--- library_name: transformers license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-dmae-humeda-DAV35 results: [] --- # swinv2-tiny-patch4-window8-256-dmae-humeda-DAV35 This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2578 - Accuracy: 0.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.85 | 1.0 | 36 | 1.4133 | 0.5333 | | 1.9294 | 2.0 | 72 | 0.9294 | 0.6333 | | 1.1818 | 3.0 | 108 | 0.7700 | 0.65 | | 0.7534 | 4.0 | 144 | 0.7531 | 0.7167 | | 0.4285 | 5.0 | 180 | 0.9580 | 0.7 | | 0.08 | 6.0 | 216 | 1.1785 | 0.75 | | 0.0891 | 7.0 | 252 | 1.4686 | 0.7333 | | 0.0602 | 8.0 | 288 | 1.7816 | 0.7 | | 0.0284 | 9.0 | 324 | 1.5790 | 0.7667 | | 0.0513 | 10.0 | 360 | 1.8933 | 0.7 | | 0.0335 | 11.0 | 396 | 2.1433 | 0.65 | | 0.025 | 12.0 | 432 | 2.3483 | 0.6667 | | 0.0246 | 13.0 | 468 | 2.6426 | 0.6667 | | 0.0306 | 14.0 | 504 | 3.0153 | 0.65 | | 0.016 | 15.0 | 540 | 3.1259 | 0.6833 | | 0.006 | 16.0 | 576 | 2.7612 | 0.7167 | | 0.0234 | 17.0 | 612 | 2.5334 | 0.7167 | | 0.0025 | 18.0 | 648 | 2.1768 | 0.7667 | | 0.0001 | 19.0 | 684 | 2.6585 | 0.7167 | | 0.0007 | 20.0 | 720 | 2.3282 | 0.7167 | | 0.0003 | 21.0 | 756 | 2.6975 | 0.7333 | | 0.0003 | 22.0 | 792 | 2.6186 | 0.7 | | 0.0006 | 23.0 | 828 | 2.9600 | 0.7167 | | 0.0008 | 24.0 | 864 | 2.9623 | 0.7333 | | 0.0002 | 25.0 | 900 | 2.8632 | 0.7167 | | 0.0143 | 26.0 | 936 | 2.8460 | 0.7167 | | 0.0 | 27.0 | 972 | 2.9372 | 0.7167 | | 0.0002 | 28.0 | 1008 | 2.8056 | 0.75 | | 0.0001 | 29.0 | 1044 | 3.0591 | 0.7167 | | 0.0001 | 30.0 | 1080 | 3.3295 | 0.6833 | | 0.0 | 31.0 | 1116 | 3.2851 | 0.6833 | | 0.0001 | 32.0 | 1152 | 3.4065 | 0.7 | | 0.0 | 33.0 | 1188 | 3.3669 | 0.7 | | 0.0 | 34.0 | 1224 | 3.3185 | 0.7167 | | 0.0006 | 35.0 | 1260 | 3.2563 | 0.7 | | 0.0004 | 36.0 | 1296 | 3.2831 | 0.7 | | 0.0001 | 37.0 | 1332 | 3.2594 | 0.7 | | 0.0 | 38.0 | 1368 | 3.2576 | 0.7 | | 0.0 | 38.9014 | 1400 | 3.2578 | 0.7 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0