File size: 5,880 Bytes
883f219 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
bloom-560m-finetuned-fraud - bnb 4bits
- Model creator: https://huggingface.co/jslin09/
- Original model: https://huggingface.co/jslin09/bloom-560m-finetuned-fraud/
Original model description:
---
license: bigscience-bloom-rail-1.0
datasets:
- jslin09/Fraud_Case_Verdicts
language:
- zh
metrics:
- accuracy
pipeline_tag: text-generation
text-generation:
parameters:
max_length: 400
max_new_tokens: 400
do_sample: true
temperature: 0.75
top_k: 50
top_p: 0.9
tags:
- legal
widget:
- text: 王大明意圖為自己不法所有,基於竊盜之犯意,
example_title: 生成竊盜罪之犯罪事實
- text: 騙人布意圖為自己不法所有,基於詐欺取財之犯意,
example_title: 生成詐欺罪之犯罪事實
- text: 梅友乾明知其無資力支付酒店消費,亦無付款意願,竟意圖為自己不法之所有,
example_title: 生成吃霸王餐之詐欺犯罪事實
- text: 闕很大明知金融帳戶之存摺、提款卡及密碼係供自己使用之重要理財工具,
example_title: 生成賣帳戶幫助詐欺犯罪事實
- text: 通訊王明知近來盛行以虛設、租賃、借用或買賣行動電話人頭門號之方式,供詐騙集團作為詐欺他人交付財物等不法用途,
example_title: 生成賣電話SIM卡之幫助詐欺犯罪事實
- text: 趙甲王基於行使偽造特種文書及詐欺取財之犯意,
example_title: 偽造特種文書(契約、車牌等)詐財
---
# 判決書「犯罪事實」欄草稿自動生成
本模型是以司法院公開之「詐欺」案件判決書做成之資料集,基於 [BLOOM 560m](https://huggingface.co/bigscience/bloom-560m) 模型進行微調訓練,可以自動生成詐欺及竊盜案件之犯罪事實段落之草稿。資料集之資料範圍從100年1月1日至110年12月31日,所蒐集到的原始資料共有 74823 篇(判決以及裁定),我們只取判決書的「犯罪事實」欄位內容,並把這原始的資料分成三份,用於訓練的資料集有59858篇,約佔原始資料的80%,剩下的20%,則是各分配10%給驗證集(7482篇),10%給測試集(7483篇)。在本網頁進行測試時,請在模型載入完畢並生成第一小句後,持續按下Compute按鈕,就能持續生成文字。或是輸入自己想要測試的資料到文字框中進行測試。或是可以到[這裡](https://huggingface.co/spaces/jslin09/legal_document_drafting)有更完整的使用體驗。
# 使用範例
如果要在自己的程式中調用本模型,可以參考下列的 Python 程式碼,藉由呼叫 API 的方式來生成刑事判決書「犯罪事實」欄的內容。
<details>
<summary> 點擊後展開 </summary>
<pre>
<code>
import requests, json
from time import sleep
from tqdm.auto import tqdm, trange
API_URL = "https://api-inference.huggingface.co/models/jslin09/bloom-560m-finetuned-fraud"
API_TOKEN = 'XXXXXXXXXXXXXXX' # 調用模型的 API token
headers = {"Authorization": f"Bearer {API_TOKEN}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return json.loads(response.content.decode("utf-8"))
prompt = "森上梅前明知其無資力支付酒店消費,亦無付款意願,竟意圖為自己不法之所有,"
query_dict = {
"inputs": prompt,
}
text_len = 300
t = trange(text_len, desc= '生成例稿', leave=True)
for i in t:
response = query(query_dict)
try:
response_text = response[0]['generated_text']
query_dict["inputs"] = response_text
t.set_description(f"{i}: {response[0]['generated_text']}")
t.refresh()
except KeyError:
sleep(30) # 如果伺服器太忙無回應,等30秒後再試。
pass
print(response[0]['generated_text'])
</code>
</pre>
</details>
或是,你要使用 transformers 套件來實作你的程式,將本模型下載至你本地端的電腦中執行,可以參考下列程式碼:
<details>
<summary> 點擊後展開 </summary>
<pre>
<code>
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("jslin09/bloom-560m-finetuned-fraud")
model = AutoModelForCausalLM.from_pretrained("jslin09/bloom-560m-finetuned-fraud")
</code>
</pre>
</details>
# 本模型進行各項指標進行評估的結果如下 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
詳細的結果在 [這裡](https://huggingface.co/datasets/open-llm-leaderboard/details_jslin09__bloom-560m-finetuned-fraud)。
本模型只使用範圍相當小的資料集進行微調,就任務目標來說,已經是完美解決,但就廣泛的通用性來說,其實是不完美的。總的來說,如果應用場景是需要把模型建置在本地端、不能連到外部網路、提示字資料也不能外送的情境下,本模型的建置過程及結果提供了一個可行性的示範。
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 18.37 |
| ARC (25-shot) | 26.96 |
| HellaSwag (10-shot) | 28.87 |
| MMLU (5-shot) | 24.03 |
| TruthfulQA (0-shot) | 0.0 |
| Winogrande (5-shot) | 48.38 |
| GSM8K (5-shot) | 0.0 |
| DROP (3-shot) | 0.33 |
# 引文訊息
```
@misc{lin2024legal,
title={Legal Documents Drafting with Fine-Tuned Pre-Trained Large Language Model},
author={Chun-Hsien Lin and Pu-Jen Cheng},
year={2024},
eprint={2406.04202},
archivePrefix={arXiv},
primaryClass={cs.CL}
url = {https://arxiv.org/abs/2406.04202}
}
```
|