tktung commited on
Commit
95b428c
·
verified ·
1 Parent(s): f458cba

Upload folder using huggingface_hub

Browse files
Files changed (26) hide show
  1. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/config.json +30 -0
  2. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/generation_config.json +10 -0
  3. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/latest +1 -0
  4. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00001-of-00006.safetensors +3 -0
  5. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00002-of-00006.safetensors +3 -0
  6. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00003-of-00006.safetensors +3 -0
  7. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00004-of-00006.safetensors +3 -0
  8. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00005-of-00006.safetensors +3 -0
  9. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00006-of-00006.safetensors +3 -0
  10. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model.safetensors.index.json +370 -0
  11. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_0.pth +3 -0
  12. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_1.pth +3 -0
  13. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_2.pth +3 -0
  14. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_3.pth +3 -0
  15. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_4.pth +3 -0
  16. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_5.pth +3 -0
  17. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_6.pth +3 -0
  18. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_7.pth +3 -0
  19. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/scheduler.pt +3 -0
  20. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/special_tokens_map.json +24 -0
  21. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/tokenizer.json +0 -0
  22. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/tokenizer.model +3 -0
  23. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/tokenizer_config.json +43 -0
  24. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/trainer_state.json +1678 -0
  25. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/training_args.bin +3 -0
  26. uccix_v2_instruct_191224_lr1e-5/checkpoint-468/zero_to_fp32.py +592 -0
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/data/tungtran/output_model/irish_llama2_data_v3/checkpoint-2200",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 5120,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 13824,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 40,
19
+ "num_hidden_layers": 40,
20
+ "num_key_value_heads": 40,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": null,
24
+ "rope_theta": 10000.0,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.46.3",
28
+ "use_cache": true,
29
+ "vocab_size": 35483
30
+ }
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.46.3"
10
+ }
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step468
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:778ffbb201fb5d8b34007ce9beb7aa6ee27b9fdf93afb9487335ae5034a6207a
3
+ size 4961502800
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4be4d447ccde89310586ac3366847644ae24227df9d270989188081dc8dc267e
3
+ size 4970422232
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33eb02446aedff576515cc4179a78f6d30a3c5bb745c5c03cd11f9f5d9bbb298
3
+ size 4881272584
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ccec4caa4064809e0139917bf9414ea9d96b0ca2f4da139699f16b1e7800c11
3
+ size 4933722216
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c785c30346bea7c9755de83f431c1275ee4402418149151173e23164ed817b86
3
+ size 4933722208
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f1aa84eeeb3bd2d7c69abb80ec962a9a8b1976ce4cf60cdacd5127376eb120c
3
+ size 1422460712
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 26103060480
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
368
+ "model.norm.weight": "model-00006-of-00006.safetensors"
369
+ }
370
+ }
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2509d80b2f762431b21d8b2c0c505ad9466727f26605d6289b24caab9e57d598
3
+ size 15984
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d007e5981734d70061da15efdb1a39099608c994c62c0738b7f2a638c356d81
3
+ size 15984
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:357c4b48f9bb8f2836e53e08200cd2708d7bf7452bc78487820e53dba5c27bfa
3
+ size 15984
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7a1639367b5cd82b6484fda514185cedc094e11dece2ca3a73315ce86bb26de
3
+ size 15984
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1a77cc4bc0f599af40e9f903af6ac08f0ae8fef97d94a88f48f641a3713f4f1
3
+ size 15984
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b03a7773b00d4512901ae179ba5ed5663a6b3cbedf9f220e73ae3eb4c302cd67
3
+ size 15984
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73ca7c993e1a6bbf092680f5b2852fee8060d9c838ce0d2a6c9562a2784e5069
3
+ size 15984
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a649cc11674a37b0d4fa80a9f131068b7297e43d745bf8b76d0dac3c4db6a7b
3
+ size 15984
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac05d6263d9cededc202227cd6bb80549724eb1af63b29dc951d4d30bd4930a1
3
+ size 1064
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d1f5d0342153f3e3bbb37b2026ba64d0b25583df351345f87cd8b9a5658c2fb
3
+ size 558602
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.' %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/trainer_state.json ADDED
@@ -0,0 +1,1678 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9936102236421727,
5
+ "eval_steps": 500,
6
+ "global_step": 468,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006389776357827476,
13
+ "grad_norm": 2.055807172999327,
14
+ "learning_rate": 1.282051282051282e-07,
15
+ "loss": 1.695,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.012779552715654952,
20
+ "grad_norm": 2.0619830708339495,
21
+ "learning_rate": 2.564102564102564e-07,
22
+ "loss": 1.6748,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.025559105431309903,
27
+ "grad_norm": 2.713640119093072,
28
+ "learning_rate": 5.128205128205128e-07,
29
+ "loss": 1.7543,
30
+ "step": 4
31
+ },
32
+ {
33
+ "epoch": 0.038338658146964855,
34
+ "grad_norm": 2.7787517219371667,
35
+ "learning_rate": 7.692307692307694e-07,
36
+ "loss": 1.7052,
37
+ "step": 6
38
+ },
39
+ {
40
+ "epoch": 0.051118210862619806,
41
+ "grad_norm": 2.28188247274044,
42
+ "learning_rate": 1.0256410256410257e-06,
43
+ "loss": 1.7023,
44
+ "step": 8
45
+ },
46
+ {
47
+ "epoch": 0.06389776357827476,
48
+ "grad_norm": 2.4315142127580045,
49
+ "learning_rate": 1.282051282051282e-06,
50
+ "loss": 1.7215,
51
+ "step": 10
52
+ },
53
+ {
54
+ "epoch": 0.07667731629392971,
55
+ "grad_norm": 1.8730980445467513,
56
+ "learning_rate": 1.5384615384615387e-06,
57
+ "loss": 1.6382,
58
+ "step": 12
59
+ },
60
+ {
61
+ "epoch": 0.08945686900958466,
62
+ "grad_norm": 1.350046171341438,
63
+ "learning_rate": 1.794871794871795e-06,
64
+ "loss": 1.5726,
65
+ "step": 14
66
+ },
67
+ {
68
+ "epoch": 0.10223642172523961,
69
+ "grad_norm": 0.9126399700382735,
70
+ "learning_rate": 2.0512820512820513e-06,
71
+ "loss": 1.5539,
72
+ "step": 16
73
+ },
74
+ {
75
+ "epoch": 0.11501597444089456,
76
+ "grad_norm": 0.5310525834146045,
77
+ "learning_rate": 2.307692307692308e-06,
78
+ "loss": 1.4776,
79
+ "step": 18
80
+ },
81
+ {
82
+ "epoch": 0.12779552715654952,
83
+ "grad_norm": 0.3699817611010441,
84
+ "learning_rate": 2.564102564102564e-06,
85
+ "loss": 1.4255,
86
+ "step": 20
87
+ },
88
+ {
89
+ "epoch": 0.14057507987220447,
90
+ "grad_norm": 0.3578249477320206,
91
+ "learning_rate": 2.8205128205128207e-06,
92
+ "loss": 1.39,
93
+ "step": 22
94
+ },
95
+ {
96
+ "epoch": 0.15335463258785942,
97
+ "grad_norm": 0.29549280933458616,
98
+ "learning_rate": 3.0769230769230774e-06,
99
+ "loss": 1.3752,
100
+ "step": 24
101
+ },
102
+ {
103
+ "epoch": 0.16613418530351437,
104
+ "grad_norm": 0.3738398649251706,
105
+ "learning_rate": 3.3333333333333333e-06,
106
+ "loss": 1.3474,
107
+ "step": 26
108
+ },
109
+ {
110
+ "epoch": 0.17891373801916932,
111
+ "grad_norm": 0.375163024245781,
112
+ "learning_rate": 3.58974358974359e-06,
113
+ "loss": 1.321,
114
+ "step": 28
115
+ },
116
+ {
117
+ "epoch": 0.19169329073482427,
118
+ "grad_norm": 0.28197926317237565,
119
+ "learning_rate": 3.846153846153847e-06,
120
+ "loss": 1.2797,
121
+ "step": 30
122
+ },
123
+ {
124
+ "epoch": 0.20447284345047922,
125
+ "grad_norm": 0.20848720674536458,
126
+ "learning_rate": 4.102564102564103e-06,
127
+ "loss": 1.2788,
128
+ "step": 32
129
+ },
130
+ {
131
+ "epoch": 0.21725239616613418,
132
+ "grad_norm": 0.2061126173314709,
133
+ "learning_rate": 4.358974358974359e-06,
134
+ "loss": 1.2864,
135
+ "step": 34
136
+ },
137
+ {
138
+ "epoch": 0.23003194888178913,
139
+ "grad_norm": 0.1978997937482167,
140
+ "learning_rate": 4.615384615384616e-06,
141
+ "loss": 1.2748,
142
+ "step": 36
143
+ },
144
+ {
145
+ "epoch": 0.24281150159744408,
146
+ "grad_norm": 0.14694306639698337,
147
+ "learning_rate": 4.871794871794872e-06,
148
+ "loss": 1.2576,
149
+ "step": 38
150
+ },
151
+ {
152
+ "epoch": 0.25559105431309903,
153
+ "grad_norm": 0.148218022844095,
154
+ "learning_rate": 5.128205128205128e-06,
155
+ "loss": 1.2141,
156
+ "step": 40
157
+ },
158
+ {
159
+ "epoch": 0.268370607028754,
160
+ "grad_norm": 0.1468062532086508,
161
+ "learning_rate": 5.384615384615385e-06,
162
+ "loss": 1.2002,
163
+ "step": 42
164
+ },
165
+ {
166
+ "epoch": 0.28115015974440893,
167
+ "grad_norm": 0.1044672455499073,
168
+ "learning_rate": 5.641025641025641e-06,
169
+ "loss": 1.2066,
170
+ "step": 44
171
+ },
172
+ {
173
+ "epoch": 0.2939297124600639,
174
+ "grad_norm": 0.10230074959226108,
175
+ "learning_rate": 5.897435897435898e-06,
176
+ "loss": 1.2093,
177
+ "step": 46
178
+ },
179
+ {
180
+ "epoch": 0.30670926517571884,
181
+ "grad_norm": 0.10835321687062423,
182
+ "learning_rate": 6.153846153846155e-06,
183
+ "loss": 1.1781,
184
+ "step": 48
185
+ },
186
+ {
187
+ "epoch": 0.3194888178913738,
188
+ "grad_norm": 0.08591864999573447,
189
+ "learning_rate": 6.410256410256412e-06,
190
+ "loss": 1.1987,
191
+ "step": 50
192
+ },
193
+ {
194
+ "epoch": 0.33226837060702874,
195
+ "grad_norm": 0.10170463928385623,
196
+ "learning_rate": 6.666666666666667e-06,
197
+ "loss": 1.1597,
198
+ "step": 52
199
+ },
200
+ {
201
+ "epoch": 0.3450479233226837,
202
+ "grad_norm": 0.08703108140215988,
203
+ "learning_rate": 6.923076923076923e-06,
204
+ "loss": 1.1569,
205
+ "step": 54
206
+ },
207
+ {
208
+ "epoch": 0.35782747603833864,
209
+ "grad_norm": 0.09437727868865202,
210
+ "learning_rate": 7.17948717948718e-06,
211
+ "loss": 1.1461,
212
+ "step": 56
213
+ },
214
+ {
215
+ "epoch": 0.3706070287539936,
216
+ "grad_norm": 0.08627521436960119,
217
+ "learning_rate": 7.435897435897437e-06,
218
+ "loss": 1.1509,
219
+ "step": 58
220
+ },
221
+ {
222
+ "epoch": 0.38338658146964855,
223
+ "grad_norm": 0.16763960045834678,
224
+ "learning_rate": 7.692307692307694e-06,
225
+ "loss": 1.1816,
226
+ "step": 60
227
+ },
228
+ {
229
+ "epoch": 0.3961661341853035,
230
+ "grad_norm": 0.09148986628797769,
231
+ "learning_rate": 7.948717948717949e-06,
232
+ "loss": 1.1353,
233
+ "step": 62
234
+ },
235
+ {
236
+ "epoch": 0.40894568690095845,
237
+ "grad_norm": 0.08816273706390138,
238
+ "learning_rate": 8.205128205128205e-06,
239
+ "loss": 1.1144,
240
+ "step": 64
241
+ },
242
+ {
243
+ "epoch": 0.4217252396166134,
244
+ "grad_norm": 0.07490136953022462,
245
+ "learning_rate": 8.461538461538462e-06,
246
+ "loss": 1.1337,
247
+ "step": 66
248
+ },
249
+ {
250
+ "epoch": 0.43450479233226835,
251
+ "grad_norm": 0.0726514548363597,
252
+ "learning_rate": 8.717948717948719e-06,
253
+ "loss": 1.141,
254
+ "step": 68
255
+ },
256
+ {
257
+ "epoch": 0.4472843450479233,
258
+ "grad_norm": 0.07842873764946051,
259
+ "learning_rate": 8.974358974358976e-06,
260
+ "loss": 1.1426,
261
+ "step": 70
262
+ },
263
+ {
264
+ "epoch": 0.46006389776357826,
265
+ "grad_norm": 0.07307353878556878,
266
+ "learning_rate": 9.230769230769232e-06,
267
+ "loss": 1.1314,
268
+ "step": 72
269
+ },
270
+ {
271
+ "epoch": 0.4728434504792332,
272
+ "grad_norm": 0.07464837020208384,
273
+ "learning_rate": 9.487179487179487e-06,
274
+ "loss": 1.106,
275
+ "step": 74
276
+ },
277
+ {
278
+ "epoch": 0.48562300319488816,
279
+ "grad_norm": 0.07682927536881419,
280
+ "learning_rate": 9.743589743589744e-06,
281
+ "loss": 1.1146,
282
+ "step": 76
283
+ },
284
+ {
285
+ "epoch": 0.4984025559105431,
286
+ "grad_norm": 0.07349178847988343,
287
+ "learning_rate": 1e-05,
288
+ "loss": 1.1243,
289
+ "step": 78
290
+ },
291
+ {
292
+ "epoch": 0.5111821086261981,
293
+ "grad_norm": 0.0716279769265826,
294
+ "learning_rate": 9.99995506314361e-06,
295
+ "loss": 1.106,
296
+ "step": 80
297
+ },
298
+ {
299
+ "epoch": 0.5239616613418531,
300
+ "grad_norm": 0.07985106483800218,
301
+ "learning_rate": 9.99982025338217e-06,
302
+ "loss": 1.0953,
303
+ "step": 82
304
+ },
305
+ {
306
+ "epoch": 0.536741214057508,
307
+ "grad_norm": 0.07973069799195517,
308
+ "learning_rate": 9.999595573138845e-06,
309
+ "loss": 1.1047,
310
+ "step": 84
311
+ },
312
+ {
313
+ "epoch": 0.549520766773163,
314
+ "grad_norm": 0.07769113605735692,
315
+ "learning_rate": 9.99928102645221e-06,
316
+ "loss": 1.1049,
317
+ "step": 86
318
+ },
319
+ {
320
+ "epoch": 0.5623003194888179,
321
+ "grad_norm": 0.07650118671106154,
322
+ "learning_rate": 9.99887661897616e-06,
323
+ "loss": 1.0801,
324
+ "step": 88
325
+ },
326
+ {
327
+ "epoch": 0.5750798722044729,
328
+ "grad_norm": 0.0643603309848082,
329
+ "learning_rate": 9.99838235797981e-06,
330
+ "loss": 1.097,
331
+ "step": 90
332
+ },
333
+ {
334
+ "epoch": 0.5878594249201278,
335
+ "grad_norm": 0.07041897634176414,
336
+ "learning_rate": 9.997798252347382e-06,
337
+ "loss": 1.0842,
338
+ "step": 92
339
+ },
340
+ {
341
+ "epoch": 0.6006389776357828,
342
+ "grad_norm": 0.06665938409713099,
343
+ "learning_rate": 9.99712431257802e-06,
344
+ "loss": 1.0871,
345
+ "step": 94
346
+ },
347
+ {
348
+ "epoch": 0.6134185303514377,
349
+ "grad_norm": 0.07351270527817233,
350
+ "learning_rate": 9.996360550785619e-06,
351
+ "loss": 1.0905,
352
+ "step": 96
353
+ },
354
+ {
355
+ "epoch": 0.6261980830670927,
356
+ "grad_norm": 0.06482669705796376,
357
+ "learning_rate": 9.9955069806986e-06,
358
+ "loss": 1.0729,
359
+ "step": 98
360
+ },
361
+ {
362
+ "epoch": 0.6389776357827476,
363
+ "grad_norm": 0.06311878917729494,
364
+ "learning_rate": 9.994563617659665e-06,
365
+ "loss": 1.0608,
366
+ "step": 100
367
+ },
368
+ {
369
+ "epoch": 0.6517571884984026,
370
+ "grad_norm": 0.07132649561595898,
371
+ "learning_rate": 9.993530478625524e-06,
372
+ "loss": 1.0648,
373
+ "step": 102
374
+ },
375
+ {
376
+ "epoch": 0.6645367412140575,
377
+ "grad_norm": 0.06507293693787788,
378
+ "learning_rate": 9.992407582166582e-06,
379
+ "loss": 1.0428,
380
+ "step": 104
381
+ },
382
+ {
383
+ "epoch": 0.6773162939297125,
384
+ "grad_norm": 0.06495408671246342,
385
+ "learning_rate": 9.991194948466615e-06,
386
+ "loss": 1.0725,
387
+ "step": 106
388
+ },
389
+ {
390
+ "epoch": 0.6900958466453674,
391
+ "grad_norm": 0.06960119096523358,
392
+ "learning_rate": 9.989892599322404e-06,
393
+ "loss": 1.059,
394
+ "step": 108
395
+ },
396
+ {
397
+ "epoch": 0.7028753993610224,
398
+ "grad_norm": 0.06678653497671336,
399
+ "learning_rate": 9.988500558143337e-06,
400
+ "loss": 1.0645,
401
+ "step": 110
402
+ },
403
+ {
404
+ "epoch": 0.7156549520766773,
405
+ "grad_norm": 0.06356475510898561,
406
+ "learning_rate": 9.987018849950996e-06,
407
+ "loss": 1.0456,
408
+ "step": 112
409
+ },
410
+ {
411
+ "epoch": 0.7284345047923323,
412
+ "grad_norm": 0.06541109148868933,
413
+ "learning_rate": 9.985447501378706e-06,
414
+ "loss": 1.0664,
415
+ "step": 114
416
+ },
417
+ {
418
+ "epoch": 0.7412140575079872,
419
+ "grad_norm": 0.06677420023722364,
420
+ "learning_rate": 9.983786540671052e-06,
421
+ "loss": 1.0329,
422
+ "step": 116
423
+ },
424
+ {
425
+ "epoch": 0.7539936102236422,
426
+ "grad_norm": 0.06819775252703462,
427
+ "learning_rate": 9.982035997683372e-06,
428
+ "loss": 1.0374,
429
+ "step": 118
430
+ },
431
+ {
432
+ "epoch": 0.7667731629392971,
433
+ "grad_norm": 0.0629291663919797,
434
+ "learning_rate": 9.980195903881231e-06,
435
+ "loss": 1.0665,
436
+ "step": 120
437
+ },
438
+ {
439
+ "epoch": 0.7795527156549521,
440
+ "grad_norm": 0.06922951247948388,
441
+ "learning_rate": 9.978266292339838e-06,
442
+ "loss": 1.0258,
443
+ "step": 122
444
+ },
445
+ {
446
+ "epoch": 0.792332268370607,
447
+ "grad_norm": 0.06458224821875515,
448
+ "learning_rate": 9.976247197743465e-06,
449
+ "loss": 1.0368,
450
+ "step": 124
451
+ },
452
+ {
453
+ "epoch": 0.805111821086262,
454
+ "grad_norm": 0.06056072044117011,
455
+ "learning_rate": 9.974138656384815e-06,
456
+ "loss": 1.0368,
457
+ "step": 126
458
+ },
459
+ {
460
+ "epoch": 0.8178913738019169,
461
+ "grad_norm": 0.06218269287622606,
462
+ "learning_rate": 9.97194070616438e-06,
463
+ "loss": 1.0203,
464
+ "step": 128
465
+ },
466
+ {
467
+ "epoch": 0.8306709265175719,
468
+ "grad_norm": 0.07088500071993263,
469
+ "learning_rate": 9.969653386589749e-06,
470
+ "loss": 1.0401,
471
+ "step": 130
472
+ },
473
+ {
474
+ "epoch": 0.8434504792332268,
475
+ "grad_norm": 0.0793056560286898,
476
+ "learning_rate": 9.967276738774897e-06,
477
+ "loss": 1.033,
478
+ "step": 132
479
+ },
480
+ {
481
+ "epoch": 0.8562300319488818,
482
+ "grad_norm": 0.07124122803857391,
483
+ "learning_rate": 9.964810805439464e-06,
484
+ "loss": 1.0382,
485
+ "step": 134
486
+ },
487
+ {
488
+ "epoch": 0.8690095846645367,
489
+ "grad_norm": 0.06569660589004858,
490
+ "learning_rate": 9.962255630907964e-06,
491
+ "loss": 1.0142,
492
+ "step": 136
493
+ },
494
+ {
495
+ "epoch": 0.8817891373801917,
496
+ "grad_norm": 0.06473404088250143,
497
+ "learning_rate": 9.959611261108999e-06,
498
+ "loss": 1.0426,
499
+ "step": 138
500
+ },
501
+ {
502
+ "epoch": 0.8945686900958466,
503
+ "grad_norm": 0.07195889745904455,
504
+ "learning_rate": 9.956877743574437e-06,
505
+ "loss": 1.0205,
506
+ "step": 140
507
+ },
508
+ {
509
+ "epoch": 0.9073482428115016,
510
+ "grad_norm": 0.06898817679598546,
511
+ "learning_rate": 9.954055127438554e-06,
512
+ "loss": 1.0133,
513
+ "step": 142
514
+ },
515
+ {
516
+ "epoch": 0.9201277955271565,
517
+ "grad_norm": 0.07559846293275942,
518
+ "learning_rate": 9.951143463437145e-06,
519
+ "loss": 1.0168,
520
+ "step": 144
521
+ },
522
+ {
523
+ "epoch": 0.9329073482428115,
524
+ "grad_norm": 0.07117773396387629,
525
+ "learning_rate": 9.948142803906623e-06,
526
+ "loss": 1.0039,
527
+ "step": 146
528
+ },
529
+ {
530
+ "epoch": 0.9456869009584664,
531
+ "grad_norm": 0.06414039585607693,
532
+ "learning_rate": 9.94505320278307e-06,
533
+ "loss": 1.0281,
534
+ "step": 148
535
+ },
536
+ {
537
+ "epoch": 0.9584664536741214,
538
+ "grad_norm": 0.07046019347974852,
539
+ "learning_rate": 9.94187471560127e-06,
540
+ "loss": 1.0256,
541
+ "step": 150
542
+ },
543
+ {
544
+ "epoch": 0.9712460063897763,
545
+ "grad_norm": 0.06737566318066629,
546
+ "learning_rate": 9.938607399493714e-06,
547
+ "loss": 1.0266,
548
+ "step": 152
549
+ },
550
+ {
551
+ "epoch": 0.9840255591054313,
552
+ "grad_norm": 0.06699946284561666,
553
+ "learning_rate": 9.935251313189564e-06,
554
+ "loss": 1.018,
555
+ "step": 154
556
+ },
557
+ {
558
+ "epoch": 0.9968051118210862,
559
+ "grad_norm": 0.06425061877237022,
560
+ "learning_rate": 9.931806517013612e-06,
561
+ "loss": 1.0232,
562
+ "step": 156
563
+ },
564
+ {
565
+ "epoch": 1.011182108626198,
566
+ "grad_norm": 0.09907516110524082,
567
+ "learning_rate": 9.92827307288518e-06,
568
+ "loss": 1.3609,
569
+ "step": 158
570
+ },
571
+ {
572
+ "epoch": 1.023961661341853,
573
+ "grad_norm": 0.07415902760603522,
574
+ "learning_rate": 9.924651044317017e-06,
575
+ "loss": 0.9496,
576
+ "step": 160
577
+ },
578
+ {
579
+ "epoch": 1.036741214057508,
580
+ "grad_norm": 0.0662373551160772,
581
+ "learning_rate": 9.920940496414153e-06,
582
+ "loss": 0.9752,
583
+ "step": 162
584
+ },
585
+ {
586
+ "epoch": 1.049520766773163,
587
+ "grad_norm": 0.07089817007291226,
588
+ "learning_rate": 9.917141495872733e-06,
589
+ "loss": 0.9842,
590
+ "step": 164
591
+ },
592
+ {
593
+ "epoch": 1.0623003194888179,
594
+ "grad_norm": 0.07572146019295103,
595
+ "learning_rate": 9.913254110978812e-06,
596
+ "loss": 0.9634,
597
+ "step": 166
598
+ },
599
+ {
600
+ "epoch": 1.0750798722044728,
601
+ "grad_norm": 0.13090482009861787,
602
+ "learning_rate": 9.909278411607134e-06,
603
+ "loss": 0.9587,
604
+ "step": 168
605
+ },
606
+ {
607
+ "epoch": 1.0878594249201279,
608
+ "grad_norm": 0.07240483127809519,
609
+ "learning_rate": 9.90521446921987e-06,
610
+ "loss": 0.9451,
611
+ "step": 170
612
+ },
613
+ {
614
+ "epoch": 1.1006389776357828,
615
+ "grad_norm": 0.06956480741239271,
616
+ "learning_rate": 9.90106235686534e-06,
617
+ "loss": 0.9618,
618
+ "step": 172
619
+ },
620
+ {
621
+ "epoch": 1.1134185303514377,
622
+ "grad_norm": 0.06957125058770244,
623
+ "learning_rate": 9.896822149176695e-06,
624
+ "loss": 0.9488,
625
+ "step": 174
626
+ },
627
+ {
628
+ "epoch": 1.1261980830670926,
629
+ "grad_norm": 0.06928591522513586,
630
+ "learning_rate": 9.892493922370575e-06,
631
+ "loss": 0.9811,
632
+ "step": 176
633
+ },
634
+ {
635
+ "epoch": 1.1389776357827477,
636
+ "grad_norm": 0.07118250896901829,
637
+ "learning_rate": 9.888077754245741e-06,
638
+ "loss": 0.9453,
639
+ "step": 178
640
+ },
641
+ {
642
+ "epoch": 1.1517571884984026,
643
+ "grad_norm": 0.06924103852362032,
644
+ "learning_rate": 9.883573724181683e-06,
645
+ "loss": 0.9621,
646
+ "step": 180
647
+ },
648
+ {
649
+ "epoch": 1.1645367412140575,
650
+ "grad_norm": 0.07320566404171391,
651
+ "learning_rate": 9.878981913137178e-06,
652
+ "loss": 0.9592,
653
+ "step": 182
654
+ },
655
+ {
656
+ "epoch": 1.1773162939297124,
657
+ "grad_norm": 0.07834944252802674,
658
+ "learning_rate": 9.87430240364885e-06,
659
+ "loss": 0.9565,
660
+ "step": 184
661
+ },
662
+ {
663
+ "epoch": 1.1900958466453675,
664
+ "grad_norm": 0.06778631059512405,
665
+ "learning_rate": 9.869535279829674e-06,
666
+ "loss": 0.9532,
667
+ "step": 186
668
+ },
669
+ {
670
+ "epoch": 1.2028753993610224,
671
+ "grad_norm": 0.06492444701831263,
672
+ "learning_rate": 9.864680627367476e-06,
673
+ "loss": 0.9502,
674
+ "step": 188
675
+ },
676
+ {
677
+ "epoch": 1.2156549520766773,
678
+ "grad_norm": 0.07215071942019542,
679
+ "learning_rate": 9.859738533523384e-06,
680
+ "loss": 0.9334,
681
+ "step": 190
682
+ },
683
+ {
684
+ "epoch": 1.2284345047923322,
685
+ "grad_norm": 0.07692962165173596,
686
+ "learning_rate": 9.854709087130261e-06,
687
+ "loss": 0.9285,
688
+ "step": 192
689
+ },
690
+ {
691
+ "epoch": 1.2412140575079873,
692
+ "grad_norm": 0.07144733289845186,
693
+ "learning_rate": 9.849592378591113e-06,
694
+ "loss": 0.9553,
695
+ "step": 194
696
+ },
697
+ {
698
+ "epoch": 1.2539936102236422,
699
+ "grad_norm": 0.07083601337037776,
700
+ "learning_rate": 9.844388499877457e-06,
701
+ "loss": 0.9328,
702
+ "step": 196
703
+ },
704
+ {
705
+ "epoch": 1.266773162939297,
706
+ "grad_norm": 0.07316320243317584,
707
+ "learning_rate": 9.839097544527674e-06,
708
+ "loss": 0.935,
709
+ "step": 198
710
+ },
711
+ {
712
+ "epoch": 1.279552715654952,
713
+ "grad_norm": 0.0695208433301601,
714
+ "learning_rate": 9.833719607645325e-06,
715
+ "loss": 0.9359,
716
+ "step": 200
717
+ },
718
+ {
719
+ "epoch": 1.292332268370607,
720
+ "grad_norm": 0.06969390398034943,
721
+ "learning_rate": 9.82825478589744e-06,
722
+ "loss": 0.9253,
723
+ "step": 202
724
+ },
725
+ {
726
+ "epoch": 1.305111821086262,
727
+ "grad_norm": 0.07197337129595487,
728
+ "learning_rate": 9.822703177512783e-06,
729
+ "loss": 0.9279,
730
+ "step": 204
731
+ },
732
+ {
733
+ "epoch": 1.317891373801917,
734
+ "grad_norm": 0.07293955629391159,
735
+ "learning_rate": 9.817064882280085e-06,
736
+ "loss": 0.9113,
737
+ "step": 206
738
+ },
739
+ {
740
+ "epoch": 1.330670926517572,
741
+ "grad_norm": 0.0662084834618456,
742
+ "learning_rate": 9.811340001546252e-06,
743
+ "loss": 0.9412,
744
+ "step": 208
745
+ },
746
+ {
747
+ "epoch": 1.343450479233227,
748
+ "grad_norm": 0.06897239157709753,
749
+ "learning_rate": 9.805528638214543e-06,
750
+ "loss": 0.9138,
751
+ "step": 210
752
+ },
753
+ {
754
+ "epoch": 1.3562300319488818,
755
+ "grad_norm": 0.07764173779556026,
756
+ "learning_rate": 9.799630896742716e-06,
757
+ "loss": 0.9264,
758
+ "step": 212
759
+ },
760
+ {
761
+ "epoch": 1.3690095846645367,
762
+ "grad_norm": 0.06786942257491788,
763
+ "learning_rate": 9.793646883141155e-06,
764
+ "loss": 0.9132,
765
+ "step": 214
766
+ },
767
+ {
768
+ "epoch": 1.3817891373801916,
769
+ "grad_norm": 0.07299256618164499,
770
+ "learning_rate": 9.787576704970965e-06,
771
+ "loss": 0.9162,
772
+ "step": 216
773
+ },
774
+ {
775
+ "epoch": 1.3945686900958467,
776
+ "grad_norm": 0.07374519229160317,
777
+ "learning_rate": 9.781420471342035e-06,
778
+ "loss": 0.9175,
779
+ "step": 218
780
+ },
781
+ {
782
+ "epoch": 1.4073482428115016,
783
+ "grad_norm": 0.0714888166966269,
784
+ "learning_rate": 9.77517829291108e-06,
785
+ "loss": 0.9189,
786
+ "step": 220
787
+ },
788
+ {
789
+ "epoch": 1.4201277955271565,
790
+ "grad_norm": 0.07380307635726331,
791
+ "learning_rate": 9.768850281879651e-06,
792
+ "loss": 0.9004,
793
+ "step": 222
794
+ },
795
+ {
796
+ "epoch": 1.4329073482428116,
797
+ "grad_norm": 0.07384614438950858,
798
+ "learning_rate": 9.762436551992117e-06,
799
+ "loss": 0.9122,
800
+ "step": 224
801
+ },
802
+ {
803
+ "epoch": 1.4456869009584665,
804
+ "grad_norm": 0.07399395278257612,
805
+ "learning_rate": 9.755937218533622e-06,
806
+ "loss": 0.9239,
807
+ "step": 226
808
+ },
809
+ {
810
+ "epoch": 1.4584664536741214,
811
+ "grad_norm": 0.07112586882023823,
812
+ "learning_rate": 9.74935239832801e-06,
813
+ "loss": 0.9061,
814
+ "step": 228
815
+ },
816
+ {
817
+ "epoch": 1.4712460063897763,
818
+ "grad_norm": 0.07140106100598033,
819
+ "learning_rate": 9.742682209735727e-06,
820
+ "loss": 0.898,
821
+ "step": 230
822
+ },
823
+ {
824
+ "epoch": 1.4840255591054312,
825
+ "grad_norm": 0.06999739915996865,
826
+ "learning_rate": 9.735926772651703e-06,
827
+ "loss": 0.9094,
828
+ "step": 232
829
+ },
830
+ {
831
+ "epoch": 1.4968051118210863,
832
+ "grad_norm": 0.069142775225698,
833
+ "learning_rate": 9.729086208503174e-06,
834
+ "loss": 0.9216,
835
+ "step": 234
836
+ },
837
+ {
838
+ "epoch": 1.5095846645367412,
839
+ "grad_norm": 0.07208310321027284,
840
+ "learning_rate": 9.722160640247523e-06,
841
+ "loss": 0.9271,
842
+ "step": 236
843
+ },
844
+ {
845
+ "epoch": 1.5223642172523961,
846
+ "grad_norm": 0.06937923111300098,
847
+ "learning_rate": 9.715150192370054e-06,
848
+ "loss": 0.8998,
849
+ "step": 238
850
+ },
851
+ {
852
+ "epoch": 1.5351437699680512,
853
+ "grad_norm": 0.06912137074594725,
854
+ "learning_rate": 9.708054990881763e-06,
855
+ "loss": 0.9098,
856
+ "step": 240
857
+ },
858
+ {
859
+ "epoch": 1.547923322683706,
860
+ "grad_norm": 0.0716336159595822,
861
+ "learning_rate": 9.700875163317072e-06,
862
+ "loss": 0.8953,
863
+ "step": 242
864
+ },
865
+ {
866
+ "epoch": 1.560702875399361,
867
+ "grad_norm": 0.07031864221802098,
868
+ "learning_rate": 9.693610838731532e-06,
869
+ "loss": 0.9007,
870
+ "step": 244
871
+ },
872
+ {
873
+ "epoch": 1.573482428115016,
874
+ "grad_norm": 0.07029805178803208,
875
+ "learning_rate": 9.686262147699507e-06,
876
+ "loss": 0.8923,
877
+ "step": 246
878
+ },
879
+ {
880
+ "epoch": 1.5862619808306708,
881
+ "grad_norm": 0.06898824959435941,
882
+ "learning_rate": 9.678829222311827e-06,
883
+ "loss": 0.8955,
884
+ "step": 248
885
+ },
886
+ {
887
+ "epoch": 1.599041533546326,
888
+ "grad_norm": 0.07545525981677151,
889
+ "learning_rate": 9.671312196173413e-06,
890
+ "loss": 0.9088,
891
+ "step": 250
892
+ },
893
+ {
894
+ "epoch": 1.6118210862619808,
895
+ "grad_norm": 0.09583645803024936,
896
+ "learning_rate": 9.663711204400872e-06,
897
+ "loss": 0.8813,
898
+ "step": 252
899
+ },
900
+ {
901
+ "epoch": 1.6246006389776357,
902
+ "grad_norm": 0.07052803439311484,
903
+ "learning_rate": 9.656026383620076e-06,
904
+ "loss": 0.9021,
905
+ "step": 254
906
+ },
907
+ {
908
+ "epoch": 1.6373801916932909,
909
+ "grad_norm": 0.07174435305622688,
910
+ "learning_rate": 9.6482578719637e-06,
911
+ "loss": 0.8862,
912
+ "step": 256
913
+ },
914
+ {
915
+ "epoch": 1.6501597444089455,
916
+ "grad_norm": 0.07238748413283501,
917
+ "learning_rate": 9.640405809068743e-06,
918
+ "loss": 0.9023,
919
+ "step": 258
920
+ },
921
+ {
922
+ "epoch": 1.6629392971246006,
923
+ "grad_norm": 0.0693406974968129,
924
+ "learning_rate": 9.632470336074009e-06,
925
+ "loss": 0.8892,
926
+ "step": 260
927
+ },
928
+ {
929
+ "epoch": 1.6757188498402555,
930
+ "grad_norm": 0.07327624706245563,
931
+ "learning_rate": 9.624451595617588e-06,
932
+ "loss": 0.8723,
933
+ "step": 262
934
+ },
935
+ {
936
+ "epoch": 1.6884984025559104,
937
+ "grad_norm": 0.07963678227936324,
938
+ "learning_rate": 9.616349731834271e-06,
939
+ "loss": 0.8772,
940
+ "step": 264
941
+ },
942
+ {
943
+ "epoch": 1.7012779552715656,
944
+ "grad_norm": 0.10357279860244777,
945
+ "learning_rate": 9.608164890352977e-06,
946
+ "loss": 0.8886,
947
+ "step": 266
948
+ },
949
+ {
950
+ "epoch": 1.7140575079872205,
951
+ "grad_norm": 0.0778385786289741,
952
+ "learning_rate": 9.599897218294122e-06,
953
+ "loss": 0.8771,
954
+ "step": 268
955
+ },
956
+ {
957
+ "epoch": 1.7268370607028753,
958
+ "grad_norm": 0.12610777062933215,
959
+ "learning_rate": 9.591546864266983e-06,
960
+ "loss": 0.8696,
961
+ "step": 270
962
+ },
963
+ {
964
+ "epoch": 1.7396166134185305,
965
+ "grad_norm": 0.07770370992844734,
966
+ "learning_rate": 9.583113978367026e-06,
967
+ "loss": 0.8924,
968
+ "step": 272
969
+ },
970
+ {
971
+ "epoch": 1.7523961661341851,
972
+ "grad_norm": 0.0806612698044715,
973
+ "learning_rate": 9.574598712173202e-06,
974
+ "loss": 0.8785,
975
+ "step": 274
976
+ },
977
+ {
978
+ "epoch": 1.7651757188498403,
979
+ "grad_norm": 0.0788062028214947,
980
+ "learning_rate": 9.56600121874523e-06,
981
+ "loss": 0.8547,
982
+ "step": 276
983
+ },
984
+ {
985
+ "epoch": 1.7779552715654952,
986
+ "grad_norm": 0.07731947968487375,
987
+ "learning_rate": 9.557321652620839e-06,
988
+ "loss": 0.8627,
989
+ "step": 278
990
+ },
991
+ {
992
+ "epoch": 1.79073482428115,
993
+ "grad_norm": 0.08190803662055393,
994
+ "learning_rate": 9.548560169812997e-06,
995
+ "loss": 0.8604,
996
+ "step": 280
997
+ },
998
+ {
999
+ "epoch": 1.8035143769968052,
1000
+ "grad_norm": 0.08260525401723899,
1001
+ "learning_rate": 9.539716927807102e-06,
1002
+ "loss": 0.8771,
1003
+ "step": 282
1004
+ },
1005
+ {
1006
+ "epoch": 1.81629392971246,
1007
+ "grad_norm": 0.07784346527611156,
1008
+ "learning_rate": 9.530792085558151e-06,
1009
+ "loss": 0.886,
1010
+ "step": 284
1011
+ },
1012
+ {
1013
+ "epoch": 1.829073482428115,
1014
+ "grad_norm": 0.07825987296583618,
1015
+ "learning_rate": 9.521785803487888e-06,
1016
+ "loss": 0.874,
1017
+ "step": 286
1018
+ },
1019
+ {
1020
+ "epoch": 1.84185303514377,
1021
+ "grad_norm": 0.11504308003589604,
1022
+ "learning_rate": 9.512698243481914e-06,
1023
+ "loss": 0.8722,
1024
+ "step": 288
1025
+ },
1026
+ {
1027
+ "epoch": 1.854632587859425,
1028
+ "grad_norm": 0.0706998555334881,
1029
+ "learning_rate": 9.50352956888678e-06,
1030
+ "loss": 0.8786,
1031
+ "step": 290
1032
+ },
1033
+ {
1034
+ "epoch": 1.8674121405750799,
1035
+ "grad_norm": 0.08032750314446153,
1036
+ "learning_rate": 9.49427994450705e-06,
1037
+ "loss": 0.8665,
1038
+ "step": 292
1039
+ },
1040
+ {
1041
+ "epoch": 1.880191693290735,
1042
+ "grad_norm": 0.12277701328436769,
1043
+ "learning_rate": 9.484949536602343e-06,
1044
+ "loss": 0.8569,
1045
+ "step": 294
1046
+ },
1047
+ {
1048
+ "epoch": 1.8929712460063897,
1049
+ "grad_norm": 0.3133344539837911,
1050
+ "learning_rate": 9.47553851288434e-06,
1051
+ "loss": 0.8342,
1052
+ "step": 296
1053
+ },
1054
+ {
1055
+ "epoch": 1.9057507987220448,
1056
+ "grad_norm": 0.07915849443417738,
1057
+ "learning_rate": 9.466047042513767e-06,
1058
+ "loss": 0.8722,
1059
+ "step": 298
1060
+ },
1061
+ {
1062
+ "epoch": 1.9185303514376997,
1063
+ "grad_norm": 0.07388844698367664,
1064
+ "learning_rate": 9.45647529609736e-06,
1065
+ "loss": 0.8523,
1066
+ "step": 300
1067
+ },
1068
+ {
1069
+ "epoch": 1.9313099041533546,
1070
+ "grad_norm": 0.07844075449799331,
1071
+ "learning_rate": 9.4468234456848e-06,
1072
+ "loss": 0.8684,
1073
+ "step": 302
1074
+ },
1075
+ {
1076
+ "epoch": 1.9440894568690097,
1077
+ "grad_norm": 0.08117794295033834,
1078
+ "learning_rate": 9.437091664765611e-06,
1079
+ "loss": 0.8615,
1080
+ "step": 304
1081
+ },
1082
+ {
1083
+ "epoch": 1.9568690095846646,
1084
+ "grad_norm": 0.0774054800449662,
1085
+ "learning_rate": 9.427280128266049e-06,
1086
+ "loss": 0.8519,
1087
+ "step": 306
1088
+ },
1089
+ {
1090
+ "epoch": 1.9696485623003195,
1091
+ "grad_norm": 0.07348805569878705,
1092
+ "learning_rate": 9.41738901254596e-06,
1093
+ "loss": 0.838,
1094
+ "step": 308
1095
+ },
1096
+ {
1097
+ "epoch": 1.9824281150159746,
1098
+ "grad_norm": 0.07814133587865683,
1099
+ "learning_rate": 9.4074184953956e-06,
1100
+ "loss": 0.8606,
1101
+ "step": 310
1102
+ },
1103
+ {
1104
+ "epoch": 1.9952076677316293,
1105
+ "grad_norm": 0.07768240761269606,
1106
+ "learning_rate": 9.397368756032445e-06,
1107
+ "loss": 0.8363,
1108
+ "step": 312
1109
+ },
1110
+ {
1111
+ "epoch": 2.009584664536741,
1112
+ "grad_norm": 0.08883201756641222,
1113
+ "learning_rate": 9.38723997509798e-06,
1114
+ "loss": 1.1054,
1115
+ "step": 314
1116
+ },
1117
+ {
1118
+ "epoch": 2.022364217252396,
1119
+ "grad_norm": 0.09535044991933866,
1120
+ "learning_rate": 9.37703233465443e-06,
1121
+ "loss": 0.7809,
1122
+ "step": 316
1123
+ },
1124
+ {
1125
+ "epoch": 2.0351437699680512,
1126
+ "grad_norm": 0.0899461173236908,
1127
+ "learning_rate": 9.366746018181503e-06,
1128
+ "loss": 0.7853,
1129
+ "step": 318
1130
+ },
1131
+ {
1132
+ "epoch": 2.047923322683706,
1133
+ "grad_norm": 0.08699834395832293,
1134
+ "learning_rate": 9.356381210573092e-06,
1135
+ "loss": 0.7804,
1136
+ "step": 320
1137
+ },
1138
+ {
1139
+ "epoch": 2.060702875399361,
1140
+ "grad_norm": 0.08621851686642173,
1141
+ "learning_rate": 9.345938098133946e-06,
1142
+ "loss": 0.7691,
1143
+ "step": 322
1144
+ },
1145
+ {
1146
+ "epoch": 2.073482428115016,
1147
+ "grad_norm": 0.0878792614677104,
1148
+ "learning_rate": 9.33541686857632e-06,
1149
+ "loss": 0.7533,
1150
+ "step": 324
1151
+ },
1152
+ {
1153
+ "epoch": 2.086261980830671,
1154
+ "grad_norm": 0.09394109098983003,
1155
+ "learning_rate": 9.324817711016609e-06,
1156
+ "loss": 0.7664,
1157
+ "step": 326
1158
+ },
1159
+ {
1160
+ "epoch": 2.099041533546326,
1161
+ "grad_norm": 0.0852387489503167,
1162
+ "learning_rate": 9.31414081597194e-06,
1163
+ "loss": 0.7595,
1164
+ "step": 328
1165
+ },
1166
+ {
1167
+ "epoch": 2.1118210862619806,
1168
+ "grad_norm": 0.08209521428452116,
1169
+ "learning_rate": 9.303386375356752e-06,
1170
+ "loss": 0.7343,
1171
+ "step": 330
1172
+ },
1173
+ {
1174
+ "epoch": 2.1246006389776357,
1175
+ "grad_norm": 0.09206102053261545,
1176
+ "learning_rate": 9.292554582479349e-06,
1177
+ "loss": 0.7607,
1178
+ "step": 332
1179
+ },
1180
+ {
1181
+ "epoch": 2.137380191693291,
1182
+ "grad_norm": 0.08213489385694336,
1183
+ "learning_rate": 9.281645632038417e-06,
1184
+ "loss": 0.7568,
1185
+ "step": 334
1186
+ },
1187
+ {
1188
+ "epoch": 2.1501597444089455,
1189
+ "grad_norm": 0.08209078040215159,
1190
+ "learning_rate": 9.270659720119533e-06,
1191
+ "loss": 0.7521,
1192
+ "step": 336
1193
+ },
1194
+ {
1195
+ "epoch": 2.1629392971246006,
1196
+ "grad_norm": 0.08511423465943413,
1197
+ "learning_rate": 9.259597044191635e-06,
1198
+ "loss": 0.7337,
1199
+ "step": 338
1200
+ },
1201
+ {
1202
+ "epoch": 2.1757188498402558,
1203
+ "grad_norm": 0.10041875249218343,
1204
+ "learning_rate": 9.248457803103476e-06,
1205
+ "loss": 0.746,
1206
+ "step": 340
1207
+ },
1208
+ {
1209
+ "epoch": 2.1884984025559104,
1210
+ "grad_norm": 0.08704563593245765,
1211
+ "learning_rate": 9.237242197080045e-06,
1212
+ "loss": 0.7353,
1213
+ "step": 342
1214
+ },
1215
+ {
1216
+ "epoch": 2.2012779552715656,
1217
+ "grad_norm": 0.09348040659499997,
1218
+ "learning_rate": 9.225950427718974e-06,
1219
+ "loss": 0.7729,
1220
+ "step": 344
1221
+ },
1222
+ {
1223
+ "epoch": 2.2140575079872207,
1224
+ "grad_norm": 0.08726341086333145,
1225
+ "learning_rate": 9.21458269798691e-06,
1226
+ "loss": 0.7517,
1227
+ "step": 346
1228
+ },
1229
+ {
1230
+ "epoch": 2.2268370607028753,
1231
+ "grad_norm": 0.08436941838539416,
1232
+ "learning_rate": 9.203139212215868e-06,
1233
+ "loss": 0.7164,
1234
+ "step": 348
1235
+ },
1236
+ {
1237
+ "epoch": 2.2396166134185305,
1238
+ "grad_norm": 0.0901609443354115,
1239
+ "learning_rate": 9.191620176099559e-06,
1240
+ "loss": 0.7407,
1241
+ "step": 350
1242
+ },
1243
+ {
1244
+ "epoch": 2.252396166134185,
1245
+ "grad_norm": 0.08831943060441182,
1246
+ "learning_rate": 9.180025796689692e-06,
1247
+ "loss": 0.7323,
1248
+ "step": 352
1249
+ },
1250
+ {
1251
+ "epoch": 2.2651757188498403,
1252
+ "grad_norm": 0.09564066419044027,
1253
+ "learning_rate": 9.168356282392253e-06,
1254
+ "loss": 0.7298,
1255
+ "step": 354
1256
+ },
1257
+ {
1258
+ "epoch": 2.2779552715654954,
1259
+ "grad_norm": 0.08464582091102903,
1260
+ "learning_rate": 9.156611842963753e-06,
1261
+ "loss": 0.7314,
1262
+ "step": 356
1263
+ },
1264
+ {
1265
+ "epoch": 2.29073482428115,
1266
+ "grad_norm": 0.08870915805306676,
1267
+ "learning_rate": 9.144792689507471e-06,
1268
+ "loss": 0.7217,
1269
+ "step": 358
1270
+ },
1271
+ {
1272
+ "epoch": 2.303514376996805,
1273
+ "grad_norm": 0.08613473048448057,
1274
+ "learning_rate": 9.132899034469648e-06,
1275
+ "loss": 0.7402,
1276
+ "step": 360
1277
+ },
1278
+ {
1279
+ "epoch": 2.31629392971246,
1280
+ "grad_norm": 0.08341988693841207,
1281
+ "learning_rate": 9.120931091635669e-06,
1282
+ "loss": 0.7467,
1283
+ "step": 362
1284
+ },
1285
+ {
1286
+ "epoch": 2.329073482428115,
1287
+ "grad_norm": 0.08549945333901839,
1288
+ "learning_rate": 9.108889076126226e-06,
1289
+ "loss": 0.7207,
1290
+ "step": 364
1291
+ },
1292
+ {
1293
+ "epoch": 2.34185303514377,
1294
+ "grad_norm": 0.08336828182020982,
1295
+ "learning_rate": 9.09677320439345e-06,
1296
+ "loss": 0.7385,
1297
+ "step": 366
1298
+ },
1299
+ {
1300
+ "epoch": 2.3546325878594248,
1301
+ "grad_norm": 0.08408664059192321,
1302
+ "learning_rate": 9.084583694217012e-06,
1303
+ "loss": 0.7248,
1304
+ "step": 368
1305
+ },
1306
+ {
1307
+ "epoch": 2.36741214057508,
1308
+ "grad_norm": 0.0886593849582559,
1309
+ "learning_rate": 9.072320764700223e-06,
1310
+ "loss": 0.7096,
1311
+ "step": 370
1312
+ },
1313
+ {
1314
+ "epoch": 2.380191693290735,
1315
+ "grad_norm": 0.0839729222435562,
1316
+ "learning_rate": 9.059984636266082e-06,
1317
+ "loss": 0.7145,
1318
+ "step": 372
1319
+ },
1320
+ {
1321
+ "epoch": 2.3929712460063897,
1322
+ "grad_norm": 0.08726323559997523,
1323
+ "learning_rate": 9.047575530653324e-06,
1324
+ "loss": 0.7418,
1325
+ "step": 374
1326
+ },
1327
+ {
1328
+ "epoch": 2.405750798722045,
1329
+ "grad_norm": 0.08770732225914885,
1330
+ "learning_rate": 9.035093670912424e-06,
1331
+ "loss": 0.7196,
1332
+ "step": 376
1333
+ },
1334
+ {
1335
+ "epoch": 2.4185303514377,
1336
+ "grad_norm": 0.08755818172663851,
1337
+ "learning_rate": 9.022539281401601e-06,
1338
+ "loss": 0.7061,
1339
+ "step": 378
1340
+ },
1341
+ {
1342
+ "epoch": 2.4313099041533546,
1343
+ "grad_norm": 0.0854340041188233,
1344
+ "learning_rate": 9.009912587782772e-06,
1345
+ "loss": 0.6979,
1346
+ "step": 380
1347
+ },
1348
+ {
1349
+ "epoch": 2.4440894568690097,
1350
+ "grad_norm": 0.09169828487884032,
1351
+ "learning_rate": 8.997213817017508e-06,
1352
+ "loss": 0.7157,
1353
+ "step": 382
1354
+ },
1355
+ {
1356
+ "epoch": 2.4568690095846644,
1357
+ "grad_norm": 0.0901920345313963,
1358
+ "learning_rate": 8.984443197362938e-06,
1359
+ "loss": 0.7077,
1360
+ "step": 384
1361
+ },
1362
+ {
1363
+ "epoch": 2.4696485623003195,
1364
+ "grad_norm": 0.09096539957366484,
1365
+ "learning_rate": 8.971600958367668e-06,
1366
+ "loss": 0.7035,
1367
+ "step": 386
1368
+ },
1369
+ {
1370
+ "epoch": 2.4824281150159746,
1371
+ "grad_norm": 0.0873097187921073,
1372
+ "learning_rate": 8.958687330867634e-06,
1373
+ "loss": 0.694,
1374
+ "step": 388
1375
+ },
1376
+ {
1377
+ "epoch": 2.4952076677316293,
1378
+ "grad_norm": 0.08516233809095139,
1379
+ "learning_rate": 8.94570254698197e-06,
1380
+ "loss": 0.7095,
1381
+ "step": 390
1382
+ },
1383
+ {
1384
+ "epoch": 2.5079872204472844,
1385
+ "grad_norm": 0.08243863183194293,
1386
+ "learning_rate": 8.932646840108818e-06,
1387
+ "loss": 0.6915,
1388
+ "step": 392
1389
+ },
1390
+ {
1391
+ "epoch": 2.520766773162939,
1392
+ "grad_norm": 0.09578242588929417,
1393
+ "learning_rate": 8.919520444921153e-06,
1394
+ "loss": 0.7267,
1395
+ "step": 394
1396
+ },
1397
+ {
1398
+ "epoch": 2.533546325878594,
1399
+ "grad_norm": 0.08923574104867454,
1400
+ "learning_rate": 8.906323597362547e-06,
1401
+ "loss": 0.735,
1402
+ "step": 396
1403
+ },
1404
+ {
1405
+ "epoch": 2.5463258785942493,
1406
+ "grad_norm": 0.08980929421634831,
1407
+ "learning_rate": 8.893056534642938e-06,
1408
+ "loss": 0.7079,
1409
+ "step": 398
1410
+ },
1411
+ {
1412
+ "epoch": 2.559105431309904,
1413
+ "grad_norm": 0.09498992436734802,
1414
+ "learning_rate": 8.879719495234363e-06,
1415
+ "loss": 0.6925,
1416
+ "step": 400
1417
+ },
1418
+ {
1419
+ "epoch": 2.571884984025559,
1420
+ "grad_norm": 0.0875701522095898,
1421
+ "learning_rate": 8.866312718866669e-06,
1422
+ "loss": 0.6902,
1423
+ "step": 402
1424
+ },
1425
+ {
1426
+ "epoch": 2.584664536741214,
1427
+ "grad_norm": 0.09245786132330439,
1428
+ "learning_rate": 8.852836446523213e-06,
1429
+ "loss": 0.6992,
1430
+ "step": 404
1431
+ },
1432
+ {
1433
+ "epoch": 2.597444089456869,
1434
+ "grad_norm": 0.09222422334070807,
1435
+ "learning_rate": 8.83929092043652e-06,
1436
+ "loss": 0.7156,
1437
+ "step": 406
1438
+ },
1439
+ {
1440
+ "epoch": 2.610223642172524,
1441
+ "grad_norm": 0.09354657561723002,
1442
+ "learning_rate": 8.825676384083936e-06,
1443
+ "loss": 0.699,
1444
+ "step": 408
1445
+ },
1446
+ {
1447
+ "epoch": 2.623003194888179,
1448
+ "grad_norm": 0.08392617333570597,
1449
+ "learning_rate": 8.811993082183243e-06,
1450
+ "loss": 0.6708,
1451
+ "step": 410
1452
+ },
1453
+ {
1454
+ "epoch": 2.635782747603834,
1455
+ "grad_norm": 0.09563565262978453,
1456
+ "learning_rate": 8.798241260688273e-06,
1457
+ "loss": 0.6878,
1458
+ "step": 412
1459
+ },
1460
+ {
1461
+ "epoch": 2.648562300319489,
1462
+ "grad_norm": 0.09071924557956357,
1463
+ "learning_rate": 8.784421166784476e-06,
1464
+ "loss": 0.6569,
1465
+ "step": 414
1466
+ },
1467
+ {
1468
+ "epoch": 2.661341853035144,
1469
+ "grad_norm": 0.09189326542168455,
1470
+ "learning_rate": 8.770533048884483e-06,
1471
+ "loss": 0.6929,
1472
+ "step": 416
1473
+ },
1474
+ {
1475
+ "epoch": 2.6741214057507987,
1476
+ "grad_norm": 0.08886131371026194,
1477
+ "learning_rate": 8.756577156623636e-06,
1478
+ "loss": 0.6775,
1479
+ "step": 418
1480
+ },
1481
+ {
1482
+ "epoch": 2.686900958466454,
1483
+ "grad_norm": 0.0884759503364701,
1484
+ "learning_rate": 8.742553740855507e-06,
1485
+ "loss": 0.6647,
1486
+ "step": 420
1487
+ },
1488
+ {
1489
+ "epoch": 2.6996805111821085,
1490
+ "grad_norm": 0.09138446256959393,
1491
+ "learning_rate": 8.728463053647382e-06,
1492
+ "loss": 0.6912,
1493
+ "step": 422
1494
+ },
1495
+ {
1496
+ "epoch": 2.7124600638977636,
1497
+ "grad_norm": 0.09602956398461687,
1498
+ "learning_rate": 8.71430534827574e-06,
1499
+ "loss": 0.6915,
1500
+ "step": 424
1501
+ },
1502
+ {
1503
+ "epoch": 2.7252396166134183,
1504
+ "grad_norm": 0.09546369455014705,
1505
+ "learning_rate": 8.700080879221689e-06,
1506
+ "loss": 0.6639,
1507
+ "step": 426
1508
+ },
1509
+ {
1510
+ "epoch": 2.7380191693290734,
1511
+ "grad_norm": 0.09410029940427483,
1512
+ "learning_rate": 8.685789902166395e-06,
1513
+ "loss": 0.6582,
1514
+ "step": 428
1515
+ },
1516
+ {
1517
+ "epoch": 2.7507987220447285,
1518
+ "grad_norm": 0.10031465100986502,
1519
+ "learning_rate": 8.671432673986493e-06,
1520
+ "loss": 0.6444,
1521
+ "step": 430
1522
+ },
1523
+ {
1524
+ "epoch": 2.763578274760383,
1525
+ "grad_norm": 0.08567336248542835,
1526
+ "learning_rate": 8.657009452749466e-06,
1527
+ "loss": 0.6968,
1528
+ "step": 432
1529
+ },
1530
+ {
1531
+ "epoch": 2.7763578274760383,
1532
+ "grad_norm": 0.09475186511369259,
1533
+ "learning_rate": 8.642520497709001e-06,
1534
+ "loss": 0.6916,
1535
+ "step": 434
1536
+ },
1537
+ {
1538
+ "epoch": 2.7891373801916934,
1539
+ "grad_norm": 0.09385138382626645,
1540
+ "learning_rate": 8.627966069300332e-06,
1541
+ "loss": 0.6747,
1542
+ "step": 436
1543
+ },
1544
+ {
1545
+ "epoch": 2.801916932907348,
1546
+ "grad_norm": 0.09246626511863794,
1547
+ "learning_rate": 8.613346429135567e-06,
1548
+ "loss": 0.6971,
1549
+ "step": 438
1550
+ },
1551
+ {
1552
+ "epoch": 2.8146964856230032,
1553
+ "grad_norm": 0.0902896351493368,
1554
+ "learning_rate": 8.598661839998972e-06,
1555
+ "loss": 0.6456,
1556
+ "step": 440
1557
+ },
1558
+ {
1559
+ "epoch": 2.8274760383386583,
1560
+ "grad_norm": 0.0974374236441883,
1561
+ "learning_rate": 8.583912565842258e-06,
1562
+ "loss": 0.6847,
1563
+ "step": 442
1564
+ },
1565
+ {
1566
+ "epoch": 2.840255591054313,
1567
+ "grad_norm": 0.09028761990649814,
1568
+ "learning_rate": 8.569098871779828e-06,
1569
+ "loss": 0.6481,
1570
+ "step": 444
1571
+ },
1572
+ {
1573
+ "epoch": 2.853035143769968,
1574
+ "grad_norm": 0.09094677152860932,
1575
+ "learning_rate": 8.554221024084019e-06,
1576
+ "loss": 0.6765,
1577
+ "step": 446
1578
+ },
1579
+ {
1580
+ "epoch": 2.8658146964856233,
1581
+ "grad_norm": 0.09114673707540955,
1582
+ "learning_rate": 8.539279290180315e-06,
1583
+ "loss": 0.6537,
1584
+ "step": 448
1585
+ },
1586
+ {
1587
+ "epoch": 2.878594249201278,
1588
+ "grad_norm": 0.08646200856678304,
1589
+ "learning_rate": 8.524273938642539e-06,
1590
+ "loss": 0.6584,
1591
+ "step": 450
1592
+ },
1593
+ {
1594
+ "epoch": 2.891373801916933,
1595
+ "grad_norm": 0.09673722964818894,
1596
+ "learning_rate": 8.509205239188017e-06,
1597
+ "loss": 0.6852,
1598
+ "step": 452
1599
+ },
1600
+ {
1601
+ "epoch": 2.9041533546325877,
1602
+ "grad_norm": 0.10123163649623611,
1603
+ "learning_rate": 8.494073462672743e-06,
1604
+ "loss": 0.6746,
1605
+ "step": 454
1606
+ },
1607
+ {
1608
+ "epoch": 2.916932907348243,
1609
+ "grad_norm": 0.09584474326248778,
1610
+ "learning_rate": 8.478878881086505e-06,
1611
+ "loss": 0.6633,
1612
+ "step": 456
1613
+ },
1614
+ {
1615
+ "epoch": 2.9297124600638975,
1616
+ "grad_norm": 0.08930310945740996,
1617
+ "learning_rate": 8.463621767547998e-06,
1618
+ "loss": 0.6362,
1619
+ "step": 458
1620
+ },
1621
+ {
1622
+ "epoch": 2.9424920127795526,
1623
+ "grad_norm": 0.0871909024937303,
1624
+ "learning_rate": 8.448302396299906e-06,
1625
+ "loss": 0.6441,
1626
+ "step": 460
1627
+ },
1628
+ {
1629
+ "epoch": 2.9552715654952078,
1630
+ "grad_norm": 0.09193009664136784,
1631
+ "learning_rate": 8.432921042703985e-06,
1632
+ "loss": 0.6594,
1633
+ "step": 462
1634
+ },
1635
+ {
1636
+ "epoch": 2.9680511182108624,
1637
+ "grad_norm": 0.10151316130359724,
1638
+ "learning_rate": 8.417477983236107e-06,
1639
+ "loss": 0.6273,
1640
+ "step": 464
1641
+ },
1642
+ {
1643
+ "epoch": 2.9808306709265175,
1644
+ "grad_norm": 0.09687677621564994,
1645
+ "learning_rate": 8.401973495481289e-06,
1646
+ "loss": 0.6466,
1647
+ "step": 466
1648
+ },
1649
+ {
1650
+ "epoch": 2.9936102236421727,
1651
+ "grad_norm": 0.08818640172103377,
1652
+ "learning_rate": 8.386407858128707e-06,
1653
+ "loss": 0.6571,
1654
+ "step": 468
1655
+ }
1656
+ ],
1657
+ "logging_steps": 2,
1658
+ "max_steps": 1560,
1659
+ "num_input_tokens_seen": 0,
1660
+ "num_train_epochs": 10,
1661
+ "save_steps": 500,
1662
+ "stateful_callbacks": {
1663
+ "TrainerControl": {
1664
+ "args": {
1665
+ "should_epoch_stop": false,
1666
+ "should_evaluate": false,
1667
+ "should_log": false,
1668
+ "should_save": true,
1669
+ "should_training_stop": false
1670
+ },
1671
+ "attributes": {}
1672
+ }
1673
+ },
1674
+ "total_flos": 1.8977376755091767e+19,
1675
+ "train_batch_size": 2,
1676
+ "trial_name": null,
1677
+ "trial_params": null
1678
+ }
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:465bc2aa3a69c77edd4dd8329b8c5845f84192ba6d63456f03bac7f5907488ad
3
+ size 7352
uccix_v2_instruct_191224_lr1e-5/checkpoint-468/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)