--- library_name: transformers license: apache-2.0 base_model: michiyasunaga/BioLinkBERT-base tags: - generated_from_trainer datasets: - drugtemist-en-8-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: drugtemist-en-8-ner type: drugtemist-en-8-ner config: DrugTEMIST English NER split: validation args: DrugTEMIST English NER metrics: - name: Precision type: precision value: 0.9172033118675254 - name: Recall type: recall value: 0.9291705498602051 - name: F1 type: f1 value: 0.9231481481481483 - name: Accuracy type: accuracy value: 0.9985418469009014 --- # output This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the drugtemist-en-8-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0089 - Precision: 0.9172 - Recall: 0.9292 - F1: 0.9231 - Accuracy: 0.9985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 493 | 0.0050 | 0.9288 | 0.9245 | 0.9267 | 0.9987 | | 0.018 | 2.0 | 986 | 0.0057 | 0.9104 | 0.9189 | 0.9147 | 0.9984 | | 0.0044 | 3.0 | 1479 | 0.0079 | 0.9362 | 0.9161 | 0.9260 | 0.9985 | | 0.0023 | 4.0 | 1972 | 0.0057 | 0.9318 | 0.9301 | 0.9310 | 0.9987 | | 0.0014 | 5.0 | 2465 | 0.0070 | 0.9201 | 0.9226 | 0.9214 | 0.9986 | | 0.0008 | 6.0 | 2958 | 0.0082 | 0.9118 | 0.9254 | 0.9186 | 0.9985 | | 0.0006 | 7.0 | 3451 | 0.0074 | 0.9172 | 0.9394 | 0.9282 | 0.9986 | | 0.0003 | 8.0 | 3944 | 0.0085 | 0.9219 | 0.9245 | 0.9232 | 0.9985 | | 0.0003 | 9.0 | 4437 | 0.0086 | 0.9149 | 0.9320 | 0.9234 | 0.9985 | | 0.0002 | 10.0 | 4930 | 0.0089 | 0.9172 | 0.9292 | 0.9231 | 0.9985 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1