RichardErkhov commited on
Commit
149b01d
·
verified ·
1 Parent(s): 02d9f15

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ RLHF-PPO-PPOModel-LLama3-1B-v1.3 - AWQ
11
+ - Model creator: https://huggingface.co/bikalnetomi/
12
+ - Original model: https://huggingface.co/bikalnetomi/RLHF-PPO-PPOModel-LLama3-1B-v1.3/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ base_model: meta-llama/Llama-3.2-1B-Instruct
20
+ datasets: trl-internal-testing/descriptiveness-sentiment-trl-style
21
+ library_name: transformers
22
+ model_name: RLHF-PPO-PPOModel-LLama3-1B-v1.3
23
+ tags:
24
+ - generated_from_trainer
25
+ licence: license
26
+ ---
27
+
28
+ # Model Card for RLHF-PPO-PPOModel-LLama3-1B-v1.3
29
+
30
+ This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [trl-internal-testing/descriptiveness-sentiment-trl-style](https://huggingface.co/datasets/trl-internal-testing/descriptiveness-sentiment-trl-style) dataset.
31
+ It has been trained using [TRL](https://github.com/huggingface/trl).
32
+
33
+ ## Quick start
34
+
35
+ ```python
36
+ from transformers import pipeline
37
+
38
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
39
+ generator = pipeline("text-generation", model="bikalnetomi/RLHF-PPO-PPOModel-LLama3-1B-v1.3", device="cuda")
40
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
41
+ print(output["generated_text"])
42
+ ```
43
+
44
+ ## Training procedure
45
+
46
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/netomi-ml/huggingface/runs/0gvdcwze)
47
+
48
+ This model was trained with PPO, a method introduced in [Fine-Tuning Language Models from Human Preferences](https://huggingface.co/papers/1909.08593).
49
+
50
+ ### Framework versions
51
+
52
+ - TRL: 0.12.1
53
+ - Transformers: 4.46.3
54
+ - Pytorch: 2.5.1
55
+ - Datasets: 3.1.0
56
+ - Tokenizers: 0.20.3
57
+
58
+ ## Citations
59
+
60
+ Cite PPO as:
61
+
62
+ ```bibtex
63
+ @article{mziegler2019fine-tuning,
64
+ title = {{Fine-Tuning Language Models from Human Preferences}},
65
+ author = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving},
66
+ year = 2019,
67
+ eprint = {arXiv:1909.08593}
68
+ }
69
+ ```
70
+
71
+ Cite TRL as:
72
+
73
+ ```bibtex
74
+ @misc{vonwerra2022trl,
75
+ title = {{TRL: Transformer Reinforcement Learning}},
76
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
77
+ year = 2020,
78
+ journal = {GitHub repository},
79
+ publisher = {GitHub},
80
+ howpublished = {\url{https://github.com/huggingface/trl}}
81
+ }
82
+ ```
83
+