Upload folder using huggingface_hub
Browse files- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/config.json +30 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/generation_config.json +10 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/latest +1 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00001-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00002-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00003-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00004-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00005-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00006-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model.safetensors.index.json +370 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_0.pth +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_1.pth +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_2.pth +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_3.pth +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_4.pth +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_5.pth +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_6.pth +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_7.pth +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/scheduler.pt +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/special_tokens_map.json +24 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/tokenizer.json +0 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/tokenizer.model +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/tokenizer_config.json +43 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/trainer_state.json +1678 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/training_args.bin +3 -0
- uccix_v2_instruct_191224_lr1e-5/checkpoint-468/zero_to_fp32.py +592 -0
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/data/tungtran/output_model/irish_llama2_data_v3/checkpoint-2200",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"head_dim": 128,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 5120,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 13824,
|
15 |
+
"max_position_embeddings": 4096,
|
16 |
+
"mlp_bias": false,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 40,
|
19 |
+
"num_hidden_layers": 40,
|
20 |
+
"num_key_value_heads": 40,
|
21 |
+
"pretraining_tp": 1,
|
22 |
+
"rms_norm_eps": 1e-05,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rope_theta": 10000.0,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.46.3",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 35483
|
30 |
+
}
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_length": 4096,
|
6 |
+
"pad_token_id": 0,
|
7 |
+
"temperature": 0.6,
|
8 |
+
"top_p": 0.9,
|
9 |
+
"transformers_version": "4.46.3"
|
10 |
+
}
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step468
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:778ffbb201fb5d8b34007ce9beb7aa6ee27b9fdf93afb9487335ae5034a6207a
|
3 |
+
size 4961502800
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4be4d447ccde89310586ac3366847644ae24227df9d270989188081dc8dc267e
|
3 |
+
size 4970422232
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33eb02446aedff576515cc4179a78f6d30a3c5bb745c5c03cd11f9f5d9bbb298
|
3 |
+
size 4881272584
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ccec4caa4064809e0139917bf9414ea9d96b0ca2f4da139699f16b1e7800c11
|
3 |
+
size 4933722216
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c785c30346bea7c9755de83f431c1275ee4402418149151173e23164ed817b86
|
3 |
+
size 4933722208
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f1aa84eeeb3bd2d7c69abb80ec962a9a8b1976ce4cf60cdacd5127376eb120c
|
3 |
+
size 1422460712
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 26103060480
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
368 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
369 |
+
}
|
370 |
+
}
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2509d80b2f762431b21d8b2c0c505ad9466727f26605d6289b24caab9e57d598
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d007e5981734d70061da15efdb1a39099608c994c62c0738b7f2a638c356d81
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:357c4b48f9bb8f2836e53e08200cd2708d7bf7452bc78487820e53dba5c27bfa
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7a1639367b5cd82b6484fda514185cedc094e11dece2ca3a73315ce86bb26de
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1a77cc4bc0f599af40e9f903af6ac08f0ae8fef97d94a88f48f641a3713f4f1
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b03a7773b00d4512901ae179ba5ed5663a6b3cbedf9f220e73ae3eb4c302cd67
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73ca7c993e1a6bbf092680f5b2852fee8060d9c838ce0d2a6c9562a2784e5069
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a649cc11674a37b0d4fa80a9f131068b7297e43d745bf8b76d0dac3c4db6a7b
|
3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac05d6263d9cededc202227cd6bb80549724eb1af63b29dc951d4d30bd4930a1
|
3 |
+
size 1064
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d1f5d0342153f3e3bbb37b2026ba64d0b25583df351345f87cd8b9a5658c2fb
|
3 |
+
size 558602
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.' %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/trainer_state.json
ADDED
@@ -0,0 +1,1678 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.9936102236421727,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 468,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.006389776357827476,
|
13 |
+
"grad_norm": 2.055807172999327,
|
14 |
+
"learning_rate": 1.282051282051282e-07,
|
15 |
+
"loss": 1.695,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.012779552715654952,
|
20 |
+
"grad_norm": 2.0619830708339495,
|
21 |
+
"learning_rate": 2.564102564102564e-07,
|
22 |
+
"loss": 1.6748,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.025559105431309903,
|
27 |
+
"grad_norm": 2.713640119093072,
|
28 |
+
"learning_rate": 5.128205128205128e-07,
|
29 |
+
"loss": 1.7543,
|
30 |
+
"step": 4
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.038338658146964855,
|
34 |
+
"grad_norm": 2.7787517219371667,
|
35 |
+
"learning_rate": 7.692307692307694e-07,
|
36 |
+
"loss": 1.7052,
|
37 |
+
"step": 6
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.051118210862619806,
|
41 |
+
"grad_norm": 2.28188247274044,
|
42 |
+
"learning_rate": 1.0256410256410257e-06,
|
43 |
+
"loss": 1.7023,
|
44 |
+
"step": 8
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.06389776357827476,
|
48 |
+
"grad_norm": 2.4315142127580045,
|
49 |
+
"learning_rate": 1.282051282051282e-06,
|
50 |
+
"loss": 1.7215,
|
51 |
+
"step": 10
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.07667731629392971,
|
55 |
+
"grad_norm": 1.8730980445467513,
|
56 |
+
"learning_rate": 1.5384615384615387e-06,
|
57 |
+
"loss": 1.6382,
|
58 |
+
"step": 12
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.08945686900958466,
|
62 |
+
"grad_norm": 1.350046171341438,
|
63 |
+
"learning_rate": 1.794871794871795e-06,
|
64 |
+
"loss": 1.5726,
|
65 |
+
"step": 14
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.10223642172523961,
|
69 |
+
"grad_norm": 0.9126399700382735,
|
70 |
+
"learning_rate": 2.0512820512820513e-06,
|
71 |
+
"loss": 1.5539,
|
72 |
+
"step": 16
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.11501597444089456,
|
76 |
+
"grad_norm": 0.5310525834146045,
|
77 |
+
"learning_rate": 2.307692307692308e-06,
|
78 |
+
"loss": 1.4776,
|
79 |
+
"step": 18
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.12779552715654952,
|
83 |
+
"grad_norm": 0.3699817611010441,
|
84 |
+
"learning_rate": 2.564102564102564e-06,
|
85 |
+
"loss": 1.4255,
|
86 |
+
"step": 20
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.14057507987220447,
|
90 |
+
"grad_norm": 0.3578249477320206,
|
91 |
+
"learning_rate": 2.8205128205128207e-06,
|
92 |
+
"loss": 1.39,
|
93 |
+
"step": 22
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.15335463258785942,
|
97 |
+
"grad_norm": 0.29549280933458616,
|
98 |
+
"learning_rate": 3.0769230769230774e-06,
|
99 |
+
"loss": 1.3752,
|
100 |
+
"step": 24
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.16613418530351437,
|
104 |
+
"grad_norm": 0.3738398649251706,
|
105 |
+
"learning_rate": 3.3333333333333333e-06,
|
106 |
+
"loss": 1.3474,
|
107 |
+
"step": 26
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.17891373801916932,
|
111 |
+
"grad_norm": 0.375163024245781,
|
112 |
+
"learning_rate": 3.58974358974359e-06,
|
113 |
+
"loss": 1.321,
|
114 |
+
"step": 28
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.19169329073482427,
|
118 |
+
"grad_norm": 0.28197926317237565,
|
119 |
+
"learning_rate": 3.846153846153847e-06,
|
120 |
+
"loss": 1.2797,
|
121 |
+
"step": 30
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.20447284345047922,
|
125 |
+
"grad_norm": 0.20848720674536458,
|
126 |
+
"learning_rate": 4.102564102564103e-06,
|
127 |
+
"loss": 1.2788,
|
128 |
+
"step": 32
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.21725239616613418,
|
132 |
+
"grad_norm": 0.2061126173314709,
|
133 |
+
"learning_rate": 4.358974358974359e-06,
|
134 |
+
"loss": 1.2864,
|
135 |
+
"step": 34
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.23003194888178913,
|
139 |
+
"grad_norm": 0.1978997937482167,
|
140 |
+
"learning_rate": 4.615384615384616e-06,
|
141 |
+
"loss": 1.2748,
|
142 |
+
"step": 36
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.24281150159744408,
|
146 |
+
"grad_norm": 0.14694306639698337,
|
147 |
+
"learning_rate": 4.871794871794872e-06,
|
148 |
+
"loss": 1.2576,
|
149 |
+
"step": 38
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.25559105431309903,
|
153 |
+
"grad_norm": 0.148218022844095,
|
154 |
+
"learning_rate": 5.128205128205128e-06,
|
155 |
+
"loss": 1.2141,
|
156 |
+
"step": 40
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.268370607028754,
|
160 |
+
"grad_norm": 0.1468062532086508,
|
161 |
+
"learning_rate": 5.384615384615385e-06,
|
162 |
+
"loss": 1.2002,
|
163 |
+
"step": 42
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.28115015974440893,
|
167 |
+
"grad_norm": 0.1044672455499073,
|
168 |
+
"learning_rate": 5.641025641025641e-06,
|
169 |
+
"loss": 1.2066,
|
170 |
+
"step": 44
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.2939297124600639,
|
174 |
+
"grad_norm": 0.10230074959226108,
|
175 |
+
"learning_rate": 5.897435897435898e-06,
|
176 |
+
"loss": 1.2093,
|
177 |
+
"step": 46
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.30670926517571884,
|
181 |
+
"grad_norm": 0.10835321687062423,
|
182 |
+
"learning_rate": 6.153846153846155e-06,
|
183 |
+
"loss": 1.1781,
|
184 |
+
"step": 48
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.3194888178913738,
|
188 |
+
"grad_norm": 0.08591864999573447,
|
189 |
+
"learning_rate": 6.410256410256412e-06,
|
190 |
+
"loss": 1.1987,
|
191 |
+
"step": 50
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.33226837060702874,
|
195 |
+
"grad_norm": 0.10170463928385623,
|
196 |
+
"learning_rate": 6.666666666666667e-06,
|
197 |
+
"loss": 1.1597,
|
198 |
+
"step": 52
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.3450479233226837,
|
202 |
+
"grad_norm": 0.08703108140215988,
|
203 |
+
"learning_rate": 6.923076923076923e-06,
|
204 |
+
"loss": 1.1569,
|
205 |
+
"step": 54
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.35782747603833864,
|
209 |
+
"grad_norm": 0.09437727868865202,
|
210 |
+
"learning_rate": 7.17948717948718e-06,
|
211 |
+
"loss": 1.1461,
|
212 |
+
"step": 56
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.3706070287539936,
|
216 |
+
"grad_norm": 0.08627521436960119,
|
217 |
+
"learning_rate": 7.435897435897437e-06,
|
218 |
+
"loss": 1.1509,
|
219 |
+
"step": 58
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.38338658146964855,
|
223 |
+
"grad_norm": 0.16763960045834678,
|
224 |
+
"learning_rate": 7.692307692307694e-06,
|
225 |
+
"loss": 1.1816,
|
226 |
+
"step": 60
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.3961661341853035,
|
230 |
+
"grad_norm": 0.09148986628797769,
|
231 |
+
"learning_rate": 7.948717948717949e-06,
|
232 |
+
"loss": 1.1353,
|
233 |
+
"step": 62
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.40894568690095845,
|
237 |
+
"grad_norm": 0.08816273706390138,
|
238 |
+
"learning_rate": 8.205128205128205e-06,
|
239 |
+
"loss": 1.1144,
|
240 |
+
"step": 64
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.4217252396166134,
|
244 |
+
"grad_norm": 0.07490136953022462,
|
245 |
+
"learning_rate": 8.461538461538462e-06,
|
246 |
+
"loss": 1.1337,
|
247 |
+
"step": 66
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.43450479233226835,
|
251 |
+
"grad_norm": 0.0726514548363597,
|
252 |
+
"learning_rate": 8.717948717948719e-06,
|
253 |
+
"loss": 1.141,
|
254 |
+
"step": 68
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.4472843450479233,
|
258 |
+
"grad_norm": 0.07842873764946051,
|
259 |
+
"learning_rate": 8.974358974358976e-06,
|
260 |
+
"loss": 1.1426,
|
261 |
+
"step": 70
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.46006389776357826,
|
265 |
+
"grad_norm": 0.07307353878556878,
|
266 |
+
"learning_rate": 9.230769230769232e-06,
|
267 |
+
"loss": 1.1314,
|
268 |
+
"step": 72
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.4728434504792332,
|
272 |
+
"grad_norm": 0.07464837020208384,
|
273 |
+
"learning_rate": 9.487179487179487e-06,
|
274 |
+
"loss": 1.106,
|
275 |
+
"step": 74
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.48562300319488816,
|
279 |
+
"grad_norm": 0.07682927536881419,
|
280 |
+
"learning_rate": 9.743589743589744e-06,
|
281 |
+
"loss": 1.1146,
|
282 |
+
"step": 76
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.4984025559105431,
|
286 |
+
"grad_norm": 0.07349178847988343,
|
287 |
+
"learning_rate": 1e-05,
|
288 |
+
"loss": 1.1243,
|
289 |
+
"step": 78
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.5111821086261981,
|
293 |
+
"grad_norm": 0.0716279769265826,
|
294 |
+
"learning_rate": 9.99995506314361e-06,
|
295 |
+
"loss": 1.106,
|
296 |
+
"step": 80
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.5239616613418531,
|
300 |
+
"grad_norm": 0.07985106483800218,
|
301 |
+
"learning_rate": 9.99982025338217e-06,
|
302 |
+
"loss": 1.0953,
|
303 |
+
"step": 82
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.536741214057508,
|
307 |
+
"grad_norm": 0.07973069799195517,
|
308 |
+
"learning_rate": 9.999595573138845e-06,
|
309 |
+
"loss": 1.1047,
|
310 |
+
"step": 84
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.549520766773163,
|
314 |
+
"grad_norm": 0.07769113605735692,
|
315 |
+
"learning_rate": 9.99928102645221e-06,
|
316 |
+
"loss": 1.1049,
|
317 |
+
"step": 86
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.5623003194888179,
|
321 |
+
"grad_norm": 0.07650118671106154,
|
322 |
+
"learning_rate": 9.99887661897616e-06,
|
323 |
+
"loss": 1.0801,
|
324 |
+
"step": 88
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.5750798722044729,
|
328 |
+
"grad_norm": 0.0643603309848082,
|
329 |
+
"learning_rate": 9.99838235797981e-06,
|
330 |
+
"loss": 1.097,
|
331 |
+
"step": 90
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.5878594249201278,
|
335 |
+
"grad_norm": 0.07041897634176414,
|
336 |
+
"learning_rate": 9.997798252347382e-06,
|
337 |
+
"loss": 1.0842,
|
338 |
+
"step": 92
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.6006389776357828,
|
342 |
+
"grad_norm": 0.06665938409713099,
|
343 |
+
"learning_rate": 9.99712431257802e-06,
|
344 |
+
"loss": 1.0871,
|
345 |
+
"step": 94
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.6134185303514377,
|
349 |
+
"grad_norm": 0.07351270527817233,
|
350 |
+
"learning_rate": 9.996360550785619e-06,
|
351 |
+
"loss": 1.0905,
|
352 |
+
"step": 96
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.6261980830670927,
|
356 |
+
"grad_norm": 0.06482669705796376,
|
357 |
+
"learning_rate": 9.9955069806986e-06,
|
358 |
+
"loss": 1.0729,
|
359 |
+
"step": 98
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.6389776357827476,
|
363 |
+
"grad_norm": 0.06311878917729494,
|
364 |
+
"learning_rate": 9.994563617659665e-06,
|
365 |
+
"loss": 1.0608,
|
366 |
+
"step": 100
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.6517571884984026,
|
370 |
+
"grad_norm": 0.07132649561595898,
|
371 |
+
"learning_rate": 9.993530478625524e-06,
|
372 |
+
"loss": 1.0648,
|
373 |
+
"step": 102
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.6645367412140575,
|
377 |
+
"grad_norm": 0.06507293693787788,
|
378 |
+
"learning_rate": 9.992407582166582e-06,
|
379 |
+
"loss": 1.0428,
|
380 |
+
"step": 104
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.6773162939297125,
|
384 |
+
"grad_norm": 0.06495408671246342,
|
385 |
+
"learning_rate": 9.991194948466615e-06,
|
386 |
+
"loss": 1.0725,
|
387 |
+
"step": 106
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.6900958466453674,
|
391 |
+
"grad_norm": 0.06960119096523358,
|
392 |
+
"learning_rate": 9.989892599322404e-06,
|
393 |
+
"loss": 1.059,
|
394 |
+
"step": 108
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.7028753993610224,
|
398 |
+
"grad_norm": 0.06678653497671336,
|
399 |
+
"learning_rate": 9.988500558143337e-06,
|
400 |
+
"loss": 1.0645,
|
401 |
+
"step": 110
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.7156549520766773,
|
405 |
+
"grad_norm": 0.06356475510898561,
|
406 |
+
"learning_rate": 9.987018849950996e-06,
|
407 |
+
"loss": 1.0456,
|
408 |
+
"step": 112
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.7284345047923323,
|
412 |
+
"grad_norm": 0.06541109148868933,
|
413 |
+
"learning_rate": 9.985447501378706e-06,
|
414 |
+
"loss": 1.0664,
|
415 |
+
"step": 114
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.7412140575079872,
|
419 |
+
"grad_norm": 0.06677420023722364,
|
420 |
+
"learning_rate": 9.983786540671052e-06,
|
421 |
+
"loss": 1.0329,
|
422 |
+
"step": 116
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.7539936102236422,
|
426 |
+
"grad_norm": 0.06819775252703462,
|
427 |
+
"learning_rate": 9.982035997683372e-06,
|
428 |
+
"loss": 1.0374,
|
429 |
+
"step": 118
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.7667731629392971,
|
433 |
+
"grad_norm": 0.0629291663919797,
|
434 |
+
"learning_rate": 9.980195903881231e-06,
|
435 |
+
"loss": 1.0665,
|
436 |
+
"step": 120
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.7795527156549521,
|
440 |
+
"grad_norm": 0.06922951247948388,
|
441 |
+
"learning_rate": 9.978266292339838e-06,
|
442 |
+
"loss": 1.0258,
|
443 |
+
"step": 122
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.792332268370607,
|
447 |
+
"grad_norm": 0.06458224821875515,
|
448 |
+
"learning_rate": 9.976247197743465e-06,
|
449 |
+
"loss": 1.0368,
|
450 |
+
"step": 124
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.805111821086262,
|
454 |
+
"grad_norm": 0.06056072044117011,
|
455 |
+
"learning_rate": 9.974138656384815e-06,
|
456 |
+
"loss": 1.0368,
|
457 |
+
"step": 126
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.8178913738019169,
|
461 |
+
"grad_norm": 0.06218269287622606,
|
462 |
+
"learning_rate": 9.97194070616438e-06,
|
463 |
+
"loss": 1.0203,
|
464 |
+
"step": 128
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.8306709265175719,
|
468 |
+
"grad_norm": 0.07088500071993263,
|
469 |
+
"learning_rate": 9.969653386589749e-06,
|
470 |
+
"loss": 1.0401,
|
471 |
+
"step": 130
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.8434504792332268,
|
475 |
+
"grad_norm": 0.0793056560286898,
|
476 |
+
"learning_rate": 9.967276738774897e-06,
|
477 |
+
"loss": 1.033,
|
478 |
+
"step": 132
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.8562300319488818,
|
482 |
+
"grad_norm": 0.07124122803857391,
|
483 |
+
"learning_rate": 9.964810805439464e-06,
|
484 |
+
"loss": 1.0382,
|
485 |
+
"step": 134
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.8690095846645367,
|
489 |
+
"grad_norm": 0.06569660589004858,
|
490 |
+
"learning_rate": 9.962255630907964e-06,
|
491 |
+
"loss": 1.0142,
|
492 |
+
"step": 136
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.8817891373801917,
|
496 |
+
"grad_norm": 0.06473404088250143,
|
497 |
+
"learning_rate": 9.959611261108999e-06,
|
498 |
+
"loss": 1.0426,
|
499 |
+
"step": 138
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.8945686900958466,
|
503 |
+
"grad_norm": 0.07195889745904455,
|
504 |
+
"learning_rate": 9.956877743574437e-06,
|
505 |
+
"loss": 1.0205,
|
506 |
+
"step": 140
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.9073482428115016,
|
510 |
+
"grad_norm": 0.06898817679598546,
|
511 |
+
"learning_rate": 9.954055127438554e-06,
|
512 |
+
"loss": 1.0133,
|
513 |
+
"step": 142
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.9201277955271565,
|
517 |
+
"grad_norm": 0.07559846293275942,
|
518 |
+
"learning_rate": 9.951143463437145e-06,
|
519 |
+
"loss": 1.0168,
|
520 |
+
"step": 144
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.9329073482428115,
|
524 |
+
"grad_norm": 0.07117773396387629,
|
525 |
+
"learning_rate": 9.948142803906623e-06,
|
526 |
+
"loss": 1.0039,
|
527 |
+
"step": 146
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.9456869009584664,
|
531 |
+
"grad_norm": 0.06414039585607693,
|
532 |
+
"learning_rate": 9.94505320278307e-06,
|
533 |
+
"loss": 1.0281,
|
534 |
+
"step": 148
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.9584664536741214,
|
538 |
+
"grad_norm": 0.07046019347974852,
|
539 |
+
"learning_rate": 9.94187471560127e-06,
|
540 |
+
"loss": 1.0256,
|
541 |
+
"step": 150
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.9712460063897763,
|
545 |
+
"grad_norm": 0.06737566318066629,
|
546 |
+
"learning_rate": 9.938607399493714e-06,
|
547 |
+
"loss": 1.0266,
|
548 |
+
"step": 152
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.9840255591054313,
|
552 |
+
"grad_norm": 0.06699946284561666,
|
553 |
+
"learning_rate": 9.935251313189564e-06,
|
554 |
+
"loss": 1.018,
|
555 |
+
"step": 154
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.9968051118210862,
|
559 |
+
"grad_norm": 0.06425061877237022,
|
560 |
+
"learning_rate": 9.931806517013612e-06,
|
561 |
+
"loss": 1.0232,
|
562 |
+
"step": 156
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.011182108626198,
|
566 |
+
"grad_norm": 0.09907516110524082,
|
567 |
+
"learning_rate": 9.92827307288518e-06,
|
568 |
+
"loss": 1.3609,
|
569 |
+
"step": 158
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.023961661341853,
|
573 |
+
"grad_norm": 0.07415902760603522,
|
574 |
+
"learning_rate": 9.924651044317017e-06,
|
575 |
+
"loss": 0.9496,
|
576 |
+
"step": 160
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.036741214057508,
|
580 |
+
"grad_norm": 0.0662373551160772,
|
581 |
+
"learning_rate": 9.920940496414153e-06,
|
582 |
+
"loss": 0.9752,
|
583 |
+
"step": 162
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.049520766773163,
|
587 |
+
"grad_norm": 0.07089817007291226,
|
588 |
+
"learning_rate": 9.917141495872733e-06,
|
589 |
+
"loss": 0.9842,
|
590 |
+
"step": 164
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.0623003194888179,
|
594 |
+
"grad_norm": 0.07572146019295103,
|
595 |
+
"learning_rate": 9.913254110978812e-06,
|
596 |
+
"loss": 0.9634,
|
597 |
+
"step": 166
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.0750798722044728,
|
601 |
+
"grad_norm": 0.13090482009861787,
|
602 |
+
"learning_rate": 9.909278411607134e-06,
|
603 |
+
"loss": 0.9587,
|
604 |
+
"step": 168
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 1.0878594249201279,
|
608 |
+
"grad_norm": 0.07240483127809519,
|
609 |
+
"learning_rate": 9.90521446921987e-06,
|
610 |
+
"loss": 0.9451,
|
611 |
+
"step": 170
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 1.1006389776357828,
|
615 |
+
"grad_norm": 0.06956480741239271,
|
616 |
+
"learning_rate": 9.90106235686534e-06,
|
617 |
+
"loss": 0.9618,
|
618 |
+
"step": 172
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 1.1134185303514377,
|
622 |
+
"grad_norm": 0.06957125058770244,
|
623 |
+
"learning_rate": 9.896822149176695e-06,
|
624 |
+
"loss": 0.9488,
|
625 |
+
"step": 174
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 1.1261980830670926,
|
629 |
+
"grad_norm": 0.06928591522513586,
|
630 |
+
"learning_rate": 9.892493922370575e-06,
|
631 |
+
"loss": 0.9811,
|
632 |
+
"step": 176
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.1389776357827477,
|
636 |
+
"grad_norm": 0.07118250896901829,
|
637 |
+
"learning_rate": 9.888077754245741e-06,
|
638 |
+
"loss": 0.9453,
|
639 |
+
"step": 178
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.1517571884984026,
|
643 |
+
"grad_norm": 0.06924103852362032,
|
644 |
+
"learning_rate": 9.883573724181683e-06,
|
645 |
+
"loss": 0.9621,
|
646 |
+
"step": 180
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.1645367412140575,
|
650 |
+
"grad_norm": 0.07320566404171391,
|
651 |
+
"learning_rate": 9.878981913137178e-06,
|
652 |
+
"loss": 0.9592,
|
653 |
+
"step": 182
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 1.1773162939297124,
|
657 |
+
"grad_norm": 0.07834944252802674,
|
658 |
+
"learning_rate": 9.87430240364885e-06,
|
659 |
+
"loss": 0.9565,
|
660 |
+
"step": 184
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 1.1900958466453675,
|
664 |
+
"grad_norm": 0.06778631059512405,
|
665 |
+
"learning_rate": 9.869535279829674e-06,
|
666 |
+
"loss": 0.9532,
|
667 |
+
"step": 186
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 1.2028753993610224,
|
671 |
+
"grad_norm": 0.06492444701831263,
|
672 |
+
"learning_rate": 9.864680627367476e-06,
|
673 |
+
"loss": 0.9502,
|
674 |
+
"step": 188
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.2156549520766773,
|
678 |
+
"grad_norm": 0.07215071942019542,
|
679 |
+
"learning_rate": 9.859738533523384e-06,
|
680 |
+
"loss": 0.9334,
|
681 |
+
"step": 190
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.2284345047923322,
|
685 |
+
"grad_norm": 0.07692962165173596,
|
686 |
+
"learning_rate": 9.854709087130261e-06,
|
687 |
+
"loss": 0.9285,
|
688 |
+
"step": 192
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.2412140575079873,
|
692 |
+
"grad_norm": 0.07144733289845186,
|
693 |
+
"learning_rate": 9.849592378591113e-06,
|
694 |
+
"loss": 0.9553,
|
695 |
+
"step": 194
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 1.2539936102236422,
|
699 |
+
"grad_norm": 0.07083601337037776,
|
700 |
+
"learning_rate": 9.844388499877457e-06,
|
701 |
+
"loss": 0.9328,
|
702 |
+
"step": 196
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 1.266773162939297,
|
706 |
+
"grad_norm": 0.07316320243317584,
|
707 |
+
"learning_rate": 9.839097544527674e-06,
|
708 |
+
"loss": 0.935,
|
709 |
+
"step": 198
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 1.279552715654952,
|
713 |
+
"grad_norm": 0.0695208433301601,
|
714 |
+
"learning_rate": 9.833719607645325e-06,
|
715 |
+
"loss": 0.9359,
|
716 |
+
"step": 200
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.292332268370607,
|
720 |
+
"grad_norm": 0.06969390398034943,
|
721 |
+
"learning_rate": 9.82825478589744e-06,
|
722 |
+
"loss": 0.9253,
|
723 |
+
"step": 202
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.305111821086262,
|
727 |
+
"grad_norm": 0.07197337129595487,
|
728 |
+
"learning_rate": 9.822703177512783e-06,
|
729 |
+
"loss": 0.9279,
|
730 |
+
"step": 204
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.317891373801917,
|
734 |
+
"grad_norm": 0.07293955629391159,
|
735 |
+
"learning_rate": 9.817064882280085e-06,
|
736 |
+
"loss": 0.9113,
|
737 |
+
"step": 206
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 1.330670926517572,
|
741 |
+
"grad_norm": 0.0662084834618456,
|
742 |
+
"learning_rate": 9.811340001546252e-06,
|
743 |
+
"loss": 0.9412,
|
744 |
+
"step": 208
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.343450479233227,
|
748 |
+
"grad_norm": 0.06897239157709753,
|
749 |
+
"learning_rate": 9.805528638214543e-06,
|
750 |
+
"loss": 0.9138,
|
751 |
+
"step": 210
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.3562300319488818,
|
755 |
+
"grad_norm": 0.07764173779556026,
|
756 |
+
"learning_rate": 9.799630896742716e-06,
|
757 |
+
"loss": 0.9264,
|
758 |
+
"step": 212
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.3690095846645367,
|
762 |
+
"grad_norm": 0.06786942257491788,
|
763 |
+
"learning_rate": 9.793646883141155e-06,
|
764 |
+
"loss": 0.9132,
|
765 |
+
"step": 214
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.3817891373801916,
|
769 |
+
"grad_norm": 0.07299256618164499,
|
770 |
+
"learning_rate": 9.787576704970965e-06,
|
771 |
+
"loss": 0.9162,
|
772 |
+
"step": 216
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 1.3945686900958467,
|
776 |
+
"grad_norm": 0.07374519229160317,
|
777 |
+
"learning_rate": 9.781420471342035e-06,
|
778 |
+
"loss": 0.9175,
|
779 |
+
"step": 218
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 1.4073482428115016,
|
783 |
+
"grad_norm": 0.0714888166966269,
|
784 |
+
"learning_rate": 9.77517829291108e-06,
|
785 |
+
"loss": 0.9189,
|
786 |
+
"step": 220
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 1.4201277955271565,
|
790 |
+
"grad_norm": 0.07380307635726331,
|
791 |
+
"learning_rate": 9.768850281879651e-06,
|
792 |
+
"loss": 0.9004,
|
793 |
+
"step": 222
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 1.4329073482428116,
|
797 |
+
"grad_norm": 0.07384614438950858,
|
798 |
+
"learning_rate": 9.762436551992117e-06,
|
799 |
+
"loss": 0.9122,
|
800 |
+
"step": 224
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 1.4456869009584665,
|
804 |
+
"grad_norm": 0.07399395278257612,
|
805 |
+
"learning_rate": 9.755937218533622e-06,
|
806 |
+
"loss": 0.9239,
|
807 |
+
"step": 226
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 1.4584664536741214,
|
811 |
+
"grad_norm": 0.07112586882023823,
|
812 |
+
"learning_rate": 9.74935239832801e-06,
|
813 |
+
"loss": 0.9061,
|
814 |
+
"step": 228
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 1.4712460063897763,
|
818 |
+
"grad_norm": 0.07140106100598033,
|
819 |
+
"learning_rate": 9.742682209735727e-06,
|
820 |
+
"loss": 0.898,
|
821 |
+
"step": 230
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 1.4840255591054312,
|
825 |
+
"grad_norm": 0.06999739915996865,
|
826 |
+
"learning_rate": 9.735926772651703e-06,
|
827 |
+
"loss": 0.9094,
|
828 |
+
"step": 232
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 1.4968051118210863,
|
832 |
+
"grad_norm": 0.069142775225698,
|
833 |
+
"learning_rate": 9.729086208503174e-06,
|
834 |
+
"loss": 0.9216,
|
835 |
+
"step": 234
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 1.5095846645367412,
|
839 |
+
"grad_norm": 0.07208310321027284,
|
840 |
+
"learning_rate": 9.722160640247523e-06,
|
841 |
+
"loss": 0.9271,
|
842 |
+
"step": 236
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 1.5223642172523961,
|
846 |
+
"grad_norm": 0.06937923111300098,
|
847 |
+
"learning_rate": 9.715150192370054e-06,
|
848 |
+
"loss": 0.8998,
|
849 |
+
"step": 238
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.5351437699680512,
|
853 |
+
"grad_norm": 0.06912137074594725,
|
854 |
+
"learning_rate": 9.708054990881763e-06,
|
855 |
+
"loss": 0.9098,
|
856 |
+
"step": 240
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 1.547923322683706,
|
860 |
+
"grad_norm": 0.0716336159595822,
|
861 |
+
"learning_rate": 9.700875163317072e-06,
|
862 |
+
"loss": 0.8953,
|
863 |
+
"step": 242
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 1.560702875399361,
|
867 |
+
"grad_norm": 0.07031864221802098,
|
868 |
+
"learning_rate": 9.693610838731532e-06,
|
869 |
+
"loss": 0.9007,
|
870 |
+
"step": 244
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 1.573482428115016,
|
874 |
+
"grad_norm": 0.07029805178803208,
|
875 |
+
"learning_rate": 9.686262147699507e-06,
|
876 |
+
"loss": 0.8923,
|
877 |
+
"step": 246
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.5862619808306708,
|
881 |
+
"grad_norm": 0.06898824959435941,
|
882 |
+
"learning_rate": 9.678829222311827e-06,
|
883 |
+
"loss": 0.8955,
|
884 |
+
"step": 248
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.599041533546326,
|
888 |
+
"grad_norm": 0.07545525981677151,
|
889 |
+
"learning_rate": 9.671312196173413e-06,
|
890 |
+
"loss": 0.9088,
|
891 |
+
"step": 250
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.6118210862619808,
|
895 |
+
"grad_norm": 0.09583645803024936,
|
896 |
+
"learning_rate": 9.663711204400872e-06,
|
897 |
+
"loss": 0.8813,
|
898 |
+
"step": 252
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.6246006389776357,
|
902 |
+
"grad_norm": 0.07052803439311484,
|
903 |
+
"learning_rate": 9.656026383620076e-06,
|
904 |
+
"loss": 0.9021,
|
905 |
+
"step": 254
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.6373801916932909,
|
909 |
+
"grad_norm": 0.07174435305622688,
|
910 |
+
"learning_rate": 9.6482578719637e-06,
|
911 |
+
"loss": 0.8862,
|
912 |
+
"step": 256
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.6501597444089455,
|
916 |
+
"grad_norm": 0.07238748413283501,
|
917 |
+
"learning_rate": 9.640405809068743e-06,
|
918 |
+
"loss": 0.9023,
|
919 |
+
"step": 258
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.6629392971246006,
|
923 |
+
"grad_norm": 0.0693406974968129,
|
924 |
+
"learning_rate": 9.632470336074009e-06,
|
925 |
+
"loss": 0.8892,
|
926 |
+
"step": 260
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.6757188498402555,
|
930 |
+
"grad_norm": 0.07327624706245563,
|
931 |
+
"learning_rate": 9.624451595617588e-06,
|
932 |
+
"loss": 0.8723,
|
933 |
+
"step": 262
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.6884984025559104,
|
937 |
+
"grad_norm": 0.07963678227936324,
|
938 |
+
"learning_rate": 9.616349731834271e-06,
|
939 |
+
"loss": 0.8772,
|
940 |
+
"step": 264
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.7012779552715656,
|
944 |
+
"grad_norm": 0.10357279860244777,
|
945 |
+
"learning_rate": 9.608164890352977e-06,
|
946 |
+
"loss": 0.8886,
|
947 |
+
"step": 266
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.7140575079872205,
|
951 |
+
"grad_norm": 0.0778385786289741,
|
952 |
+
"learning_rate": 9.599897218294122e-06,
|
953 |
+
"loss": 0.8771,
|
954 |
+
"step": 268
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.7268370607028753,
|
958 |
+
"grad_norm": 0.12610777062933215,
|
959 |
+
"learning_rate": 9.591546864266983e-06,
|
960 |
+
"loss": 0.8696,
|
961 |
+
"step": 270
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.7396166134185305,
|
965 |
+
"grad_norm": 0.07770370992844734,
|
966 |
+
"learning_rate": 9.583113978367026e-06,
|
967 |
+
"loss": 0.8924,
|
968 |
+
"step": 272
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.7523961661341851,
|
972 |
+
"grad_norm": 0.0806612698044715,
|
973 |
+
"learning_rate": 9.574598712173202e-06,
|
974 |
+
"loss": 0.8785,
|
975 |
+
"step": 274
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.7651757188498403,
|
979 |
+
"grad_norm": 0.0788062028214947,
|
980 |
+
"learning_rate": 9.56600121874523e-06,
|
981 |
+
"loss": 0.8547,
|
982 |
+
"step": 276
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.7779552715654952,
|
986 |
+
"grad_norm": 0.07731947968487375,
|
987 |
+
"learning_rate": 9.557321652620839e-06,
|
988 |
+
"loss": 0.8627,
|
989 |
+
"step": 278
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.79073482428115,
|
993 |
+
"grad_norm": 0.08190803662055393,
|
994 |
+
"learning_rate": 9.548560169812997e-06,
|
995 |
+
"loss": 0.8604,
|
996 |
+
"step": 280
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.8035143769968052,
|
1000 |
+
"grad_norm": 0.08260525401723899,
|
1001 |
+
"learning_rate": 9.539716927807102e-06,
|
1002 |
+
"loss": 0.8771,
|
1003 |
+
"step": 282
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.81629392971246,
|
1007 |
+
"grad_norm": 0.07784346527611156,
|
1008 |
+
"learning_rate": 9.530792085558151e-06,
|
1009 |
+
"loss": 0.886,
|
1010 |
+
"step": 284
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.829073482428115,
|
1014 |
+
"grad_norm": 0.07825987296583618,
|
1015 |
+
"learning_rate": 9.521785803487888e-06,
|
1016 |
+
"loss": 0.874,
|
1017 |
+
"step": 286
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.84185303514377,
|
1021 |
+
"grad_norm": 0.11504308003589604,
|
1022 |
+
"learning_rate": 9.512698243481914e-06,
|
1023 |
+
"loss": 0.8722,
|
1024 |
+
"step": 288
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.854632587859425,
|
1028 |
+
"grad_norm": 0.0706998555334881,
|
1029 |
+
"learning_rate": 9.50352956888678e-06,
|
1030 |
+
"loss": 0.8786,
|
1031 |
+
"step": 290
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.8674121405750799,
|
1035 |
+
"grad_norm": 0.08032750314446153,
|
1036 |
+
"learning_rate": 9.49427994450705e-06,
|
1037 |
+
"loss": 0.8665,
|
1038 |
+
"step": 292
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.880191693290735,
|
1042 |
+
"grad_norm": 0.12277701328436769,
|
1043 |
+
"learning_rate": 9.484949536602343e-06,
|
1044 |
+
"loss": 0.8569,
|
1045 |
+
"step": 294
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.8929712460063897,
|
1049 |
+
"grad_norm": 0.3133344539837911,
|
1050 |
+
"learning_rate": 9.47553851288434e-06,
|
1051 |
+
"loss": 0.8342,
|
1052 |
+
"step": 296
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.9057507987220448,
|
1056 |
+
"grad_norm": 0.07915849443417738,
|
1057 |
+
"learning_rate": 9.466047042513767e-06,
|
1058 |
+
"loss": 0.8722,
|
1059 |
+
"step": 298
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.9185303514376997,
|
1063 |
+
"grad_norm": 0.07388844698367664,
|
1064 |
+
"learning_rate": 9.45647529609736e-06,
|
1065 |
+
"loss": 0.8523,
|
1066 |
+
"step": 300
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.9313099041533546,
|
1070 |
+
"grad_norm": 0.07844075449799331,
|
1071 |
+
"learning_rate": 9.4468234456848e-06,
|
1072 |
+
"loss": 0.8684,
|
1073 |
+
"step": 302
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.9440894568690097,
|
1077 |
+
"grad_norm": 0.08117794295033834,
|
1078 |
+
"learning_rate": 9.437091664765611e-06,
|
1079 |
+
"loss": 0.8615,
|
1080 |
+
"step": 304
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.9568690095846646,
|
1084 |
+
"grad_norm": 0.0774054800449662,
|
1085 |
+
"learning_rate": 9.427280128266049e-06,
|
1086 |
+
"loss": 0.8519,
|
1087 |
+
"step": 306
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.9696485623003195,
|
1091 |
+
"grad_norm": 0.07348805569878705,
|
1092 |
+
"learning_rate": 9.41738901254596e-06,
|
1093 |
+
"loss": 0.838,
|
1094 |
+
"step": 308
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.9824281150159746,
|
1098 |
+
"grad_norm": 0.07814133587865683,
|
1099 |
+
"learning_rate": 9.4074184953956e-06,
|
1100 |
+
"loss": 0.8606,
|
1101 |
+
"step": 310
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.9952076677316293,
|
1105 |
+
"grad_norm": 0.07768240761269606,
|
1106 |
+
"learning_rate": 9.397368756032445e-06,
|
1107 |
+
"loss": 0.8363,
|
1108 |
+
"step": 312
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 2.009584664536741,
|
1112 |
+
"grad_norm": 0.08883201756641222,
|
1113 |
+
"learning_rate": 9.38723997509798e-06,
|
1114 |
+
"loss": 1.1054,
|
1115 |
+
"step": 314
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 2.022364217252396,
|
1119 |
+
"grad_norm": 0.09535044991933866,
|
1120 |
+
"learning_rate": 9.37703233465443e-06,
|
1121 |
+
"loss": 0.7809,
|
1122 |
+
"step": 316
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 2.0351437699680512,
|
1126 |
+
"grad_norm": 0.0899461173236908,
|
1127 |
+
"learning_rate": 9.366746018181503e-06,
|
1128 |
+
"loss": 0.7853,
|
1129 |
+
"step": 318
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 2.047923322683706,
|
1133 |
+
"grad_norm": 0.08699834395832293,
|
1134 |
+
"learning_rate": 9.356381210573092e-06,
|
1135 |
+
"loss": 0.7804,
|
1136 |
+
"step": 320
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 2.060702875399361,
|
1140 |
+
"grad_norm": 0.08621851686642173,
|
1141 |
+
"learning_rate": 9.345938098133946e-06,
|
1142 |
+
"loss": 0.7691,
|
1143 |
+
"step": 322
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 2.073482428115016,
|
1147 |
+
"grad_norm": 0.0878792614677104,
|
1148 |
+
"learning_rate": 9.33541686857632e-06,
|
1149 |
+
"loss": 0.7533,
|
1150 |
+
"step": 324
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 2.086261980830671,
|
1154 |
+
"grad_norm": 0.09394109098983003,
|
1155 |
+
"learning_rate": 9.324817711016609e-06,
|
1156 |
+
"loss": 0.7664,
|
1157 |
+
"step": 326
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 2.099041533546326,
|
1161 |
+
"grad_norm": 0.0852387489503167,
|
1162 |
+
"learning_rate": 9.31414081597194e-06,
|
1163 |
+
"loss": 0.7595,
|
1164 |
+
"step": 328
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 2.1118210862619806,
|
1168 |
+
"grad_norm": 0.08209521428452116,
|
1169 |
+
"learning_rate": 9.303386375356752e-06,
|
1170 |
+
"loss": 0.7343,
|
1171 |
+
"step": 330
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 2.1246006389776357,
|
1175 |
+
"grad_norm": 0.09206102053261545,
|
1176 |
+
"learning_rate": 9.292554582479349e-06,
|
1177 |
+
"loss": 0.7607,
|
1178 |
+
"step": 332
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 2.137380191693291,
|
1182 |
+
"grad_norm": 0.08213489385694336,
|
1183 |
+
"learning_rate": 9.281645632038417e-06,
|
1184 |
+
"loss": 0.7568,
|
1185 |
+
"step": 334
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 2.1501597444089455,
|
1189 |
+
"grad_norm": 0.08209078040215159,
|
1190 |
+
"learning_rate": 9.270659720119533e-06,
|
1191 |
+
"loss": 0.7521,
|
1192 |
+
"step": 336
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 2.1629392971246006,
|
1196 |
+
"grad_norm": 0.08511423465943413,
|
1197 |
+
"learning_rate": 9.259597044191635e-06,
|
1198 |
+
"loss": 0.7337,
|
1199 |
+
"step": 338
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 2.1757188498402558,
|
1203 |
+
"grad_norm": 0.10041875249218343,
|
1204 |
+
"learning_rate": 9.248457803103476e-06,
|
1205 |
+
"loss": 0.746,
|
1206 |
+
"step": 340
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 2.1884984025559104,
|
1210 |
+
"grad_norm": 0.08704563593245765,
|
1211 |
+
"learning_rate": 9.237242197080045e-06,
|
1212 |
+
"loss": 0.7353,
|
1213 |
+
"step": 342
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 2.2012779552715656,
|
1217 |
+
"grad_norm": 0.09348040659499997,
|
1218 |
+
"learning_rate": 9.225950427718974e-06,
|
1219 |
+
"loss": 0.7729,
|
1220 |
+
"step": 344
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 2.2140575079872207,
|
1224 |
+
"grad_norm": 0.08726341086333145,
|
1225 |
+
"learning_rate": 9.21458269798691e-06,
|
1226 |
+
"loss": 0.7517,
|
1227 |
+
"step": 346
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 2.2268370607028753,
|
1231 |
+
"grad_norm": 0.08436941838539416,
|
1232 |
+
"learning_rate": 9.203139212215868e-06,
|
1233 |
+
"loss": 0.7164,
|
1234 |
+
"step": 348
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 2.2396166134185305,
|
1238 |
+
"grad_norm": 0.0901609443354115,
|
1239 |
+
"learning_rate": 9.191620176099559e-06,
|
1240 |
+
"loss": 0.7407,
|
1241 |
+
"step": 350
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 2.252396166134185,
|
1245 |
+
"grad_norm": 0.08831943060441182,
|
1246 |
+
"learning_rate": 9.180025796689692e-06,
|
1247 |
+
"loss": 0.7323,
|
1248 |
+
"step": 352
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 2.2651757188498403,
|
1252 |
+
"grad_norm": 0.09564066419044027,
|
1253 |
+
"learning_rate": 9.168356282392253e-06,
|
1254 |
+
"loss": 0.7298,
|
1255 |
+
"step": 354
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 2.2779552715654954,
|
1259 |
+
"grad_norm": 0.08464582091102903,
|
1260 |
+
"learning_rate": 9.156611842963753e-06,
|
1261 |
+
"loss": 0.7314,
|
1262 |
+
"step": 356
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 2.29073482428115,
|
1266 |
+
"grad_norm": 0.08870915805306676,
|
1267 |
+
"learning_rate": 9.144792689507471e-06,
|
1268 |
+
"loss": 0.7217,
|
1269 |
+
"step": 358
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 2.303514376996805,
|
1273 |
+
"grad_norm": 0.08613473048448057,
|
1274 |
+
"learning_rate": 9.132899034469648e-06,
|
1275 |
+
"loss": 0.7402,
|
1276 |
+
"step": 360
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 2.31629392971246,
|
1280 |
+
"grad_norm": 0.08341988693841207,
|
1281 |
+
"learning_rate": 9.120931091635669e-06,
|
1282 |
+
"loss": 0.7467,
|
1283 |
+
"step": 362
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 2.329073482428115,
|
1287 |
+
"grad_norm": 0.08549945333901839,
|
1288 |
+
"learning_rate": 9.108889076126226e-06,
|
1289 |
+
"loss": 0.7207,
|
1290 |
+
"step": 364
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 2.34185303514377,
|
1294 |
+
"grad_norm": 0.08336828182020982,
|
1295 |
+
"learning_rate": 9.09677320439345e-06,
|
1296 |
+
"loss": 0.7385,
|
1297 |
+
"step": 366
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 2.3546325878594248,
|
1301 |
+
"grad_norm": 0.08408664059192321,
|
1302 |
+
"learning_rate": 9.084583694217012e-06,
|
1303 |
+
"loss": 0.7248,
|
1304 |
+
"step": 368
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 2.36741214057508,
|
1308 |
+
"grad_norm": 0.0886593849582559,
|
1309 |
+
"learning_rate": 9.072320764700223e-06,
|
1310 |
+
"loss": 0.7096,
|
1311 |
+
"step": 370
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 2.380191693290735,
|
1315 |
+
"grad_norm": 0.0839729222435562,
|
1316 |
+
"learning_rate": 9.059984636266082e-06,
|
1317 |
+
"loss": 0.7145,
|
1318 |
+
"step": 372
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 2.3929712460063897,
|
1322 |
+
"grad_norm": 0.08726323559997523,
|
1323 |
+
"learning_rate": 9.047575530653324e-06,
|
1324 |
+
"loss": 0.7418,
|
1325 |
+
"step": 374
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 2.405750798722045,
|
1329 |
+
"grad_norm": 0.08770732225914885,
|
1330 |
+
"learning_rate": 9.035093670912424e-06,
|
1331 |
+
"loss": 0.7196,
|
1332 |
+
"step": 376
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 2.4185303514377,
|
1336 |
+
"grad_norm": 0.08755818172663851,
|
1337 |
+
"learning_rate": 9.022539281401601e-06,
|
1338 |
+
"loss": 0.7061,
|
1339 |
+
"step": 378
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 2.4313099041533546,
|
1343 |
+
"grad_norm": 0.0854340041188233,
|
1344 |
+
"learning_rate": 9.009912587782772e-06,
|
1345 |
+
"loss": 0.6979,
|
1346 |
+
"step": 380
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 2.4440894568690097,
|
1350 |
+
"grad_norm": 0.09169828487884032,
|
1351 |
+
"learning_rate": 8.997213817017508e-06,
|
1352 |
+
"loss": 0.7157,
|
1353 |
+
"step": 382
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 2.4568690095846644,
|
1357 |
+
"grad_norm": 0.0901920345313963,
|
1358 |
+
"learning_rate": 8.984443197362938e-06,
|
1359 |
+
"loss": 0.7077,
|
1360 |
+
"step": 384
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 2.4696485623003195,
|
1364 |
+
"grad_norm": 0.09096539957366484,
|
1365 |
+
"learning_rate": 8.971600958367668e-06,
|
1366 |
+
"loss": 0.7035,
|
1367 |
+
"step": 386
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 2.4824281150159746,
|
1371 |
+
"grad_norm": 0.0873097187921073,
|
1372 |
+
"learning_rate": 8.958687330867634e-06,
|
1373 |
+
"loss": 0.694,
|
1374 |
+
"step": 388
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 2.4952076677316293,
|
1378 |
+
"grad_norm": 0.08516233809095139,
|
1379 |
+
"learning_rate": 8.94570254698197e-06,
|
1380 |
+
"loss": 0.7095,
|
1381 |
+
"step": 390
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 2.5079872204472844,
|
1385 |
+
"grad_norm": 0.08243863183194293,
|
1386 |
+
"learning_rate": 8.932646840108818e-06,
|
1387 |
+
"loss": 0.6915,
|
1388 |
+
"step": 392
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 2.520766773162939,
|
1392 |
+
"grad_norm": 0.09578242588929417,
|
1393 |
+
"learning_rate": 8.919520444921153e-06,
|
1394 |
+
"loss": 0.7267,
|
1395 |
+
"step": 394
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 2.533546325878594,
|
1399 |
+
"grad_norm": 0.08923574104867454,
|
1400 |
+
"learning_rate": 8.906323597362547e-06,
|
1401 |
+
"loss": 0.735,
|
1402 |
+
"step": 396
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 2.5463258785942493,
|
1406 |
+
"grad_norm": 0.08980929421634831,
|
1407 |
+
"learning_rate": 8.893056534642938e-06,
|
1408 |
+
"loss": 0.7079,
|
1409 |
+
"step": 398
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 2.559105431309904,
|
1413 |
+
"grad_norm": 0.09498992436734802,
|
1414 |
+
"learning_rate": 8.879719495234363e-06,
|
1415 |
+
"loss": 0.6925,
|
1416 |
+
"step": 400
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 2.571884984025559,
|
1420 |
+
"grad_norm": 0.0875701522095898,
|
1421 |
+
"learning_rate": 8.866312718866669e-06,
|
1422 |
+
"loss": 0.6902,
|
1423 |
+
"step": 402
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 2.584664536741214,
|
1427 |
+
"grad_norm": 0.09245786132330439,
|
1428 |
+
"learning_rate": 8.852836446523213e-06,
|
1429 |
+
"loss": 0.6992,
|
1430 |
+
"step": 404
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 2.597444089456869,
|
1434 |
+
"grad_norm": 0.09222422334070807,
|
1435 |
+
"learning_rate": 8.83929092043652e-06,
|
1436 |
+
"loss": 0.7156,
|
1437 |
+
"step": 406
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 2.610223642172524,
|
1441 |
+
"grad_norm": 0.09354657561723002,
|
1442 |
+
"learning_rate": 8.825676384083936e-06,
|
1443 |
+
"loss": 0.699,
|
1444 |
+
"step": 408
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 2.623003194888179,
|
1448 |
+
"grad_norm": 0.08392617333570597,
|
1449 |
+
"learning_rate": 8.811993082183243e-06,
|
1450 |
+
"loss": 0.6708,
|
1451 |
+
"step": 410
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 2.635782747603834,
|
1455 |
+
"grad_norm": 0.09563565262978453,
|
1456 |
+
"learning_rate": 8.798241260688273e-06,
|
1457 |
+
"loss": 0.6878,
|
1458 |
+
"step": 412
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 2.648562300319489,
|
1462 |
+
"grad_norm": 0.09071924557956357,
|
1463 |
+
"learning_rate": 8.784421166784476e-06,
|
1464 |
+
"loss": 0.6569,
|
1465 |
+
"step": 414
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 2.661341853035144,
|
1469 |
+
"grad_norm": 0.09189326542168455,
|
1470 |
+
"learning_rate": 8.770533048884483e-06,
|
1471 |
+
"loss": 0.6929,
|
1472 |
+
"step": 416
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 2.6741214057507987,
|
1476 |
+
"grad_norm": 0.08886131371026194,
|
1477 |
+
"learning_rate": 8.756577156623636e-06,
|
1478 |
+
"loss": 0.6775,
|
1479 |
+
"step": 418
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 2.686900958466454,
|
1483 |
+
"grad_norm": 0.0884759503364701,
|
1484 |
+
"learning_rate": 8.742553740855507e-06,
|
1485 |
+
"loss": 0.6647,
|
1486 |
+
"step": 420
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 2.6996805111821085,
|
1490 |
+
"grad_norm": 0.09138446256959393,
|
1491 |
+
"learning_rate": 8.728463053647382e-06,
|
1492 |
+
"loss": 0.6912,
|
1493 |
+
"step": 422
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 2.7124600638977636,
|
1497 |
+
"grad_norm": 0.09602956398461687,
|
1498 |
+
"learning_rate": 8.71430534827574e-06,
|
1499 |
+
"loss": 0.6915,
|
1500 |
+
"step": 424
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 2.7252396166134183,
|
1504 |
+
"grad_norm": 0.09546369455014705,
|
1505 |
+
"learning_rate": 8.700080879221689e-06,
|
1506 |
+
"loss": 0.6639,
|
1507 |
+
"step": 426
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 2.7380191693290734,
|
1511 |
+
"grad_norm": 0.09410029940427483,
|
1512 |
+
"learning_rate": 8.685789902166395e-06,
|
1513 |
+
"loss": 0.6582,
|
1514 |
+
"step": 428
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 2.7507987220447285,
|
1518 |
+
"grad_norm": 0.10031465100986502,
|
1519 |
+
"learning_rate": 8.671432673986493e-06,
|
1520 |
+
"loss": 0.6444,
|
1521 |
+
"step": 430
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 2.763578274760383,
|
1525 |
+
"grad_norm": 0.08567336248542835,
|
1526 |
+
"learning_rate": 8.657009452749466e-06,
|
1527 |
+
"loss": 0.6968,
|
1528 |
+
"step": 432
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 2.7763578274760383,
|
1532 |
+
"grad_norm": 0.09475186511369259,
|
1533 |
+
"learning_rate": 8.642520497709001e-06,
|
1534 |
+
"loss": 0.6916,
|
1535 |
+
"step": 434
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 2.7891373801916934,
|
1539 |
+
"grad_norm": 0.09385138382626645,
|
1540 |
+
"learning_rate": 8.627966069300332e-06,
|
1541 |
+
"loss": 0.6747,
|
1542 |
+
"step": 436
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 2.801916932907348,
|
1546 |
+
"grad_norm": 0.09246626511863794,
|
1547 |
+
"learning_rate": 8.613346429135567e-06,
|
1548 |
+
"loss": 0.6971,
|
1549 |
+
"step": 438
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 2.8146964856230032,
|
1553 |
+
"grad_norm": 0.0902896351493368,
|
1554 |
+
"learning_rate": 8.598661839998972e-06,
|
1555 |
+
"loss": 0.6456,
|
1556 |
+
"step": 440
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 2.8274760383386583,
|
1560 |
+
"grad_norm": 0.0974374236441883,
|
1561 |
+
"learning_rate": 8.583912565842258e-06,
|
1562 |
+
"loss": 0.6847,
|
1563 |
+
"step": 442
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 2.840255591054313,
|
1567 |
+
"grad_norm": 0.09028761990649814,
|
1568 |
+
"learning_rate": 8.569098871779828e-06,
|
1569 |
+
"loss": 0.6481,
|
1570 |
+
"step": 444
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 2.853035143769968,
|
1574 |
+
"grad_norm": 0.09094677152860932,
|
1575 |
+
"learning_rate": 8.554221024084019e-06,
|
1576 |
+
"loss": 0.6765,
|
1577 |
+
"step": 446
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 2.8658146964856233,
|
1581 |
+
"grad_norm": 0.09114673707540955,
|
1582 |
+
"learning_rate": 8.539279290180315e-06,
|
1583 |
+
"loss": 0.6537,
|
1584 |
+
"step": 448
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 2.878594249201278,
|
1588 |
+
"grad_norm": 0.08646200856678304,
|
1589 |
+
"learning_rate": 8.524273938642539e-06,
|
1590 |
+
"loss": 0.6584,
|
1591 |
+
"step": 450
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 2.891373801916933,
|
1595 |
+
"grad_norm": 0.09673722964818894,
|
1596 |
+
"learning_rate": 8.509205239188017e-06,
|
1597 |
+
"loss": 0.6852,
|
1598 |
+
"step": 452
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 2.9041533546325877,
|
1602 |
+
"grad_norm": 0.10123163649623611,
|
1603 |
+
"learning_rate": 8.494073462672743e-06,
|
1604 |
+
"loss": 0.6746,
|
1605 |
+
"step": 454
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 2.916932907348243,
|
1609 |
+
"grad_norm": 0.09584474326248778,
|
1610 |
+
"learning_rate": 8.478878881086505e-06,
|
1611 |
+
"loss": 0.6633,
|
1612 |
+
"step": 456
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 2.9297124600638975,
|
1616 |
+
"grad_norm": 0.08930310945740996,
|
1617 |
+
"learning_rate": 8.463621767547998e-06,
|
1618 |
+
"loss": 0.6362,
|
1619 |
+
"step": 458
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 2.9424920127795526,
|
1623 |
+
"grad_norm": 0.0871909024937303,
|
1624 |
+
"learning_rate": 8.448302396299906e-06,
|
1625 |
+
"loss": 0.6441,
|
1626 |
+
"step": 460
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 2.9552715654952078,
|
1630 |
+
"grad_norm": 0.09193009664136784,
|
1631 |
+
"learning_rate": 8.432921042703985e-06,
|
1632 |
+
"loss": 0.6594,
|
1633 |
+
"step": 462
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 2.9680511182108624,
|
1637 |
+
"grad_norm": 0.10151316130359724,
|
1638 |
+
"learning_rate": 8.417477983236107e-06,
|
1639 |
+
"loss": 0.6273,
|
1640 |
+
"step": 464
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 2.9808306709265175,
|
1644 |
+
"grad_norm": 0.09687677621564994,
|
1645 |
+
"learning_rate": 8.401973495481289e-06,
|
1646 |
+
"loss": 0.6466,
|
1647 |
+
"step": 466
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 2.9936102236421727,
|
1651 |
+
"grad_norm": 0.08818640172103377,
|
1652 |
+
"learning_rate": 8.386407858128707e-06,
|
1653 |
+
"loss": 0.6571,
|
1654 |
+
"step": 468
|
1655 |
+
}
|
1656 |
+
],
|
1657 |
+
"logging_steps": 2,
|
1658 |
+
"max_steps": 1560,
|
1659 |
+
"num_input_tokens_seen": 0,
|
1660 |
+
"num_train_epochs": 10,
|
1661 |
+
"save_steps": 500,
|
1662 |
+
"stateful_callbacks": {
|
1663 |
+
"TrainerControl": {
|
1664 |
+
"args": {
|
1665 |
+
"should_epoch_stop": false,
|
1666 |
+
"should_evaluate": false,
|
1667 |
+
"should_log": false,
|
1668 |
+
"should_save": true,
|
1669 |
+
"should_training_stop": false
|
1670 |
+
},
|
1671 |
+
"attributes": {}
|
1672 |
+
}
|
1673 |
+
},
|
1674 |
+
"total_flos": 1.8977376755091767e+19,
|
1675 |
+
"train_batch_size": 2,
|
1676 |
+
"trial_name": null,
|
1677 |
+
"trial_params": null
|
1678 |
+
}
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:465bc2aa3a69c77edd4dd8329b8c5845f84192ba6d63456f03bac7f5907488ad
|
3 |
+
size 7352
|
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|