05,
848
+ "loss": 0.4061,
849
+ "step": 238
850
+ },
851
+ {
852
+ "epoch": 1.5351437699680512,
853
+ "grad_norm": 0.06000860844713537,
854
+ "learning_rate": 7.251018724088367e-05,
855
+ "loss": 0.4023,
856
+ "step": 240
857
+ },
858
+ {
859
+ "epoch": 1.547923322683706,
860
+ "grad_norm": 0.0585777107714916,
861
+ "learning_rate": 7.203507538111423e-05,
862
+ "loss": 0.3855,
863
+ "step": 242
864
+ },
865
+ {
866
+ "epoch": 1.560702875399361,
867
+ "grad_norm": 0.0571671995255021,
868
+ "learning_rate": 7.155748137840892e-05,
869
+ "loss": 0.3951,
870
+ "step": 244
871
+ },
872
+ {
873
+ "epoch": 1.573482428115016,
874
+ "grad_norm": 0.053447175708899994,
875
+ "learning_rate": 7.107745903138472e-05,
876
+ "loss": 0.3745,
877
+ "step": 246
878
+ },
879
+ {
880
+ "epoch": 1.5862619808306708,
881
+ "grad_norm": 0.055736902711725635,
882
+ "learning_rate": 7.059506241219965e-05,
883
+ "loss": 0.3911,
884
+ "step": 248
885
+ },
886
+ {
887
+ "epoch": 1.599041533546326,
888
+ "grad_norm": 0.05715355824554817,
889
+ "learning_rate": 7.011034586046176e-05,
890
+ "loss": 0.4043,
891
+ "step": 250
892
+ },
893
+ {
894
+ "epoch": 1.6118210862619808,
895
+ "grad_norm": 0.06030447320081754,
896
+ "learning_rate": 6.962336397710819e-05,
897
+ "loss": 0.3899,
898
+ "step": 252
899
+ },
900
+ {
901
+ "epoch": 1.6246006389776357,
902
+ "grad_norm": 0.061239135474291606,
903
+ "learning_rate": 6.91341716182545e-05,
904
+ "loss": 0.4246,
905
+ "step": 254
906
+ },
907
+ {
908
+ "epoch": 1.6373801916932909,
909
+ "grad_norm": 0.05695235071864785,
910
+ "learning_rate": 6.864282388901544e-05,
911
+ "loss": 0.3953,
912
+ "step": 256
913
+ },
914
+ {
915
+ "epoch": 1.6501597444089455,
916
+ "grad_norm": 0.05308868251491366,
917
+ "learning_rate": 6.814937613729766e-05,
918
+ "loss": 0.4103,
919
+ "step": 258
920
+ },
921
+ {
922
+ "epoch": 1.6629392971246006,
923
+ "grad_norm": 0.054046791633493914,
924
+ "learning_rate": 6.765388394756504e-05,
925
+ "loss": 0.4059,
926
+ "step": 260
927
+ },
928
+ {
929
+ "epoch": 1.6757188498402555,
930
+ "grad_norm": 0.05148697040730548,
931
+ "learning_rate": 6.715640313457733e-05,
932
+ "loss": 0.3767,
933
+ "step": 262
934
+ },
935
+ {
936
+ "epoch": 1.6884984025559104,
937
+ "grad_norm": 0.05318569591896447,
938
+ "learning_rate": 6.665698973710288e-05,
939
+ "loss": 0.3708,
940
+ "step": 264
941
+ },
942
+ {
943
+ "epoch": 1.7012779552715656,
944
+ "grad_norm": 0.05196719070381999,
945
+ "learning_rate": 6.615570001160626e-05,
946
+ "loss": 0.4042,
947
+ "step": 266
948
+ },
949
+ {
950
+ "epoch": 1.7140575079872205,
951
+ "grad_norm": 0.05632881769869459,
952
+ "learning_rate": 6.565259042591113e-05,
953
+ "loss": 0.3987,
954
+ "step": 268
955
+ },
956
+ {
957
+ "epoch": 1.7268370607028753,
958
+ "grad_norm": 0.05470059818193366,
959
+ "learning_rate": 6.514771765283942e-05,
960
+ "loss": 0.3973,
961
+ "step": 270
962
+ },
963
+ {
964
+ "epoch": 1.7396166134185305,
965
+ "grad_norm": 0.056351811449582394,
966
+ "learning_rate": 6.464113856382752e-05,
967
+ "loss": 0.3864,
968
+ "step": 272
969
+ },
970
+ {
971
+ "epoch": 1.7523961661341851,
972
+ "grad_norm": 0.05831258279981057,
973
+ "learning_rate": 6.413291022251989e-05,
974
+ "loss": 0.4041,
975
+ "step": 274
976
+ },
977
+ {
978
+ "epoch": 1.7651757188498403,
979
+ "grad_norm": 0.053467450310740065,
980
+ "learning_rate": 6.362308987834115e-05,
981
+ "loss": 0.3814,
982
+ "step": 276
983
+ },
984
+ {
985
+ "epoch": 1.7779552715654952,
986
+ "grad_norm": 0.051287152623381335,
987
+ "learning_rate": 6.311173496004723e-05,
988
+ "loss": 0.395,
989
+ "step": 278
990
+ },
991
+ {
992
+ "epoch": 1.79073482428115,
993
+ "grad_norm": 0.05429714498773308,
994
+ "learning_rate": 6.259890306925627e-05,
995
+ "loss": 0.3821,
996
+ "step": 280
997
+ },
998
+ {
999
+ "epoch": 1.8035143769968052,
1000
+ "grad_norm": 0.057523653580626326,
1001
+ "learning_rate": 6.208465197396013e-05,
1002
+ "loss": 0.3984,
1003
+ "step": 282
1004
+ },
1005
+ {
1006
+ "epoch": 1.81629392971246,
1007
+ "grad_norm": 0.05724842136937287,
1008
+ "learning_rate": 6.156903960201709e-05,
1009
+ "loss": 0.4181,
1010
+ "step": 284
1011
+ },
1012
+ {
1013
+ "epoch": 1.829073482428115,
1014
+ "grad_norm": 0.052227309043480996,
1015
+ "learning_rate": 6.105212403462651e-05,
1016
+ "loss": 0.4049,
1017
+ "step": 286
1018
+ },
1019
+ {
1020
+ "epoch": 1.84185303514377,
1021
+ "grad_norm": 0.04967908325326877,
1022
+ "learning_rate": 6.0533963499786314e-05,
1023
+ "loss": 0.4117,
1024
+ "step": 288
1025
+ },
1026
+ {
1027
+ "epoch": 1.854632587859425,
1028
+ "grad_norm": 0.05539898234566285,
1029
+ "learning_rate": 6.001461636573397e-05,
1030
+ "loss": 0.4006,
1031
+ "step": 290
1032
+ },
1033
+ {
1034
+ "epoch": 1.8674121405750799,
1035
+ "grad_norm": 0.05795414669880149,
1036
+ "learning_rate": 5.949414113437142e-05,
1037
+ "loss": 0.386,
1038
+ "step": 292
1039
+ },
1040
+ {
1041
+ "epoch": 1.880191693290735,
1042
+ "grad_norm": 0.050446841270231885,
1043
+ "learning_rate": 5.897259643467527e-05,
1044
+ "loss": 0.3842,
1045
+ "step": 294
1046
+ },
1047
+ {
1048
+ "epoch": 1.8929712460063897,
1049
+ "grad_norm": 0.052453051506198604,
1050
+ "learning_rate": 5.8450041016092464e-05,
1051
+ "loss": 0.3525,
1052
+ "step": 296
1053
+ },
1054
+ {
1055
+ "epoch": 1.9057507987220448,
1056
+ "grad_norm": 0.052803823491155276,
1057
+ "learning_rate": 5.792653374192245e-05,
1058
+ "loss": 0.3963,
1059
+ "step": 298
1060
+ },
1061
+ {
1062
+ "epoch": 1.9185303514376997,
1063
+ "grad_norm": 0.05180901601155745,
1064
+ "learning_rate": 5.7402133582686576e-05,
1065
+ "loss": 0.3798,
1066
+ "step": 300
1067
+ },
1068
+ {
1069
+ "epoch": 1.9313099041533546,
1070
+ "grad_norm": 0.05166645429890597,
1071
+ "learning_rate": 5.6876899609485256e-05,
1072
+ "loss": 0.3838,
1073
+ "step": 302
1074
+ },
1075
+ {
1076
+ "epoch": 1.9440894568690097,
1077
+ "grad_norm": 0.05306354741968808,
1078
+ "learning_rate": 5.6350890987343944e-05,
1079
+ "loss": 0.4165,
1080
+ "step": 304
1081
+ },
1082
+ {
1083
+ "epoch": 1.9568690095846646,
1084
+ "grad_norm": 0.0860975722690725,
1085
+ "learning_rate": 5.582416696854853e-05,
1086
+ "loss": 0.3737,
1087
+ "step": 306
1088
+ },
1089
+ {
1090
+ "epoch": 1.9696485623003195,
1091
+ "grad_norm": 0.05323286133666828,
1092
+ "learning_rate": 5.5296786885970805e-05,
1093
+ "loss": 0.3889,
1094
+ "step": 308
1095
+ },
1096
+ {
1097
+ "epoch": 1.9824281150159746,
1098
+ "grad_norm": 0.05299665331057226,
1099
+ "learning_rate": 5.476881014638491e-05,
1100
+ "loss": 0.3896,
1101
+ "step": 310
1102
+ },
1103
+ {
1104
+ "epoch": 1.9952076677316293,
1105
+ "grad_norm": 0.05157945275339266,
1106
+ "learning_rate": 5.4240296223775465e-05,
1107
+ "loss": 0.3637,
1108
+ "step": 312
1109
+ },
1110
+ {
1111
+ "epoch": 2.009584664536741,
1112
+ "grad_norm": 0.09139947660133817,
1113
+ "learning_rate": 5.3711304652638126e-05,
1114
+ "loss": 0.3775,
1115
+ "step": 314
1116
+ },
1117
+ {
1118
+ "epoch": 2.022364217252396,
1119
+ "grad_norm": 0.10130414532724454,
1120
+ "learning_rate": 5.318189502127332e-05,
1121
+ "loss": 0.2112,
1122
+ "step": 316
1123
+ },
1124
+ {
1125
+ "epoch": 2.0351437699680512,
1126
+ "grad_norm": 0.0633333619180165,
1127
+ "learning_rate": 5.265212696507387e-05,
1128
+ "loss": 0.2004,
1129
+ "step": 318
1130
+ },
1131
+ {
1132
+ "epoch": 2.047923322683706,
1133
+ "grad_norm": 0.0668276114954086,
1134
+ "learning_rate": 5.212206015980742e-05,
1135
+ "loss": 0.2019,
1136
+ "step": 320
1137
+ },
1138
+ {
1139
+ "epoch": 2.060702875399361,
1140
+ "grad_norm": 0.05942503367303514,
1141
+ "learning_rate": 5.159175431489424e-05,
1142
+ "loss": 0.1978,
1143
+ "step": 322
1144
+ },
1145
+ {
1146
+ "epoch": 2.073482428115016,
1147
+ "grad_norm": 0.07284145764738766,
1148
+ "learning_rate": 5.1061269166681183e-05,
1149
+ "loss": 0.1935,
1150
+ "step": 324
1151
+ },
1152
+ {
1153
+ "epoch": 2.086261980830671,
1154
+ "grad_norm": 0.052260140697323494,
1155
+ "learning_rate": 5.053066447171282e-05,
1156
+ "loss": 0.1854,
1157
+ "step": 326
1158
+ },
1159
+ {
1160
+ "epoch": 2.099041533546326,
1161
+ "grad_norm": 0.05754923159453662,
1162
+ "learning_rate": 5e-05,
1163
+ "loss": 0.1965,
1164
+ "step": 328
1165
+ },
1166
+ {
1167
+ "epoch": 2.1118210862619806,
1168
+ "grad_norm": 0.05500397186780569,
1169
+ "learning_rate": 4.94693355282872e-05,
1170
+ "loss": 0.1827,
1171
+ "step": 330
1172
+ },
1173
+ {
1174
+ "epoch": 2.1246006389776357,
1175
+ "grad_norm": 0.061606661346763424,
1176
+ "learning_rate": 4.893873083331882e-05,
1177
+ "loss": 0.2008,
1178
+ "step": 332
1179
+ },
1180
+ {
1181
+ "epoch": 2.137380191693291,
1182
+ "grad_norm": 0.05678242709297541,
1183
+ "learning_rate": 4.840824568510579e-05,
1184
+ "loss": 0.1853,
1185
+ "step": 334
1186
+ },
1187
+ {
1188
+ "epoch": 2.1501597444089455,
1189
+ "grad_norm": 0.054080318070508115,
1190
+ "learning_rate": 4.78779398401926e-05,
1191
+ "loss": 0.1952,
1192
+ "step": 336
1193
+ },
1194
+ {
1195
+ "epoch": 2.1629392971246006,
1196
+ "grad_norm": 0.057204881343756786,
1197
+ "learning_rate": 4.734787303492615e-05,
1198
+ "loss": 0.1778,
1199
+ "step": 338
1200
+ },
1201
+ {
1202
+ "epoch": 2.1757188498402558,
1203
+ "grad_norm": 0.6941487667655994,
1204
+ "learning_rate": 4.6818104978726685e-05,
1205
+ "loss": 0.219,
1206
+ "step": 340
1207
+ },
1208
+ {
1209
+ "epoch": 2.1884984025559104,
1210
+ "grad_norm": 0.06999590590614403,
1211
+ "learning_rate": 4.628869534736187e-05,
1212
+ "loss": 0.181,
1213
+ "step": 342
1214
+ },
1215
+ {
1216
+ "epoch": 2.2012779552715656,
1217
+ "grad_norm": 0.07558854262088241,
1218
+ "learning_rate": 4.575970377622456e-05,
1219
+ "loss": 0.2349,
1220
+ "step": 344
1221
+ },
1222
+ {
1223
+ "epoch": 2.2140575079872207,
1224
+ "grad_norm": 0.07120027160683609,
1225
+ "learning_rate": 4.52311898536151e-05,
1226
+ "loss": 0.1993,
1227
+ "step": 346
1228
+ },
1229
+ {
1230
+ "epoch": 2.2268370607028753,
1231
+ "grad_norm": 0.05697032990090494,
1232
+ "learning_rate": 4.47032131140292e-05,
1233
+ "loss": 0.1739,
1234
+ "step": 348
1235
+ },
1236
+ {
1237
+ "epoch": 2.2396166134185305,
1238
+ "grad_norm": 0.06092977319118132,
1239
+ "learning_rate": 4.4175833031451473e-05,
1240
+ "loss": 0.188,
1241
+ "step": 350
1242
+ },
1243
+ {
1244
+ "epoch": 2.252396166134185,
1245
+ "grad_norm": 0.05900721095602371,
1246
+ "learning_rate": 4.364910901265606e-05,
1247
+ "loss": 0.1778,
1248
+ "step": 352
1249
+ },
1250
+ {
1251
+ "epoch": 2.2651757188498403,
1252
+ "grad_norm": 0.08992850669862418,
1253
+ "learning_rate": 4.3123100390514756e-05,
1254
+ "loss": 0.1838,
1255
+ "step": 354
1256
+ },
1257
+ {
1258
+ "epoch": 2.2779552715654954,
1259
+ "grad_norm": 0.059213794143429914,
1260
+ "learning_rate": 4.2597866417313436e-05,
1261
+ "loss": 0.1902,
1262
+ "step": 356
1263
+ },
1264
+ {
1265
+ "epoch": 2.29073482428115,
1266
+ "grad_norm": 0.051525349318871976,
1267
+ "learning_rate": 4.207346625807756e-05,
1268
+ "loss": 0.1784,
1269
+ "step": 358
1270
+ },
1271
+ {
1272
+ "epoch": 2.303514376996805,
1273
+ "grad_norm": 0.055922862481655594,
1274
+ "learning_rate": 4.1549958983907555e-05,
1275
+ "loss": 0.1827,
1276
+ "step": 360
1277
+ },
1278
+ {
1279
+ "epoch": 2.31629392971246,
1280
+ "grad_norm": 0.054189632126131766,
1281
+ "learning_rate": 4.102740356532473e-05,
1282
+ "loss": 0.186,
1283
+ "step": 362
1284
+ },
1285
+ {
1286
+ "epoch": 2.329073482428115,
1287
+ "grad_norm": 0.06298745746452741,
1288
+ "learning_rate": 4.050585886562858e-05,
1289
+ "loss": 0.1854,
1290
+ "step": 364
1291
+ },
1292
+ {
1293
+ "epoch": 2.34185303514377,
1294
+ "grad_norm": 0.06476475169367538,
1295
+ "learning_rate": 3.998538363426605e-05,
1296
+ "loss": 0.1794,
1297
+ "step": 366
1298
+ },
1299
+ {
1300
+ "epoch": 2.3546325878594248,
1301
+ "grad_norm": 0.05187178001518817,
1302
+ "learning_rate": 3.94660365002137e-05,
1303
+ "loss": 0.1817,
1304
+ "step": 368
1305
+ },
1306
+ {
1307
+ "epoch": 2.36741214057508,
1308
+ "grad_norm": 0.05110076217610542,
1309
+ "learning_rate": 3.894787596537352e-05,
1310
+ "loss": 0.1757,
1311
+ "step": 370
1312
+ },
1313
+ {
1314
+ "epoch": 2.380191693290735,
1315
+ "grad_norm": 0.061027606854849537,
1316
+ "learning_rate": 3.843096039798293e-05,
1317
+ "loss": 0.1888,
1318
+ "step": 372
1319
+ },
1320
+ {
1321
+ "epoch": 2.3929712460063897,
1322
+ "grad_norm": 0.05689282057128392,
1323
+ "learning_rate": 3.791534802603988e-05,
1324
+ "loss": 0.1972,
1325
+ "step": 374
1326
+ },
1327
+ {
1328
+ "epoch": 2.405750798722045,
1329
+ "grad_norm": 0.05144327012401281,
1330
+ "learning_rate": 3.740109693074375e-05,
1331
+ "loss": 0.1975,
1332
+ "step": 376
1333
+ },
1334
+ {
1335
+ "epoch": 2.4185303514377,
1336
+ "grad_norm": 0.07243681779987425,
1337
+ "learning_rate": 3.68882650399528e-05,
1338
+ "loss": 0.1865,
1339
+ "step": 378
1340
+ },
1341
+ {
1342
+ "epoch": 2.4313099041533546,
1343
+ "grad_norm": 0.11601839655528177,
1344
+ "learning_rate": 3.637691012165886e-05,
1345
+ "loss": 0.1977,
1346
+ "step": 380
1347
+ },
1348
+ {
1349
+ "epoch": 2.4440894568690097,
1350
+ "grad_norm": 0.05323975029748036,
1351
+ "learning_rate": 3.586708977748012e-05,
1352
+ "loss": 0.1873,
1353
+ "step": 382
1354
+ },
1355
+ {
1356
+ "epoch": 2.4568690095846644,
1357
+ "grad_norm": 0.0499469664737551,
1358
+ "learning_rate": 3.5358861436172485e-05,
1359
+ "loss": 0.1832,
1360
+ "step": 384
1361
+ },
1362
+ {
1363
+ "epoch": 2.4696485623003195,
1364
+ "grad_norm": 0.05043024991533826,
1365
+ "learning_rate": 3.485228234716058e-05,
1366
+ "loss": 0.1821,
1367
+ "step": 386
1368
+ },
1369
+ {
1370
+ "epoch": 2.4824281150159746,
1371
+ "grad_norm": 0.054685112352780986,
1372
+ "learning_rate": 3.434740957408889e-05,
1373
+ "loss": 0.1816,
1374
+ "step": 388
1375
+ },
1376
+ {
1377
+ "epoch": 2.4952076677316293,
1378
+ "grad_norm": 0.057237969167094144,
1379
+ "learning_rate": 3.3844299988393755e-05,
1380
+ "loss": 0.1909,
1381
+ "step": 390
1382
+ },
1383
+ {
1384
+ "epoch": 2.5079872204472844,
1385
+ "grad_norm": 0.05134273506646416,
1386
+ "learning_rate": 3.334301026289712e-05,
1387
+ "loss": 0.1782,
1388
+ "step": 392
1389
+ },
1390
+ {
1391
+ "epoch": 2.520766773162939,
1392
+ "grad_norm": 0.049993934417102925,
1393
+ "learning_rate": 3.284359686542269e-05,
1394
+ "loss": 0.1928,
1395
+ "step": 394
1396
+ },
1397
+ {
1398
+ "epoch": 2.533546325878594,
1399
+ "grad_norm": 0.06457823051474779,
1400
+ "learning_rate": 3.234611605243496e-05,
1401
+ "loss": 0.196,
1402
+ "step": 396
1403
+ },
1404
+ {
1405
+ "epoch": 2.5463258785942493,
1406
+ "grad_norm": 0.051805062617152425,
1407
+ "learning_rate": 3.1850623862702344e-05,
1408
+ "loss": 0.1881,
1409
+ "step": 398
1410
+ },
1411
+ {
1412
+ "epoch": 2.559105431309904,
1413
+ "grad_norm": 0.049188541484928724,
1414
+ "learning_rate": 3.135717611098458e-05,
1415
+ "loss": 0.1806,
1416
+ "step": 400
1417
+ },
1418
+ {
1419
+ "epoch": 2.571884984025559,
1420
+ "grad_norm": 0.05687592017078177,
1421
+ "learning_rate": 3.086582838174551e-05,
1422
+ "loss": 0.1784,
1423
+ "step": 402
1424
+ },
1425
+ {
1426
+ "epoch": 2.584664536741214,
1427
+ "grad_norm": 0.05098573657706369,
1428
+ "learning_rate": 3.0376636022891812e-05,
1429
+ "loss": 0.1932,
1430
+ "step": 404
1431
+ },
1432
+ {
1433
+ "epoch": 2.597444089456869,
1434
+ "grad_norm": 0.052376381772842893,
1435
+ "learning_rate": 2.9889654139538246e-05,
1436
+ "loss": 0.1889,
1437
+ "step": 406
1438
+ },
1439
+ {
1440
+ "epoch": 2.610223642172524,
1441
+ "grad_norm": 0.05031660077056393,
1442
+ "learning_rate": 2.9404937587800375e-05,
1443
+ "loss": 0.1769,
1444
+ "step": 408
1445
+ },
1446
+ {
1447
+ "epoch": 2.623003194888179,
1448
+ "grad_norm": 0.04930354808056054,
1449
+ "learning_rate": 2.8922540968615286e-05,
1450
+ "loss": 0.1685,
1451
+ "step": 410
1452
+ },
1453
+ {
1454
+ "epoch": 2.635782747603834,
1455
+ "grad_norm": 0.06709139465230578,
1456
+ "learning_rate": 2.8442518621591086e-05,
1457
+ "loss": 0.1785,
1458
+ "step": 412
1459
+ },
1460
+ {
1461
+ "epoch": 2.648562300319489,
1462
+ "grad_norm": 0.0503489735828908,
1463
+ "learning_rate": 2.7964924618885778e-05,
1464
+ "loss": 0.1689,
1465
+ "step": 414
1466
+ },
1467
+ {
1468
+ "epoch": 2.661341853035144,
1469
+ "grad_norm": 0.05047783892143097,
1470
+ "learning_rate": 2.748981275911633e-05,
1471
+ "loss": 0.1808,
1472
+ "step": 416
1473
+ },
1474
+ {
1475
+ "epoch": 2.6741214057507987,
1476
+ "grad_norm": 0.04955419672921838,
1477
+ "learning_rate": 2.701723656129851e-05,
1478
+ "loss": 0.1727,
1479
+ "step": 418
1480
+ },
1481
+ {
1482
+ "epoch": 2.686900958466454,
1483
+ "grad_norm": 0.04769759775271665,
1484
+ "learning_rate": 2.6547249258818164e-05,
1485
+ "loss": 0.1708,
1486
+ "step": 420
1487
+ },
1488
+ {
1489
+ "epoch": 2.6996805111821085,
1490
+ "grad_norm": 0.050324696099913684,
1491
+ "learning_rate": 2.607990379343489e-05,
1492
+ "loss": 0.1817,
1493
+ "step": 422
1494
+ },
1495
+ {
1496
+ "epoch": 2.7124600638977636,
1497
+ "grad_norm": 0.05249496210993974,
1498
+ "learning_rate": 2.5615252809318284e-05,
1499
+ "loss": 0.1836,
1500
+ "step": 424
1501
+ },
1502
+ {
1503
+ "epoch": 2.7252396166134183,
1504
+ "grad_norm": 0.0472378188955872,
1505
+ "learning_rate": 2.5153348647117857e-05,
1506
+ "loss": 0.1736,
1507
+ "step": 426
1508
+ },
1509
+ {
1510
+ "epoch": 2.7380191693290734,
1511
+ "grad_norm": 0.049243154928981264,
1512
+ "learning_rate": 2.469424333806718e-05,
1513
+ "loss": 0.1675,
1514
+ "step": 428
1515
+ },
1516
+ {
1517
+ "epoch": 2.7507987220447285,
1518
+ "grad_norm": 0.05096273109137321,
1519
+ "learning_rate": 2.4237988598122752e-05,
1520
+ "loss": 0.1658,
1521
+ "step": 430
1522
+ },
1523
+ {
1524
+ "epoch": 2.763578274760383,
1525
+ "grad_norm": 0.0514806212844811,
1526
+ "learning_rate": 2.3784635822138424e-05,
1527
+ "loss": 0.1922,
1528
+ "step": 432
1529
+ },
1530
+ {
1531
+ "epoch": 2.7763578274760383,
1532
+ "grad_norm": 0.05006269553229606,
1533
+ "learning_rate": 2.333423607807613e-05,
1534
+ "loss": 0.1887,
1535
+ "step": 434
1536
+ },
1537
+ {
1538
+ "epoch": 2.7891373801916934,
1539
+ "grad_norm": 0.04935551516167026,
1540
+ "learning_rate": 2.288684010125325e-05,
1541
+ "loss": 0.1763,
1542
+ "step": 436
1543
+ },
1544
+ {
1545
+ "epoch": 2.801916932907348,
1546
+ "grad_norm": 0.05353903496894845,
1547
+ "learning_rate": 2.2442498288627556e-05,
1548
+ "loss": 0.1944,
1549
+ "step": 438
1550
+ },
1551
+ {
1552
+ "epoch": 2.8146964856230032,
1553
+ "grad_norm": 0.04697149845887787,
1554
+ "learning_rate": 2.2001260693120233e-05,
1555
+ "loss": 0.1672,
1556
+ "step": 440
1557
+ },
1558
+ {
1559
+ "epoch": 2.8274760383386583,
1560
+ "grad_norm": 0.054384654770629585,
1561
+ "learning_rate": 2.156317701797766e-05,
1562
+ "loss": 0.1807,
1563
+ "step": 442
1564
+ },
1565
+ {
1566
+ "epoch": 2.840255591054313,
1567
+ "grad_norm": 0.04684823569442938,
1568
+ "learning_rate": 2.1128296611172593e-05,
1569
+ "loss": 0.171,
1570
+ "step": 444
1571
+ },
1572
+ {
1573
+ "epoch": 2.853035143769968,
1574
+ "grad_norm": 0.0498371244165766,
1575
+ "learning_rate": 2.0696668459845355e-05,
1576
+ "loss": 0.1827,
1577
+ "step": 446
1578
+ },
1579
+ {
1580
+ "epoch": 2.8658146964856233,
1581
+ "grad_norm": 0.04969475724913098,
1582
+ "learning_rate": 2.026834118478567e-05,
1583
+ "loss": 0.1749,
1584
+ "step": 448
1585
+ },
1586
+ {
1587
+ "epoch": 2.878594249201278,
1588
+ "grad_norm": 0.051902756416916496,
1589
+ "learning_rate": 1.98433630349558e-05,
1590
+ "loss": 0.1891,
1591
+ "step": 450
1592
+ },
1593
+ {
1594
+ "epoch": 2.891373801916933,
1595
+ "grad_norm": 0.05102564026340021,
1596
+ "learning_rate": 1.9421781882055444e-05,
1597
+ "loss": 0.1849,
1598
+ "step": 452
1599
+ },
1600
+ {
1601
+ "epoch": 2.9041533546325877,
1602
+ "grad_norm": 0.05200929870376942,
1603
+ "learning_rate": 1.9003645215129355e-05,
1604
+ "loss": 0.1891,
1605
+ "step": 454
1606
+ },
1607
+ {
1608
+ "epoch": 2.916932907348243,
1609
+ "grad_norm": 0.05083154953396676,
1610
+ "learning_rate": 1.858900013521788e-05,
1611
+ "loss": 0.179,
1612
+ "step": 456
1613
+ },
1614
+ {
1615
+ "epoch": 2.9297124600638975,
1616
+ "grad_norm": 0.049127219472404525,
1617
+ "learning_rate": 1.817789335005121e-05,
1618
+ "loss": 0.17,
1619
+ "step": 458
1620
+ },
1621
+ {
1622
+ "epoch": 2.9424920127795526,
1623
+ "grad_norm": 0.049677004679461886,
1624
+ "learning_rate": 1.777037116878804e-05,
1625
+ "loss": 0.1831,
1626
+ "step": 460
1627
+ },
1628
+ {
1629
+ "epoch": 2.9552715654952078,
1630
+ "grad_norm": 0.054496479788018075,
1631
+ "learning_rate": 1.7366479496799077e-05,
1632
+ "loss": 0.1843,
1633
+ "step": 462
1634
+ },
1635
+ {
1636
+ "epoch": 2.9680511182108624,
1637
+ "grad_norm": 0.04820092295738451,
1638
+ "learning_rate": 1.6966263830495936e-05,
1639
+ "loss": 0.1685,
1640
+ "step": 464
1641
+ },
1642
+ {
1643
+ "epoch": 2.9808306709265175,
1644
+ "grad_norm": 0.04915420841884947,
1645
+ "learning_rate": 1.656976925220633e-05,
1646
+ "loss": 0.1875,
1647
+ "step": 466
1648
+ },
1649
+ {
1650
+ "epoch": 2.9936102236421727,
1651
+ "grad_norm": 0.07661474807504913,
1652
+ "learning_rate": 1.6177040425095662e-05,
1653
+ "loss": 0.1891,
1654
+ "step": 468
1655
+ },
1656
+ {
1657
+ "epoch": 3.0079872204472844,
1658
+ "grad_norm": 0.07655695803476695,
1659
+ "learning_rate": 1.5788121588135975e-05,
1660
+ "loss": 0.1837,
1661
+ "step": 470
1662
+ },
1663
+ {
1664
+ "epoch": 3.0207667731629395,
1665
+ "grad_norm": 0.060916330302725,
1666
+ "learning_rate": 1.5403056551122697e-05,
1667
+ "loss": 0.0872,
1668
+ "step": 472
1669
+ },
1670
+ {
1671
+ "epoch": 3.033546325878594,
1672
+ "grad_norm": 0.052542395235648506,
1673
+ "learning_rate": 1.5021888689739549e-05,
1674
+ "loss": 0.0778,
1675
+ "step": 474
1676
+ },
1677
+ {
1678
+ "epoch": 3.0463258785942493,
1679
+ "grad_norm": 0.20368087770560855,
1680
+ "learning_rate": 1.4644660940672627e-05,
1681
+ "loss": 0.102,
1682
+ "step": 476
1683
+ },
1684
+ {
1685
+ "epoch": 3.059105431309904,
1686
+ "grad_norm": 0.10396707161226072,
1687
+ "learning_rate": 1.427141579677374e-05,
1688
+ "loss": 0.083,
1689
+ "step": 478
1690
+ },
1691
+ {
1692
+ "epoch": 3.071884984025559,
1693
+ "grad_norm": 0.04599720220665865,
1694
+ "learning_rate": 1.3902195302273779e-05,
1695
+ "loss": 0.0757,
1696
+ "step": 480
1697
+ },
1698
+ {
1699
+ "epoch": 3.084664536741214,
1700
+ "grad_norm": 0.056109340867354925,
1701
+ "learning_rate": 1.3537041048046695e-05,
1702
+ "loss": 0.081,
1703
+ "step": 482
1704
+ },
1705
+ {
1706
+ "epoch": 3.097444089456869,
1707
+ "grad_norm": 0.048015102375770044,
1708
+ "learning_rate": 1.3175994166924394e-05,
1709
+ "loss": 0.0802,
1710
+ "step": 484
1711
+ },
1712
+ {
1713
+ "epoch": 3.110223642172524,
1714
+ "grad_norm": 0.04645228076024571,
1715
+ "learning_rate": 1.2819095329063469e-05,
1716
+ "loss": 0.0787,
1717
+ "step": 486
1718
+ },
1719
+ {
1720
+ "epoch": 3.123003194888179,
1721
+ "grad_norm": 0.04637085498651796,
1722
+ "learning_rate": 1.246638473736378e-05,
1723
+ "loss": 0.0839,
1724
+ "step": 488
1725
+ },
1726
+ {
1727
+ "epoch": 3.135782747603834,
1728
+ "grad_norm": 0.05039074009256794,
1729
+ "learning_rate": 1.2117902122939861e-05,
1730
+ "loss": 0.0812,
1731
+ "step": 490
1732
+ },
1733
+ {
1734
+ "epoch": 3.148562300319489,
1735
+ "grad_norm": 0.05079569512274489,
1736
+ "learning_rate": 1.1773686740645384e-05,
1737
+ "loss": 0.0797,
1738
+ "step": 492
1739
+ },
1740
+ {
1741
+ "epoch": 3.1613418530351436,
1742
+ "grad_norm": 0.04286375870307716,
1743
+ "learning_rate": 1.1433777364651271e-05,
1744
+ "loss": 0.0737,
1745
+ "step": 494
1746
+ },
1747
+ {
1748
+ "epoch": 3.1741214057507987,
1749
+ "grad_norm": 0.03982951021947898,
1750
+ "learning_rate": 1.1098212284078036e-05,
1751
+ "loss": 0.0722,
1752
+ "step": 496
1753
+ },
1754
+ {
1755
+ "epoch": 3.186900958466454,
1756
+ "grad_norm": 0.0446624849328897,
1757
+ "learning_rate": 1.076702929868264e-05,
1758
+ "loss": 0.079,
1759
+ "step": 498
1760
+ },
1761
+ {
1762
+ "epoch": 3.1996805111821085,
1763
+ "grad_norm": 0.04376807908723891,
1764
+ "learning_rate": 1.0440265714600572e-05,
1765
+ "loss": 0.0837,
1766
+ "step": 500
1767
+ },
1768
+ {
1769
+ "epoch": 3.2124600638977636,
1770
+ "grad_norm": 0.04087367539850916,
1771
+ "learning_rate": 1.0117958340143507e-05,
1772
+ "loss": 0.076,
1773
+ "step": 502
1774
+ },
1775
+ {
1776
+ "epoch": 3.2252396166134187,
1777
+ "grad_norm": 0.04066584417219993,
1778
+ "learning_rate": 9.800143481652979e-06,
1779
+ "loss": 0.0701,
1780
+ "step": 504
1781
+ },
1782
+ {
1783
+ "epoch": 3.2380191693290734,
1784
+ "grad_norm": 0.08215263649470263,
1785
+ "learning_rate": 9.48685693941067e-06,
1786
+ "loss": 0.0776,
1787
+ "step": 506
1788
+ },
1789
+ {
1790
+ "epoch": 3.2507987220447285,
1791
+ "grad_norm": 0.0437601284673361,
1792
+ "learning_rate": 9.17813400360572e-06,
1793
+ "loss": 0.0764,
1794
+ "step": 508
1795
+ },
1796
+ {
1797
+ "epoch": 3.263578274760383,
1798
+ "grad_norm": 0.04382435518426366,
1799
+ "learning_rate": 8.874009450359427e-06,
1800
+ "loss": 0.0826,
1801
+ "step": 510
1802
+ },
1803
+ {
1804
+ "epoch": 3.2763578274760383,
1805
+ "grad_norm": 0.04095610913441161,
1806
+ "learning_rate": 8.574517537807897e-06,
1807
+ "loss": 0.0753,
1808
+ "step": 512
1809
+ },
1810
+ {
1811
+ "epoch": 3.2891373801916934,
1812
+ "grad_norm": 0.040525949300480126,
1813
+ "learning_rate": 8.279692002243027e-06,
1814
+ "loss": 0.0764,
1815
+ "step": 514
1816
+ },
1817
+ {
1818
+ "epoch": 3.301916932907348,
1819
+ "grad_norm": 0.043675586209021296,
1820
+ "learning_rate": 7.989566054312287e-06,
1821
+ "loss": 0.0817,
1822
+ "step": 516
1823
+ },
1824
+ {
1825
+ "epoch": 3.3146964856230032,
1826
+ "grad_norm": 0.04319420448553361,
1827
+ "learning_rate": 7.704172375277691e-06,
1828
+ "loss": 0.0759,
1829
+ "step": 518
1830
+ },
1831
+ {
1832
+ "epoch": 3.3274760383386583,
1833
+ "grad_norm": 0.044446852802239034,
1834
+ "learning_rate": 7.423543113334436e-06,
1835
+ "loss": 0.0813,
1836
+ "step": 520
1837
+ },
1838
+ {
1839
+ "epoch": 3.340255591054313,
1840
+ "grad_norm": 0.09121973616663154,
1841
+ "learning_rate": 7.14770987998954e-06,
1842
+ "loss": 0.0838,
1843
+ "step": 522
1844
+ },
1845
+ {
1846
+ "epoch": 3.353035143769968,
1847
+ "grad_norm": 0.05879997473879583,
1848
+ "learning_rate": 6.876703746500984e-06,
1849
+ "loss": 0.0738,
1850
+ "step": 524
1851
+ },
1852
+ {
1853
+ "epoch": 3.365814696485623,
1854
+ "grad_norm": 0.04667273388126841,
1855
+ "learning_rate": 6.610555240377652e-06,
1856
+ "loss": 0.0787,
1857
+ "step": 526
1858
+ },
1859
+ {
1860
+ "epoch": 3.378594249201278,
1861
+ "grad_norm": 0.042105033545020404,
1862
+ "learning_rate": 6.349294341940593e-06,
1863
+ "loss": 0.0801,
1864
+ "step": 528
1865
+ },
1866
+ {
1867
+ "epoch": 3.391373801916933,
1868
+ "grad_norm": 0.0407975465413022,
1869
+ "learning_rate": 6.092950480945897e-06,
1870
+ "loss": 0.0735,
1871
+ "step": 530
1872
+ },
1873
+ {
1874
+ "epoch": 3.4041533546325877,
1875
+ "grad_norm": 0.04234912863253251,
1876
+ "learning_rate": 5.841552533269534e-06,
1877
+ "loss": 0.0772,
1878
+ "step": 532
1879
+ },
1880
+ {
1881
+ "epoch": 3.416932907348243,
1882
+ "grad_norm": 0.04032120711392374,
1883
+ "learning_rate": 5.595128817654638e-06,
1884
+ "loss": 0.0749,
1885
+ "step": 534
1886
+ },
1887
+ {
1888
+ "epoch": 3.4297124600638975,
1889
+ "grad_norm": 0.041050930036482094,
1890
+ "learning_rate": 5.353707092521582e-06,
1891
+ "loss": 0.0769,
1892
+ "step": 536
1893
+ },
1894
+ {
1895
+ "epoch": 3.4424920127795526,
1896
+ "grad_norm": 0.043382176933190755,
1897
+ "learning_rate": 5.117314552841052e-06,
1898
+ "loss": 0.0767,
1899
+ "step": 538
1900
+ },
1901
+ {
1902
+ "epoch": 3.4552715654952078,
1903
+ "grad_norm": 0.039240502138117625,
1904
+ "learning_rate": 4.885977827070748e-06,
1905
+ "loss": 0.0721,
1906
+ "step": 540
1907
+ },
1908
+ {
1909
+ "epoch": 3.4680511182108624,
1910
+ "grad_norm": 0.040812347040587296,
1911
+ "learning_rate": 4.659722974155767e-06,
1912
+ "loss": 0.1114,
1913
+ "step": 542
1914
+ },
1915
+ {
1916
+ "epoch": 3.4808306709265175,
1917
+ "grad_norm": 0.0423787622918925,
1918
+ "learning_rate": 4.43857548059321e-06,
1919
+ "loss": 0.0778,
1920
+ "step": 544
1921
+ },
1922
+ {
1923
+ "epoch": 3.4936102236421727,
1924
+ "grad_norm": 0.042228923687598445,
1925
+ "learning_rate": 4.2225602575612755e-06,
1926
+ "loss": 0.0814,
1927
+ "step": 546
1928
+ },
1929
+ {
1930
+ "epoch": 3.5063897763578273,
1931
+ "grad_norm": 0.0407267289339222,
1932
+ "learning_rate": 4.011701638113063e-06,
1933
+ "loss": 0.0782,
1934
+ "step": 548
1935
+ },
1936
+ {
1937
+ "epoch": 3.5191693290734825,
1938
+ "grad_norm": 0.0389855165359938,
1939
+ "learning_rate": 3.8060233744356633e-06,
1940
+ "loss": 0.0789,
1941
+ "step": 550
1942
+ },
1943
+ {
1944
+ "epoch": 3.5319488817891376,
1945
+ "grad_norm": 0.040904703617676376,
1946
+ "learning_rate": 3.605548635174533e-06,
1947
+ "loss": 0.078,
1948
+ "step": 552
1949
+ },
1950
+ {
1951
+ "epoch": 3.5447284345047922,
1952
+ "grad_norm": 0.04093280012624571,
1953
+ "learning_rate": 3.410300002823691e-06,
1954
+ "loss": 0.0777,
1955
+ "step": 554
1956
+ },
1957
+ {
1958
+ "epoch": 3.5575079872204474,
1959
+ "grad_norm": 0.042904856841507744,
1960
+ "learning_rate": 3.220299471181898e-06,
1961
+ "loss": 0.0757,
1962
+ "step": 556
1963
+ },
1964
+ {
1965
+ "epoch": 3.5702875399361025,
1966
+ "grad_norm": 0.0436449067886704,
1967
+ "learning_rate": 3.035568442875136e-06,
1968
+ "loss": 0.0798,
1969
+ "step": 558
1970
+ },
1971
+ {
1972
+ "epoch": 3.583067092651757,
1973
+ "grad_norm": 0.035664776931118955,
1974
+ "learning_rate": 2.85612772694579e-06,
1975
+ "loss": 0.0632,
1976
+ "step": 560
1977
+ },
1978
+ {
1979
+ "epoch": 3.5958466453674123,
1980
+ "grad_norm": 0.03847526723825484,
1981
+ "learning_rate": 2.6819975365085237e-06,
1982
+ "loss": 0.0744,
1983
+ "step": 562
1984
+ },
1985
+ {
1986
+ "epoch": 3.608626198083067,
1987
+ "grad_norm": 0.039939236612970476,
1988
+ "learning_rate": 2.5131974864734066e-06,
1989
+ "loss": 0.0794,
1990
+ "step": 564
1991
+ },
1992
+ {
1993
+ "epoch": 3.621405750798722,
1994
+ "grad_norm": 0.040388305870748,
1995
+ "learning_rate": 2.349746591336405e-06,
1996
+ "loss": 0.0718,
1997
+ "step": 566
1998
+ },
1999
+ {
2000
+ "epoch": 3.6341853035143767,
2001
+ "grad_norm": 0.04232813426430434,
2002
+ "learning_rate": 2.191663263037458e-06,
2003
+ "loss": 0.0769,
2004
+ "step": 568
2005
+ },
2006
+ {
2007
+ "epoch": 3.646964856230032,
2008
+ "grad_norm": 0.04213845492527589,
2009
+ "learning_rate": 2.0389653088865036e-06,
2010
+ "loss": 0.0728,
2011
+ "step": 570
2012
+ },
2013
+ {
2014
+ "epoch": 3.659744408945687,
2015
+ "grad_norm": 0.04098999517730541,
2016
+ "learning_rate": 1.8916699295575324e-06,
2017
+ "loss": 0.0724,
2018
+ "step": 572
2019
+ },
2020
+ {
2021
+ "epoch": 3.6725239616613417,
2022
+ "grad_norm": 0.037533240934183365,
2023
+ "learning_rate": 1.7497937171510547e-06,
2024
+ "loss": 0.0709,
2025
+ "step": 574
2026
+ },
2027
+ {
2028
+ "epoch": 3.6853035143769968,
2029
+ "grad_norm": 0.039040304607963414,
2030
+ "learning_rate": 1.6133526533250565e-06,
2031
+ "loss": 0.0756,
2032
+ "step": 576
2033
+ },
2034
+ {
2035
+ "epoch": 3.698083067092652,
2036
+ "grad_norm": 0.04065729024121047,
2037
+ "learning_rate": 1.4823621074947503e-06,
2038
+ "loss": 0.0774,
2039
+ "step": 578
2040
+ },
2041
+ {
2042
+ "epoch": 3.7108626198083066,
2043
+ "grad_norm": 0.04252602887603373,
2044
+ "learning_rate": 1.3568368351012717e-06,
2045
+ "loss": 0.0824,
2046
+ "step": 580
2047
+ },
2048
+ {
2049
+ "epoch": 3.7236421725239617,
2050
+ "grad_norm": 0.04343672134882273,
2051
+ "learning_rate": 1.236790975949592e-06,
2052
+ "loss": 0.074,
2053
+ "step": 582
2054
+ },
2055
+ {
2056
+ "epoch": 3.736421725239617,
2057
+ "grad_norm": 0.0403766223584342,
2058
+ "learning_rate": 1.1222380526156928e-06,
2059
+ "loss": 0.0755,
2060
+ "step": 584
2061
+ },
2062
+ {
2063
+ "epoch": 3.7492012779552715,
2064
+ "grad_norm": 0.04234625541762105,
2065
+ "learning_rate": 1.0131909689233442e-06,
2066
+ "loss": 0.0814,
2067
+ "step": 586
2068
+ },
2069
+ {
2070
+ "epoch": 3.7619808306709266,
2071
+ "grad_norm": 0.03861507912847567,
2072
+ "learning_rate": 9.096620084905472e-07,
2073
+ "loss": 0.0664,
2074
+ "step": 588
2075
+ },
2076
+ {
2077
+ "epoch": 3.7747603833865817,
2078
+ "grad_norm": 0.041892733843973705,
2079
+ "learning_rate": 8.11662833345822e-07,
2080
+ "loss": 0.0832,
2081
+ "step": 590
2082
+ },
2083
+ {
2084
+ "epoch": 3.7875399361022364,
2085
+ "grad_norm": 0.05413889236863839,
2086
+ "learning_rate": 7.192044826145771e-07,
2087
+ "loss": 0.0921,
2088
+ "step": 592
2089
+ },
2090
+ {
2091
+ "epoch": 3.8003194888178915,
2092
+ "grad_norm": 0.04010280150213322,
2093
+ "learning_rate": 6.322973712755697e-07,
2094
+ "loss": 0.0752,
2095
+ "step": 594
2096
+ },
2097
+ {
2098
+ "epoch": 3.813099041533546,
2099
+ "grad_norm": 0.04321423418162425,
2100
+ "learning_rate": 5.509512889877333e-07,
2101
+ "loss": 0.0781,
2102
+ "step": 596
2103
+ },
2104
+ {
2105
+ "epoch": 3.8258785942492013,
2106
+ "grad_norm": 0.04049679761598481,
2107
+ "learning_rate": 4.7517539898741524e-07,
2108
+ "loss": 0.0694,
2109
+ "step": 598
2110
+ },
2111
+ {
2112
+ "epoch": 3.838658146964856,
2113
+ "grad_norm": 0.04258434666712487,
2114
+ "learning_rate": 4.049782370561583e-07,
2115
+ "loss": 0.0756,
2116
+ "step": 600
2117
+ },
2118
+ {
2119
+ "epoch": 3.851437699680511,
2120
+ "grad_norm": 0.03927978960342531,
2121
+ "learning_rate": 3.4036771055923066e-07,
2122
+ "loss": 0.075,
2123
+ "step": 602
2124
+ },
2125
+ {
2126
+ "epoch": 3.864217252396166,
2127
+ "grad_norm": 0.04093422273122725,
2128
+ "learning_rate": 2.813510975548772e-07,
2129
+ "loss": 0.0793,
2130
+ "step": 604
2131
+ },
2132
+ {
2133
+ "epoch": 3.876996805111821,
2134
+ "grad_norm": 0.0433141394014271,
2135
+ "learning_rate": 2.2793504597447002e-07,
2136
+ "loss": 0.0796,
2137
+ "step": 606
2138
+ },
2139
+ {
2140
+ "epoch": 3.889776357827476,
2141
+ "grad_norm": 0.04198937065288365,
2142
+ "learning_rate": 1.8012557287367392e-07,
2143
+ "loss": 0.0753,
2144
+ "step": 608
2145
+ },
2146
+ {
2147
+ "epoch": 3.902555910543131,
2148
+ "grad_norm": 0.043002763720086865,
2149
+ "learning_rate": 1.379280637546443e-07,
2150
+ "loss": 0.0917,
2151
+ "step": 610
2152
+ },
2153
+ {
2154
+ "epoch": 3.915335463258786,
2155
+ "grad_norm": 0.042376326172823574,
2156
+ "learning_rate": 1.0134727195937333e-07,
2157
+ "loss": 0.0747,
2158
+ "step": 612
2159
+ },
2160
+ {
2161
+ "epoch": 3.928115015974441,
2162
+ "grad_norm": 0.040600294489722695,
2163
+ "learning_rate": 7.038731813426291e-08,
2164
+ "loss": 0.0714,
2165
+ "step": 614
2166
+ },
2167
+ {
2168
+ "epoch": 3.940894568690096,
2169
+ "grad_norm": 0.0395711578920217,
2170
+ "learning_rate": 4.5051689765929214e-08,
2171
+ "loss": 0.0801,
2172
+ "step": 616
2173
+ },
2174
+ {
2175
+ "epoch": 3.9536741214057507,
2176
+ "grad_norm": 0.03943811103107873,
2177
+ "learning_rate": 2.534324078837802e-08,
2178
+ "loss": 0.074,
2179
+ "step": 618
2180
+ },
2181
+ {
2182
+ "epoch": 3.966453674121406,
2183
+ "grad_norm": 0.041905340316324986,
2184
+ "learning_rate": 1.1264191261528557e-08,
2185
+ "loss": 0.0771,
2186
+ "step": 620
2187
+ },
2188
+ {
2189
+ "epoch": 3.979233226837061,
2190
+ "grad_norm": 0.06686218682304546,
2191
+ "learning_rate": 2.8161271211024633e-09,
2192
+ "loss": 0.0811,
2193
+ "step": 622
2194
+ },
2195
+ {
2196
+ "epoch": 3.9920127795527156,
2197
+ "grad_norm": 0.03876030687059135,
2198
+ "learning_rate": 0.0,
2199
+ "loss": 0.076,
2200
+ "step": 624
2201
+ }
2202
+ ],
2203
+ "logging_steps": 2,
2204
+ "max_steps": 624,
2205
+ "num_input_tokens_seen": 0,
2206
+ "num_train_epochs": 4,
2207
+ "save_steps": 500,
2208
+ "stateful_callbacks": {
2209
+ "TrainerControl": {
2210
+ "args": {
2211
+ "should_epoch_stop": false,
2212
+ "should_evaluate": false,
2213
+ "should_log": false,
2214
+ "should_save": true,
2215
+ "should_training_stop": true
2216
+ },
2217
+ "attributes": {}
2218
+ }
2219
+ },
2220
+ "total_flos": 2.5262683933881926e+19,
2221
+ "train_batch_size": 2,
2222
+ "trial_name": null,
2223
+ "trial_params": null
2224
+ }
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbc6c15cc6de09ed10b88b2483f84e85b7b1119b7dd63c1e2d29d8ad02f02dab
3
+ size 7352
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)