--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: L3.1-Pneuma-8B results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.0` ```yaml base_model: meta-llama/Llama-3.1-8B-Instruct load_in_8bit: false load_in_4bit: false strict: false load_in_8bit: false load_in_4bit: false strict: false datasets: - path: Sandevistan_cleaned.jsonl type: customllama3_stan dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/out fix_untrained_tokens: true sequence_len: 4096 sample_packing: true pad_to_sequence_len: true wandb_project: Pneuma wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 16 micro_batch_size: 8 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.0000078 max_grad_norm: 1 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: unsloth early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true eval_sample_packing: false plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true hub_model_id: Replete-AI/L3.1-Pneuma-8B hub_strategy: every_save warmup_steps: 0 evals_per_epoch: 3 eval_table_size: saves_per_epoch: 3 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: bos_token: "<|begin_of_text|>" eos_token: "<|end_of_text|>" pad_token: "<|end_of_text|>" tokens: ```

# L3.1-Pneuma-8B This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the [Sandevistan](https://huggingface.co/datasets/Replete-AI/Sandevistan) dataset. It achieves the following results on the evaluation set: - Loss: 2.4357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.8e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0731 | 0.0023 | 1 | 2.7679 | | 0.6458 | 0.3338 | 143 | 2.4576 | | 0.6504 | 0.6675 | 286 | 2.4407 | | 1.112 | 1.0019 | 429 | 2.4358 | | 0.6014 | 1.3357 | 572 | 2.4358 | | 0.6194 | 1.6694 | 715 | 2.4357 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.3