--- library_name: transformers base_model: nateraw/vit-age-classifier tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: results results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9875 --- # results This model is a fine-tuned version of [nateraw/vit-age-classifier](https://huggingface.co/nateraw/vit-age-classifier) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0824 - Accuracy: 0.9875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 100 | 1.5403 | 0.5375 | | No log | 2.0 | 200 | 0.7882 | 0.725 | | No log | 3.0 | 300 | 0.2481 | 0.9875 | | No log | 4.0 | 400 | 0.1088 | 0.9875 | | 0.8658 | 5.0 | 500 | 0.0824 | 0.9875 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1