Rodrigo1771 commited on
Commit
4ab6696
·
verified ·
1 Parent(s): 2648fbd

Training in progress, epoch 0

Browse files
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
5
+ tags:
6
+ - token-classification
7
+ - generated_from_trainer
8
+ datasets:
9
+ - Rodrigo1771/drugtemist-fasttext-75-ner
10
+ metrics:
11
+ - precision
12
+ - recall
13
+ - f1
14
+ - accuracy
15
+ model-index:
16
+ - name: output
17
+ results:
18
+ - task:
19
+ name: Token Classification
20
+ type: token-classification
21
+ dataset:
22
+ name: Rodrigo1771/drugtemist-fasttext-75-ner
23
+ type: Rodrigo1771/drugtemist-fasttext-75-ner
24
+ config: DrugTEMIST NER
25
+ split: validation
26
+ args: DrugTEMIST NER
27
+ metrics:
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.9447963800904977
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.9595588235294118
34
+ - name: F1
35
+ type: f1
36
+ value: 0.9521203830369357
37
+ - name: Accuracy
38
+ type: accuracy
39
+ value: 0.9991418018042759
40
+ ---
41
+
42
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
43
+ should probably proofread and complete it, then remove this comment. -->
44
+
45
+ # output
46
+
47
+ This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/drugtemist-fasttext-75-ner dataset.
48
+ It achieves the following results on the evaluation set:
49
+ - Loss: 0.0044
50
+ - Precision: 0.9448
51
+ - Recall: 0.9596
52
+ - F1: 0.9521
53
+ - Accuracy: 0.9991
54
+
55
+ ## Model description
56
+
57
+ More information needed
58
+
59
+ ## Intended uses & limitations
60
+
61
+ More information needed
62
+
63
+ ## Training and evaluation data
64
+
65
+ More information needed
66
+
67
+ ## Training procedure
68
+
69
+ ### Training hyperparameters
70
+
71
+ The following hyperparameters were used during training:
72
+ - learning_rate: 5e-05
73
+ - train_batch_size: 32
74
+ - eval_batch_size: 8
75
+ - seed: 42
76
+ - gradient_accumulation_steps: 2
77
+ - total_train_batch_size: 64
78
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
79
+ - lr_scheduler_type: linear
80
+ - num_epochs: 10.0
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
85
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
86
+ | No log | 1.0 | 488 | 0.0039 | 0.9005 | 0.9733 | 0.9355 | 0.9988 |
87
+ | 0.0189 | 2.0 | 976 | 0.0032 | 0.9239 | 0.9596 | 0.9414 | 0.9989 |
88
+ | 0.0027 | 3.0 | 1464 | 0.0044 | 0.9192 | 0.9623 | 0.9403 | 0.9989 |
89
+ | 0.0015 | 4.0 | 1952 | 0.0036 | 0.9424 | 0.9467 | 0.9445 | 0.9991 |
90
+ | 0.0007 | 5.0 | 2440 | 0.0044 | 0.9448 | 0.9596 | 0.9521 | 0.9991 |
91
+ | 0.0004 | 6.0 | 2928 | 0.0055 | 0.9594 | 0.9338 | 0.9464 | 0.9990 |
92
+ | 0.0002 | 7.0 | 3416 | 0.0049 | 0.9397 | 0.9458 | 0.9427 | 0.9990 |
93
+ | 0.0002 | 8.0 | 3904 | 0.0053 | 0.9434 | 0.9504 | 0.9469 | 0.9991 |
94
+ | 0.0001 | 9.0 | 4392 | 0.0050 | 0.9434 | 0.9494 | 0.9464 | 0.9991 |
95
+ | 0.0001 | 10.0 | 4880 | 0.0052 | 0.9417 | 0.9494 | 0.9455 | 0.9991 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.44.2
101
+ - Pytorch 2.4.0+cu121
102
+ - Datasets 2.21.0
103
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9991418018042759,
4
+ "eval_f1": 0.9521203830369357,
5
+ "eval_loss": 0.004440780263394117,
6
+ "eval_precision": 0.9447963800904977,
7
+ "eval_recall": 0.9595588235294118,
8
+ "eval_runtime": 14.1123,
9
+ "eval_samples": 6810,
10
+ "eval_samples_per_second": 482.558,
11
+ "eval_steps_per_second": 60.373,
12
+ "predict_accuracy": 0.9987636326290384,
13
+ "predict_f1": 0.9231204070096098,
14
+ "predict_loss": 0.006668921560049057,
15
+ "predict_precision": 0.8967600219659527,
16
+ "predict_recall": 0.9510774606872452,
17
+ "predict_runtime": 28.5821,
18
+ "predict_samples_per_second": 511.3,
19
+ "predict_steps_per_second": 63.921,
20
+ "total_flos": 1.5694885147146138e+16,
21
+ "train_loss": 0.002533856062142209,
22
+ "train_runtime": 1422.7831,
23
+ "train_samples": 31229,
24
+ "train_samples_per_second": 219.492,
25
+ "train_steps_per_second": 3.43
26
+ }
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
3
+ "architectures": [
4
+ "RobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "finetuning_task": "ner",
11
+ "gradient_checkpointing": false,
12
+ "hidden_act": "gelu",
13
+ "hidden_dropout_prob": 0.1,
14
+ "hidden_size": 768,
15
+ "id2label": {
16
+ "0": "O",
17
+ "1": "B-MORFOLOGIA_NEOPLASIA",
18
+ "2": "I-MORFOLOGIA_NEOPLASIA"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "B-MORFOLOGIA_NEOPLASIA": 1,
24
+ "I-MORFOLOGIA_NEOPLASIA": 2,
25
+ "O": 0
26
+ },
27
+ "layer_norm_eps": 1e-05,
28
+ "max_position_embeddings": 514,
29
+ "model_type": "roberta",
30
+ "num_attention_heads": 12,
31
+ "num_hidden_layers": 12,
32
+ "pad_token_id": 1,
33
+ "position_embedding_type": "absolute",
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.44.2",
36
+ "type_vocab_size": 1,
37
+ "use_cache": true,
38
+ "vocab_size": 50262
39
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9991418018042759,
4
+ "eval_f1": 0.9521203830369357,
5
+ "eval_loss": 0.004440780263394117,
6
+ "eval_precision": 0.9447963800904977,
7
+ "eval_recall": 0.9595588235294118,
8
+ "eval_runtime": 14.1123,
9
+ "eval_samples": 6810,
10
+ "eval_samples_per_second": 482.558,
11
+ "eval_steps_per_second": 60.373
12
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6910751ed12008a129fa189bcf461725b25a378adcaf1bbcbb0cfd5a6312733
3
+ size 496244100
predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_accuracy": 0.9987636326290384,
3
+ "predict_f1": 0.9231204070096098,
4
+ "predict_loss": 0.006668921560049057,
5
+ "predict_precision": 0.8967600219659527,
6
+ "predict_recall": 0.9510774606872452,
7
+ "predict_runtime": 28.5821,
8
+ "predict_samples_per_second": 511.3,
9
+ "predict_steps_per_second": 63.921
10
+ }
predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tb/events.out.tfevents.1725911599.0ada7e7d1d89.3073.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5816f5dda3b32e02f4eaf786675db7f9a58883db7fed71ab3a319cb3cdef0814
3
+ size 13213
tb/events.out.tfevents.1725913533.0ada7e7d1d89.3073.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bac376227477ed56be640720bee3901400d0b77a1b47bd01abe47f5a9812732
3
+ size 560
tb/events.out.tfevents.1725913932.0ada7e7d1d89.13010.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:120730bd8a1911f76908612aac3b6a6054f50323c593b164c4aef2c6a29371a7
3
+ size 12146
tb/events.out.tfevents.1725915390.0ada7e7d1d89.13010.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03d8cb7f565d31640d583d92b327a96be3b79169b4e94e4f8f1d5458aa42d308
3
+ size 560
tb/events.out.tfevents.1725915865.0ada7e7d1d89.20997.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:063cfdb54ca32f95fb8fd45b976b6ce814dbbce892d8ea95319330dfc5321993
3
+ size 5908
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50261": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "max_len": 512,
52
+ "model_max_length": 512,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
train.log ADDED
@@ -0,0 +1,422 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/6160 [00:00<?, ?it/s]
1
  0%| | 1/6160 [00:01<1:51:55, 1.09s/it]
2
  0%| | 2/6160 [00:01<1:00:56, 1.68it/s]
3
  0%| | 3/6160 [00:01<45:52, 2.24it/s]
4
  0%| | 4/6160 [00:01<39:30, 2.60it/s]
5
  0%| | 5/6160 [00:02<33:30, 3.06it/s]
6
  0%| | 6/6160 [00:02<30:47, 3.33it/s]
7
  0%| | 7/6160 [00:02<29:15, 3.50it/s]
8
  0%| | 8/6160 [00:02<27:30, 3.73it/s]
9
  0%| | 9/6160 [00:03<26:19, 3.89it/s]
10
  0%| | 10/6160 [00:03<27:26, 3.74it/s]
11
  0%| | 11/6160 [00:03<24:46, 4.14it/s]
12
  0%| | 12/6160 [00:03<27:19, 3.75it/s]
13
  0%| | 13/6160 [00:04<26:20, 3.89it/s]
14
  0%| | 14/6160 [00:04<24:47, 4.13it/s]
15
  0%| | 15/6160 [00:04<24:49, 4.13it/s]
16
  0%| | 16/6160 [00:04<24:14, 4.22it/s]
17
  0%| | 17/6160 [00:05<23:51, 4.29it/s]
18
  0%| | 18/6160 [00:05<24:44, 4.14it/s]
19
  0%| | 19/6160 [00:05<23:35, 4.34it/s]
20
  0%| | 20/6160 [00:05<23:01, 4.44it/s]
21
  0%| | 21/6160 [00:06<26:31, 3.86it/s]
22
  0%| | 22/6160 [00:06<26:00, 3.93it/s]
23
  0%| | 23/6160 [00:06<25:39, 3.99it/s]
24
  0%| | 24/6160 [00:06<28:02, 3.65it/s]
25
  0%| | 25/6160 [00:07<29:47, 3.43it/s]
26
  0%| | 26/6160 [00:07<26:54, 3.80it/s]
27
  0%| | 27/6160 [00:07<26:31, 3.85it/s]
28
  0%| | 28/6160 [00:07<24:30, 4.17it/s]
29
  0%| | 29/6160 [00:08<26:34, 3.84it/s]
30
  0%| | 30/6160 [00:08<28:24, 3.60it/s]
31
  1%| | 31/6160 [00:08<29:53, 3.42it/s]
32
  1%| | 32/6160 [00:09<29:43, 3.44it/s]
33
  1%| | 33/6160 [00:09<28:30, 3.58it/s]
34
  1%| | 34/6160 [00:09<27:36, 3.70it/s]
35
  1%| | 35/6160 [00:09<24:55, 4.10it/s]
36
  1%| | 36/6160 [00:09<24:39, 4.14it/s]
37
  1%| | 37/6160 [00:10<24:12, 4.21it/s]
38
  1%| | 38/6160 [00:10<22:44, 4.49it/s]
39
  1%| | 39/6160 [00:10<26:24, 3.86it/s]
40
  1%| | 40/6160 [00:11<26:13, 3.89it/s]
41
  1%| | 41/6160 [00:11<24:19, 4.19it/s]
42
  1%| | 42/6160 [00:11<22:49, 4.47it/s]
43
  1%| | 43/6160 [00:11<26:27, 3.85it/s]
44
  1%| | 44/6160 [00:11<26:17, 3.88it/s]
45
  1%| | 45/6160 [00:12<25:59, 3.92it/s]
46
  1%| | 46/6160 [00:12<27:14, 3.74it/s]
47
  1%| | 47/6160 [00:12<25:01, 4.07it/s]
48
  1%| | 48/6160 [00:12<23:53, 4.26it/s]
49
  1%| | 49/6160 [00:13<23:56, 4.25it/s]
50
  1%| | 50/6160 [00:13<23:50, 4.27it/s]
51
  1%| | 51/6160 [00:13<24:48, 4.11it/s]
52
  1%| | 52/6160 [00:13<24:33, 4.14it/s]
53
  1%| | 53/6160 [00:14<23:12, 4.39it/s]
54
  1%| | 54/6160 [00:14<26:07, 3.90it/s]
55
  1%| | 55/6160 [00:14<26:33, 3.83it/s]
56
  1%| | 56/6160 [00:15<30:29, 3.34it/s]
57
  1%| | 57/6160 [00:15<28:09, 3.61it/s]
58
  1%| | 58/6160 [00:15<27:15, 3.73it/s]
59
  1%| | 59/6160 [00:15<25:54, 3.92it/s]
60
  1%| | 60/6160 [00:16<25:03, 4.06it/s]
61
  1%| | 61/6160 [00:16<25:27, 3.99it/s]
62
  1%| | 62/6160 [00:16<23:45, 4.28it/s]
63
  1%| | 63/6160 [00:16<23:59, 4.24it/s]
64
  1%| | 64/6160 [00:16<24:49, 4.09it/s]
65
  1%| | 65/6160 [00:17<23:21, 4.35it/s]
66
  1%| | 66/6160 [00:17<25:19, 4.01it/s]
67
  1%| | 67/6160 [00:17<26:13, 3.87it/s]
68
  1%| | 68/6160 [00:18<27:31, 3.69it/s]
69
  1%| | 69/6160 [00:18<25:44, 3.94it/s]
70
  1%| | 70/6160 [00:18<27:47, 3.65it/s]
71
  1%| | 71/6160 [00:18<29:09, 3.48it/s]
72
  1%| | 72/6160 [00:19<28:03, 3.62it/s]
73
  1%| | 73/6160 [00:19<28:44, 3.53it/s]
74
  1%| | 74/6160 [00:19<27:33, 3.68it/s]
75
  1%| | 75/6160 [00:19<26:02, 3.89it/s]
76
  1%| | 76/6160 [00:20<25:44, 3.94it/s]
77
  1%|▏ | 77/6160 [00:20<24:24, 4.15it/s]
78
  1%|▏ | 78/6160 [00:20<24:43, 4.10it/s]
79
  1%|▏ | 79/6160 [00:20<25:17, 4.01it/s]
80
  1%|▏ | 80/6160 [00:21<30:03, 3.37it/s]
81
  1%|▏ | 81/6160 [00:21<26:35, 3.81it/s]
82
  1%|▏ | 82/6160 [00:21<24:36, 4.12it/s]
83
  1%|▏ | 83/6160 [00:21<24:22, 4.16it/s]
84
  1%|▏ | 84/6160 [00:22<23:05, 4.38it/s]
85
  1%|▏ | 85/6160 [00:22<23:08, 4.38it/s]
86
  1%|▏ | 86/6160 [00:22<23:45, 4.26it/s]
87
  1%|▏ | 87/6160 [00:22<23:39, 4.28it/s]
88
  1%|▏ | 88/6160 [00:23<24:14, 4.18it/s]
89
  1%|▏ | 89/6160 [00:23<24:57, 4.05it/s]
90
  1%|▏ | 90/6160 [00:23<25:50, 3.91it/s]
91
  1%|▏ | 91/6160 [00:23<24:03, 4.20it/s]
92
  1%|▏ | 92/6160 [00:23<22:46, 4.44it/s]
93
  2%|▏ | 93/6160 [00:24<24:03, 4.20it/s]
94
  2%|▏ | 94/6160 [00:24<23:40, 4.27it/s]
95
  2%|▏ | 95/6160 [00:24<23:31, 4.30it/s]
96
  2%|▏ | 96/6160 [00:24<25:00, 4.04it/s]
97
  2%|▏ | 97/6160 [00:25<23:25, 4.31it/s]
98
  2%|▏ | 98/6160 [00:25<23:43, 4.26it/s]
99
  2%|▏ | 99/6160 [00:25<24:15, 4.16it/s]
100
  2%|▏ | 100/6160 [00:25<25:58, 3.89it/s]
101
  2%|▏ | 101/6160 [00:26<23:33, 4.29it/s]
102
  2%|▏ | 102/6160 [00:26<25:05, 4.02it/s]
103
  2%|▏ | 103/6160 [00:26<26:53, 3.75it/s]
104
  2%|▏ | 104/6160 [00:27<34:05, 2.96it/s]
105
  2%|▏ | 105/6160 [00:27<30:44, 3.28it/s]
106
  2%|▏ | 106/6160 [00:27<29:15, 3.45it/s]
107
  2%|▏ | 107/6160 [00:27<26:20, 3.83it/s]
108
  2%|▏ | 108/6160 [00:28<24:48, 4.07it/s]
109
  2%|▏ | 109/6160 [00:28<27:51, 3.62it/s]
110
  2%|▏ | 110/6160 [00:28<28:39, 3.52it/s]
111
  2%|▏ | 111/6160 [00:29<32:07, 3.14it/s]
112
  2%|▏ | 112/6160 [00:29<31:32, 3.20it/s]
113
  2%|▏ | 113/6160 [00:29<28:32, 3.53it/s]
114
  2%|▏ | 114/6160 [00:29<27:07, 3.72it/s]
115
  2%|▏ | 115/6160 [00:30<28:03, 3.59it/s]
116
  2%|▏ | 116/6160 [00:30<25:09, 4.00it/s]
117
  2%|▏ | 117/6160 [00:30<25:42, 3.92it/s]
118
  2%|▏ | 118/6160 [00:30<25:14, 3.99it/s]
119
  2%|▏ | 119/6160 [00:31<25:44, 3.91it/s]
120
  2%|▏ | 120/6160 [00:31<25:49, 3.90it/s]
121
  2%|▏ | 121/6160 [00:31<24:06, 4.17it/s]
122
  2%|▏ | 122/6160 [00:31<23:53, 4.21it/s]
123
  2%|▏ | 123/6160 [00:32<23:42, 4.24it/s]
124
  2%|▏ | 124/6160 [00:32<23:40, 4.25it/s]
125
  2%|▏ | 125/6160 [00:32<22:54, 4.39it/s]
126
  2%|▏ | 126/6160 [00:32<22:39, 4.44it/s]
127
  2%|▏ | 127/6160 [00:33<24:46, 4.06it/s]
128
  2%|▏ | 128/6160 [00:33<24:10, 4.16it/s]
129
  2%|▏ | 129/6160 [00:33<24:17, 4.14it/s]
130
  2%|▏ | 130/6160 [00:33<26:06, 3.85it/s]
131
  2%|▏ | 131/6160 [00:34<25:23, 3.96it/s]
132
  2%|▏ | 132/6160 [00:34<24:54, 4.03it/s]
133
  2%|▏ | 133/6160 [00:34<24:26, 4.11it/s]
134
  2%|▏ | 134/6160 [00:34<23:13, 4.32it/s]
135
  2%|▏ | 135/6160 [00:34<22:06, 4.54it/s]
136
  2%|▏ | 136/6160 [00:35<21:52, 4.59it/s]
137
  2%|▏ | 137/6160 [00:35<22:37, 4.44it/s]
138
  2%|▏ | 138/6160 [00:35<24:46, 4.05it/s]
139
  2%|▏ | 139/6160 [00:35<23:54, 4.20it/s]
140
  2%|▏ | 140/6160 [00:36<25:44, 3.90it/s]
141
  2%|▏ | 141/6160 [00:36<24:27, 4.10it/s]
142
  2%|▏ | 142/6160 [00:36<22:47, 4.40it/s]
143
  2%|▏ | 143/6160 [00:36<24:11, 4.15it/s]
144
  2%|▏ | 144/6160 [00:37<23:41, 4.23it/s]
145
  2%|▏ | 145/6160 [00:37<23:01, 4.35it/s]
146
  2%|▏ | 146/6160 [00:37<23:21, 4.29it/s]
147
  2%|▏ | 147/6160 [00:37<24:34, 4.08it/s]
148
  2%|▏ | 148/6160 [00:38<24:45, 4.05it/s]
149
  2%|▏ | 149/6160 [00:38<23:41, 4.23it/s]
150
  2%|▏ | 150/6160 [00:38<25:27, 3.94it/s]
151
  2%|▏ | 151/6160 [00:38<24:48, 4.04it/s]
152
  2%|▏ | 152/6160 [00:39<23:29, 4.26it/s]
153
  2%|▏ | 153/6160 [00:39<26:10, 3.82it/s]
154
  2%|▎ | 154/6160 [00:39<25:19, 3.95it/s]
155
  3%|▎ | 155/6160 [00:39<25:15, 3.96it/s]
156
  3%|▎ | 156/6160 [00:40<24:43, 4.05it/s]
157
  3%|▎ | 157/6160 [00:40<25:30, 3.92it/s]
158
  3%|▎ | 158/6160 [00:40<23:34, 4.24it/s]
159
  3%|▎ | 159/6160 [00:40<23:42, 4.22it/s]
160
  3%|▎ | 160/6160 [00:41<24:57, 4.01it/s]
161
  3%|▎ | 161/6160 [00:41<27:42, 3.61it/s]
162
  3%|▎ | 162/6160 [00:41<26:54, 3.72it/s]
163
  3%|▎ | 163/6160 [00:41<27:39, 3.61it/s]
164
  3%|▎ | 164/6160 [00:42<25:58, 3.85it/s]
165
  3%|▎ | 165/6160 [00:42<26:02, 3.84it/s]
166
  3%|▎ | 166/6160 [00:42<24:27, 4.08it/s]
167
  3%|▎ | 167/6160 [00:42<24:20, 4.10it/s]
168
  3%|▎ | 168/6160 [00:43<25:26, 3.93it/s]
169
  3%|▎ | 169/6160 [00:43<25:38, 3.89it/s]
170
  3%|▎ | 170/6160 [00:43<25:24, 3.93it/s]
171
  3%|▎ | 171/6160 [00:43<23:18, 4.28it/s]
172
  3%|▎ | 172/6160 [00:44<23:12, 4.30it/s]
173
  3%|▎ | 173/6160 [00:44<25:35, 3.90it/s]
174
  3%|▎ | 174/6160 [00:44<26:19, 3.79it/s]
175
  3%|▎ | 175/6160 [00:44<24:59, 3.99it/s]
176
  3%|▎ | 176/6160 [00:45<24:57, 4.00it/s]
177
  3%|▎ | 177/6160 [00:45<23:10, 4.30it/s]
178
  3%|▎ | 178/6160 [00:45<23:23, 4.26it/s]
179
  3%|▎ | 179/6160 [00:45<22:27, 4.44it/s]
180
  3%|▎ | 180/6160 [00:46<21:55, 4.55it/s]
181
  3%|▎ | 181/6160 [00:46<22:48, 4.37it/s]
182
  3%|▎ | 182/6160 [00:46<24:46, 4.02it/s]
183
  3%|▎ | 183/6160 [00:46<23:13, 4.29it/s]
184
  3%|▎ | 184/6160 [00:46<23:40, 4.21it/s]
185
  3%|▎ | 185/6160 [00:47<22:21, 4.45it/s]
186
  3%|▎ | 186/6160 [00:47<21:07, 4.71it/s]
187
  3%|▎ | 187/6160 [00:47<20:51, 4.77it/s]
188
  3%|▎ | 188/6160 [00:47<23:36, 4.22it/s]
189
  3%|▎ | 189/6160 [00:48<25:25, 3.91it/s]
190
  3%|▎ | 190/6160 [00:48<25:10, 3.95it/s]
191
  3%|▎ | 191/6160 [00:48<26:33, 3.75it/s]
192
  3%|▎ | 192/6160 [00:48<25:58, 3.83it/s]
193
  3%|▎ | 193/6160 [00:49<27:51, 3.57it/s]
194
  3%|▎ | 194/6160 [00:49<27:36, 3.60it/s]
195
  3%|▎ | 195/6160 [00:49<26:14, 3.79it/s]
196
  3%|▎ | 196/6160 [00:50<24:43, 4.02it/s]
197
  3%|▎ | 197/6160 [00:50<27:48, 3.57it/s]
198
  3%|▎ | 198/6160 [00:50<28:02, 3.54it/s]
199
  3%|▎ | 199/6160 [00:50<26:53, 3.70it/s]
200
  3%|▎ | 200/6160 [00:51<24:54, 3.99it/s]
201
  3%|▎ | 201/6160 [00:51<24:05, 4.12it/s]
202
  3%|▎ | 202/6160 [00:51<22:45, 4.36it/s]
203
  3%|▎ | 203/6160 [00:51<23:22, 4.25it/s]
204
  3%|▎ | 204/6160 [00:52<24:27, 4.06it/s]
205
  3%|▎ | 205/6160 [00:52<23:59, 4.14it/s]
206
  3%|▎ | 206/6160 [00:52<25:04, 3.96it/s]
207
  3%|▎ | 207/6160 [00:52<24:28, 4.05it/s]
208
  3%|▎ | 208/6160 [00:52<23:06, 4.29it/s]
209
  3%|▎ | 209/6160 [00:53<24:34, 4.04it/s]
210
  3%|▎ | 210/6160 [00:53<24:42, 4.01it/s]
211
  3%|▎ | 211/6160 [00:53<22:28, 4.41it/s]
212
  3%|▎ | 212/6160 [00:53<21:56, 4.52it/s]
213
  3%|▎ | 213/6160 [00:54<23:54, 4.15it/s]
214
  3%|▎ | 214/6160 [00:54<22:58, 4.31it/s]
215
  3%|▎ | 215/6160 [00:54<22:55, 4.32it/s]
216
  4%|▎ | 216/6160 [00:54<22:07, 4.48it/s]
217
  4%|▎ | 217/6160 [00:55<22:11, 4.46it/s]
218
  4%|▎ | 218/6160 [00:55<21:14, 4.66it/s]
219
  4%|▎ | 219/6160 [00:55<21:04, 4.70it/s]
220
  4%|▎ | 220/6160 [00:55<20:58, 4.72it/s]
221
  4%|▎ | 221/6160 [00:55<22:03, 4.49it/s]
222
  4%|▎ | 222/6160 [00:56<21:43, 4.56it/s]
223
  4%|▎ | 223/6160 [00:56<21:30, 4.60it/s]
224
  4%|▎ | 224/6160 [00:56<21:30, 4.60it/s]
225
  4%|▎ | 225/6160 [00:56<25:14, 3.92it/s]
226
  4%|▎ | 226/6160 [00:57<23:46, 4.16it/s]
227
  4%|▎ | 227/6160 [00:57<24:19, 4.06it/s]
228
  4%|▎ | 228/6160 [00:57<23:55, 4.13it/s]
229
  4%|▎ | 229/6160 [00:57<22:32, 4.38it/s]
230
  4%|▎ | 230/6160 [00:58<22:26, 4.40it/s]
231
  4%|▍ | 231/6160 [00:58<23:16, 4.25it/s]
232
  4%|▍ | 232/6160 [00:58<25:13, 3.92it/s]
233
  4%|▍ | 233/6160 [00:58<25:51, 3.82it/s]
234
  4%|▍ | 234/6160 [00:59<24:13, 4.08it/s]
235
  4%|▍ | 235/6160 [00:59<23:16, 4.24it/s]
236
  4%|▍ | 236/6160 [00:59<24:03, 4.10it/s]
237
  4%|▍ | 237/6160 [00:59<23:40, 4.17it/s]
238
  4%|▍ | 238/6160 [00:59<22:04, 4.47it/s]
239
  4%|▍ | 239/6160 [01:00<21:40, 4.55it/s]
240
  4%|▍ | 240/6160 [01:00<23:34, 4.19it/s]
241
  4%|▍ | 241/6160 [01:00<23:18, 4.23it/s]
242
  4%|▍ | 242/6160 [01:00<21:47, 4.53it/s]
243
  4%|▍ | 243/6160 [01:01<21:41, 4.55it/s]
244
  4%|▍ | 244/6160 [01:01<22:03, 4.47it/s]
245
  4%|▍ | 245/6160 [01:01<21:49, 4.52it/s]
246
  4%|▍ | 246/6160 [01:01<21:46, 4.53it/s]
247
  4%|▍ | 247/6160 [01:01<22:06, 4.46it/s]
248
  4%|▍ | 248/6160 [01:02<23:44, 4.15it/s]
249
  4%|▍ | 249/6160 [01:02<25:24, 3.88it/s]
250
  4%|▍ | 250/6160 [01:02<24:34, 4.01it/s]
251
  4%|▍ | 251/6160 [01:03<23:30, 4.19it/s]
252
  4%|▍ | 252/6160 [01:03<25:53, 3.80it/s]
253
  4%|▍ | 253/6160 [01:03<26:17, 3.74it/s]
254
  4%|▍ | 254/6160 [01:03<28:55, 3.40it/s]
255
  4%|▍ | 255/6160 [01:04<27:16, 3.61it/s]
256
  4%|▍ | 256/6160 [01:04<26:51, 3.66it/s]
257
  4%|▍ | 257/6160 [01:04<25:30, 3.86it/s]
258
  4%|▍ | 258/6160 [01:04<24:29, 4.02it/s]
259
  4%|▍ | 259/6160 [01:05<22:46, 4.32it/s]
260
  4%|▍ | 260/6160 [01:05<24:01, 4.09it/s]
261
  4%|▍ | 261/6160 [01:05<24:17, 4.05it/s]
262
  4%|▍ | 262/6160 [01:05<24:29, 4.01it/s]
263
  4%|▍ | 263/6160 [01:06<24:17, 4.05it/s]
264
  4%|▍ | 264/6160 [01:06<23:56, 4.10it/s]
265
  4%|▍ | 265/6160 [01:06<24:05, 4.08it/s]
266
  4%|▍ | 266/6160 [01:06<24:10, 4.06it/s]
267
  4%|▍ | 267/6160 [01:07<25:41, 3.82it/s]
268
  4%|▍ | 268/6160 [01:07<24:34, 4.00it/s]
269
  4%|▍ | 269/6160 [01:07<23:45, 4.13it/s]
270
  4%|▍ | 270/6160 [01:07<23:39, 4.15it/s]
271
  4%|▍ | 271/6160 [01:08<26:03, 3.77it/s]
272
  4%|▍ | 272/6160 [01:08<25:05, 3.91it/s]
273
  4%|▍ | 273/6160 [01:08<24:16, 4.04it/s]
274
  4%|▍ | 274/6160 [01:08<26:44, 3.67it/s]
275
  4%|▍ | 275/6160 [01:09<25:23, 3.86it/s]
276
  4%|▍ | 276/6160 [01:09<23:56, 4.09it/s]
277
  4%|▍ | 277/6160 [01:09<23:03, 4.25it/s]
278
  5%|▍ | 278/6160 [01:09<22:59, 4.26it/s]
279
  5%|▍ | 279/6160 [01:10<24:43, 3.96it/s]
280
  5%|▍ | 280/6160 [01:10<22:19, 4.39it/s]
281
  5%|▍ | 281/6160 [01:10<23:43, 4.13it/s]
282
  5%|▍ | 282/6160 [01:10<26:23, 3.71it/s]
283
  5%|▍ | 283/6160 [01:11<26:49, 3.65it/s]
284
  5%|▍ | 284/6160 [01:11<30:45, 3.18it/s]
285
  5%|▍ | 285/6160 [01:11<28:04, 3.49it/s]
286
  5%|▍ | 286/6160 [01:12<26:59, 3.63it/s]
287
  5%|▍ | 287/6160 [01:12<26:23, 3.71it/s]
288
  5%|▍ | 288/6160 [01:12<27:43, 3.53it/s]
289
  5%|▍ | 289/6160 [01:12<26:14, 3.73it/s]
290
  5%|▍ | 290/6160 [01:13<24:10, 4.05it/s]
291
  5%|▍ | 291/6160 [01:13<24:03, 4.06it/s]
292
  5%|▍ | 292/6160 [01:13<24:35, 3.98it/s]
293
  5%|▍ | 293/6160 [01:13<25:57, 3.77it/s]
294
  5%|▍ | 294/6160 [01:14<26:51, 3.64it/s]
295
  5%|▍ | 295/6160 [01:14<25:59, 3.76it/s]
296
  5%|▍ | 296/6160 [01:14<24:05, 4.06it/s]
297
  5%|▍ | 297/6160 [01:14<23:05, 4.23it/s]
298
  5%|▍ | 298/6160 [01:15<25:37, 3.81it/s]
299
  5%|▍ | 299/6160 [01:15<24:30, 3.99it/s]
300
  5%|▍ | 300/6160 [01:15<23:55, 4.08it/s]
301
  5%|▍ | 301/6160 [01:15<23:42, 4.12it/s]
302
  5%|▍ | 302/6160 [01:16<23:57, 4.08it/s]
303
  5%|▍ | 303/6160 [01:16<22:49, 4.28it/s]
304
  5%|▍ | 304/6160 [01:16<24:45, 3.94it/s]
305
  5%|▍ | 305/6160 [01:16<25:36, 3.81it/s]
306
  5%|▍ | 306/6160 [01:17<25:48, 3.78it/s]
307
  5%|▍ | 307/6160 [01:17<25:10, 3.88it/s]
308
  5%|▌ | 308/6160 [01:17<24:45, 3.94it/s]
309
  5%|▌ | 309/6160 [01:17<23:23, 4.17it/s]
310
  5%|▌ | 310/6160 [01:18<24:33, 3.97it/s]
311
  5%|▌ | 311/6160 [01:18<24:11, 4.03it/s]
312
  5%|▌ | 312/6160 [01:18<23:05, 4.22it/s]
313
  5%|▌ | 313/6160 [01:18<26:10, 3.72it/s]
314
  5%|▌ | 314/6160 [01:19<25:44, 3.79it/s]
315
  5%|▌ | 315/6160 [01:19<24:52, 3.92it/s]
316
  5%|▌ | 316/6160 [01:19<23:48, 4.09it/s]
317
  5%|▌ | 317/6160 [01:19<22:42, 4.29it/s]
318
  5%|▌ | 318/6160 [01:20<24:03, 4.05it/s]
319
  5%|▌ | 319/6160 [01:20<23:55, 4.07it/s]
320
  5%|▌ | 320/6160 [01:20<23:48, 4.09it/s]
321
  5%|▌ | 321/6160 [01:20<22:58, 4.24it/s]
322
  5%|▌ | 322/6160 [01:21<24:22, 3.99it/s]
323
  5%|▌ | 323/6160 [01:21<25:10, 3.86it/s]
324
  5%|▌ | 324/6160 [01:21<24:02, 4.04it/s]
325
  5%|▌ | 325/6160 [01:21<24:10, 4.02it/s]
326
  5%|▌ | 326/6160 [01:22<23:53, 4.07it/s]
327
  5%|▌ | 327/6160 [01:22<22:59, 4.23it/s]
328
  5%|▌ | 328/6160 [01:22<23:49, 4.08it/s]
329
  5%|▌ | 329/6160 [01:22<23:21, 4.16it/s]
330
  5%|▌ | 330/6160 [01:23<23:24, 4.15it/s]
331
  5%|▌ | 331/6160 [01:23<24:25, 3.98it/s]
332
  5%|▌ | 332/6160 [01:23<22:06, 4.39it/s]
333
  5%|▌ | 333/6160 [01:23<22:28, 4.32it/s]
334
  5%|▌ | 334/6160 [01:23<22:57, 4.23it/s]
335
  5%|▌ | 335/6160 [01:24<23:17, 4.17it/s]
336
  5%|▌ | 336/6160 [01:24<22:51, 4.25it/s]
337
  5%|▌ | 337/6160 [01:24<24:12, 4.01it/s]
338
  5%|▌ | 338/6160 [01:25<28:11, 3.44it/s]
339
  6%|▌ | 339/6160 [01:25<25:48, 3.76it/s]
340
  6%|▌ | 340/6160 [01:25<24:22, 3.98it/s]
341
  6%|▌ | 341/6160 [01:25<25:02, 3.87it/s]
342
  6%|▌ | 342/6160 [01:26<24:21, 3.98it/s]
343
  6%|▌ | 343/6160 [01:26<23:27, 4.13it/s]
344
  6%|▌ | 344/6160 [01:26<23:55, 4.05it/s]
345
  6%|▌ | 345/6160 [01:26<22:59, 4.21it/s]
346
  6%|▌ | 346/6160 [01:27<23:31, 4.12it/s]
347
  6%|▌ | 347/6160 [01:27<24:07, 4.01it/s]
348
  6%|▌ | 348/6160 [01:27<22:58, 4.22it/s]
349
  6%|▌ | 349/6160 [01:27<24:20, 3.98it/s]
350
  6%|▌ | 350/6160 [01:27<23:03, 4.20it/s]
351
  6%|▌ | 351/6160 [01:28<24:32, 3.94it/s]
352
  6%|▌ | 352/6160 [01:28<24:53, 3.89it/s]
353
  6%|▌ | 353/6160 [01:28<24:01, 4.03it/s]
354
  6%|▌ | 354/6160 [01:28<23:02, 4.20it/s]
355
  6%|▌ | 355/6160 [01:29<24:17, 3.98it/s]
356
  6%|▌ | 356/6160 [01:29<22:23, 4.32it/s]
357
  6%|▌ | 357/6160 [01:29<23:13, 4.16it/s]
358
  6%|▌ | 358/6160 [01:29<23:54, 4.04it/s]
359
  6%|▌ | 359/6160 [01:30<23:56, 4.04it/s]
360
  6%|▌ | 360/6160 [01:30<22:36, 4.28it/s]
361
  6%|▌ | 361/6160 [01:30<22:32, 4.29it/s]
362
  6%|▌ | 362/6160 [01:30<21:55, 4.41it/s]
363
  6%|▌ | 363/6160 [01:31<23:07, 4.18it/s]
364
  6%|▌ | 364/6160 [01:31<23:43, 4.07it/s]
365
  6%|▌ | 365/6160 [01:31<24:23, 3.96it/s]
366
  6%|▌ | 366/6160 [01:31<23:26, 4.12it/s]
367
  6%|▌ | 367/6160 [01:32<23:34, 4.09it/s]
368
  6%|▌ | 368/6160 [01:32<23:23, 4.13it/s]
369
  6%|▌ | 369/6160 [01:32<23:15, 4.15it/s]
370
  6%|▌ | 370/6160 [01:32<22:33, 4.28it/s]
371
  6%|▌ | 371/6160 [01:33<23:13, 4.15it/s]
372
  6%|▌ | 372/6160 [01:33<23:12, 4.16it/s]
373
  6%|▌ | 373/6160 [01:33<23:02, 4.19it/s]
374
  6%|▌ | 374/6160 [01:33<23:33, 4.09it/s]
375
  6%|▌ | 375/6160 [01:34<24:26, 3.94it/s]
376
  6%|▌ | 376/6160 [01:34<26:34, 3.63it/s]
377
  6%|▌ | 377/6160 [01:34<24:48, 3.89it/s]
378
  6%|▌ | 378/6160 [01:34<23:32, 4.09it/s]
379
  6%|▌ | 379/6160 [01:35<24:11, 3.98it/s]
380
  6%|▌ | 380/6160 [01:35<22:58, 4.19it/s]
381
  6%|▌ | 381/6160 [01:35<23:21, 4.12it/s]
382
  6%|▌ | 382/6160 [01:35<24:51, 3.87it/s]
383
  6%|▌ | 383/6160 [01:36<23:36, 4.08it/s]
384
  6%|▌ | 384/6160 [01:36<22:08, 4.35it/s]
385
  6%|▋ | 385/6160 [01:36<22:06, 4.35it/s]
386
  6%|▋ | 386/6160 [01:36<21:38, 4.45it/s]
387
  6%|▋ | 387/6160 [01:36<21:50, 4.40it/s]
388
  6%|▋ | 388/6160 [01:37<20:56, 4.59it/s]
389
  6%|▋ | 389/6160 [01:37<22:18, 4.31it/s]
390
  6%|▋ | 390/6160 [01:37<23:34, 4.08it/s]
391
  6%|▋ | 391/6160 [01:37<25:14, 3.81it/s]
392
  6%|▋ | 392/6160 [01:38<23:27, 4.10it/s]
393
  6%|▋ | 393/6160 [01:38<22:44, 4.23it/s]
394
  6%|▋ | 394/6160 [01:38<23:11, 4.14it/s]
395
  6%|▋ | 395/6160 [01:38<22:07, 4.34it/s]
396
  6%|▋ | 396/6160 [01:39<21:43, 4.42it/s]
397
  6%|▋ | 397/6160 [01:39<20:06, 4.78it/s]
398
  6%|▋ | 398/6160 [01:39<21:13, 4.53it/s]
399
  6%|▋ | 399/6160 [01:39<22:25, 4.28it/s]
400
  6%|▋ | 400/6160 [01:40<23:03, 4.16it/s]
401
  7%|▋ | 401/6160 [01:40<23:17, 4.12it/s]
402
  7%|▋ | 402/6160 [01:40<21:55, 4.38it/s]
403
  7%|▋ | 403/6160 [01:40<21:21, 4.49it/s]
404
  7%|▋ | 404/6160 [01:40<21:45, 4.41it/s]
405
  7%|▋ | 405/6160 [01:41<22:58, 4.17it/s]
406
  7%|▋ | 406/6160 [01:41<22:23, 4.28it/s]
407
  7%|▋ | 407/6160 [01:41<20:59, 4.57it/s]
408
  7%|▋ | 408/6160 [01:41<20:11, 4.75it/s]
409
  7%|▋ | 409/6160 [01:41<20:30, 4.67it/s]
410
  7%|▋ | 410/6160 [01:42<21:42, 4.42it/s]
411
  7%|▋ | 411/6160 [01:42<24:29, 3.91it/s]
412
  7%|▋ | 412/6160 [01:42<23:45, 4.03it/s]
413
  7%|▋ | 413/6160 [01:43<22:41, 4.22it/s]
414
  7%|▋ | 414/6160 [01:43<23:05, 4.15it/s]
415
  7%|▋ | 415/6160 [01:43<22:53, 4.18it/s]
416
  7%|▋ | 416/6160 [01:43<26:32, 3.61it/s]
417
  7%|▋ | 417/6160 [01:44<24:20, 3.93it/s]
418
  7%|▋ | 418/6160 [01:44<25:22, 3.77it/s]
419
  7%|▋ | 419/6160 [01:44<24:43, 3.87it/s]
420
  7%|��� | 420/6160 [01:44<23:54, 4.00it/s]
421
  7%|▋ | 421/6160 [01:45<22:46, 4.20it/s]
422
  7%|▋ | 422/6160 [01:45<22:20, 4.28it/s]
423
  7%|▋ | 423/6160 [01:45<23:01, 4.15it/s]
424
  7%|▋ | 424/6160 [01:45<22:50, 4.18it/s]
425
  7%|▋ | 425/6160 [01:45<22:34, 4.24it/s]
426
  7%|▋ | 426/6160 [01:46<21:48, 4.38it/s]
427
  7%|▋ | 427/6160 [01:46<23:10, 4.12it/s]
428
  7%|▋ | 428/6160 [01:46<23:06, 4.13it/s]
429
  7%|▋ | 429/6160 [01:46<23:09, 4.12it/s]
430
  7%|▋ | 430/6160 [01:47<23:14, 4.11it/s]
431
  7%|▋ | 431/6160 [01:47<23:08, 4.12it/s]
432
  7%|▋ | 432/6160 [01:47<23:18, 4.09it/s]
433
  7%|▋ | 433/6160 [01:47<22:25, 4.26it/s]
434
  7%|▋ | 434/6160 [01:48<21:49, 4.37it/s]
435
  7%|▋ | 435/6160 [01:48<23:18, 4.09it/s]
436
  7%|▋ | 436/6160 [01:48<22:43, 4.20it/s]
437
  7%|▋ | 437/6160 [01:48<21:35, 4.42it/s]
438
  7%|▋ | 438/6160 [01:49<21:37, 4.41it/s]
439
  7%|▋ | 439/6160 [01:49<21:01, 4.53it/s]
440
  7%|▋ | 440/6160 [01:49<20:21, 4.68it/s]
441
  7%|▋ | 441/6160 [01:49<20:22, 4.68it/s]
442
  7%|▋ | 442/6160 [01:49<21:44, 4.38it/s]
443
  7%|▋ | 443/6160 [01:50<21:23, 4.45it/s]
444
  7%|▋ | 444/6160 [01:50<21:08, 4.51it/s]
445
  7%|▋ | 445/6160 [01:50<19:41, 4.84it/s]
446
  7%|▋ | 446/6160 [01:50<20:50, 4.57it/s]
447
  7%|▋ | 447/6160 [01:51<21:36, 4.41it/s]
448
  7%|▋ | 448/6160 [01:51<21:30, 4.42it/s]
449
  7%|▋ | 449/6160 [01:51<22:48, 4.17it/s]
450
  7%|▋ | 450/6160 [01:51<22:06, 4.30it/s]
451
  7%|▋ | 451/6160 [01:51<21:11, 4.49it/s]
452
  7%|▋ | 452/6160 [01:52<25:50, 3.68it/s]
453
  7%|▋ | 453/6160 [01:52<24:12, 3.93it/s]
454
  7%|▋ | 454/6160 [01:52<23:11, 4.10it/s]
455
  7%|▋ | 455/6160 [01:52<23:05, 4.12it/s]
456
  7%|▋ | 456/6160 [01:53<22:17, 4.27it/s]
457
  7%|▋ | 457/6160 [01:53<24:02, 3.95it/s]
458
  7%|▋ | 458/6160 [01:53<28:38, 3.32it/s]
459
  7%|▋ | 459/6160 [01:54<26:04, 3.64it/s]
460
  7%|▋ | 460/6160 [01:54<24:28, 3.88it/s]
461
  7%|▋ | 461/6160 [01:54<23:22, 4.06it/s]
462
  8%|▊ | 462/6160 [01:54<23:27, 4.05it/s]
463
  8%|▊ | 463/6160 [01:55<21:33, 4.41it/s]
464
  8%|▊ | 464/6160 [01:55<23:08, 4.10it/s]
465
  8%|▊ | 465/6160 [01:55<21:54, 4.33it/s]
466
  8%|▊ | 466/6160 [01:55<24:29, 3.88it/s]
467
  8%|▊ | 467/6160 [01:56<23:21, 4.06it/s]
468
  8%|▊ | 468/6160 [01:56<22:55, 4.14it/s]
469
  8%|▊ | 469/6160 [01:56<23:35, 4.02it/s]
470
  8%|▊ | 470/6160 [01:56<25:29, 3.72it/s]
471
  8%|▊ | 471/6160 [01:57<25:00, 3.79it/s]
472
  8%|▊ | 472/6160 [01:57<27:53, 3.40it/s]
473
  8%|▊ | 473/6160 [01:57<25:43, 3.68it/s]
474
  8%|▊ | 474/6160 [01:57<24:00, 3.95it/s]
475
  8%|▊ | 475/6160 [01:58<23:30, 4.03it/s]
476
  8%|▊ | 476/6160 [01:58<24:02, 3.94it/s]
477
  8%|▊ | 477/6160 [01:58<24:34, 3.85it/s]
478
  8%|▊ | 478/6160 [01:58<23:57, 3.95it/s]
479
  8%|▊ | 479/6160 [01:59<23:32, 4.02it/s]
480
  8%|▊ | 480/6160 [01:59<23:45, 3.98it/s]
481
  8%|▊ | 481/6160 [01:59<23:27, 4.04it/s]
482
  8%|▊ | 482/6160 [01:59<23:11, 4.08it/s]
483
  8%|▊ | 483/6160 [02:00<24:07, 3.92it/s]
484
  8%|▊ | 484/6160 [02:00<23:02, 4.10it/s]
485
  8%|▊ | 485/6160 [02:00<22:33, 4.19it/s]
486
  8%|▊ | 486/6160 [02:00<22:10, 4.26it/s]
487
  8%|▊ | 487/6160 [02:01<23:03, 4.10it/s]
488
  8%|▊ | 488/6160 [02:01<24:23, 3.88it/s]
489
  8%|▊ | 489/6160 [02:01<22:07, 4.27it/s]
490
  8%|▊ | 490/6160 [02:01<22:21, 4.23it/s]
491
  8%|▊ | 491/6160 [02:02<21:48, 4.33it/s]
492
  8%|▊ | 492/6160 [02:02<20:39, 4.57it/s]
493
  8%|▊ | 493/6160 [02:02<21:41, 4.36it/s]
494
  8%|▊ | 494/6160 [02:02<23:12, 4.07it/s]
495
  8%|▊ | 495/6160 [02:02<22:43, 4.16it/s]
496
  8%|▊ | 496/6160 [02:03<22:09, 4.26it/s]
497
  8%|▊ | 497/6160 [02:03<22:46, 4.14it/s]
498
  8%|▊ | 498/6160 [02:03<24:43, 3.82it/s]
499
  8%|▊ | 499/6160 [02:03<23:42, 3.98it/s]
500
  8%|▊ | 500/6160 [02:04<22:26, 4.20it/s]
501
 
502
  8%|▊ | 500/6160 [02:04<22:26, 4.20it/s]
503
  8%|▊ | 501/6160 [02:04<25:45, 3.66it/s]
504
  8%|▊ | 502/6160 [02:04<23:48, 3.96it/s]
505
  8%|▊ | 503/6160 [02:05<24:01, 3.92it/s]
506
  8%|▊ | 504/6160 [02:05<25:32, 3.69it/s]
507
  8%|▊ | 505/6160 [02:05<23:20, 4.04it/s]
508
  8%|▊ | 506/6160 [02:05<24:16, 3.88it/s]
509
  8%|▊ | 507/6160 [02:06<22:53, 4.12it/s]
510
  8%|▊ | 508/6160 [02:06<22:31, 4.18it/s]
511
  8%|▊ | 509/6160 [02:06<22:17, 4.22it/s]
512
  8%|▊ | 510/6160 [02:06<21:06, 4.46it/s]
513
  8%|▊ | 511/6160 [02:07<24:23, 3.86it/s]
514
  8%|▊ | 512/6160 [02:07<23:18, 4.04it/s]
515
  8%|▊ | 513/6160 [02:07<23:13, 4.05it/s]
516
  8%|▊ | 514/6160 [02:07<22:36, 4.16it/s]
517
  8%|▊ | 515/6160 [02:07<22:51, 4.12it/s]
518
  8%|▊ | 516/6160 [02:08<21:10, 4.44it/s]
519
  8%|▊ | 517/6160 [02:08<19:54, 4.72it/s]
520
  8%|▊ | 518/6160 [02:08<21:31, 4.37it/s]
521
  8%|▊ | 519/6160 [02:08<22:05, 4.26it/s]
522
  8%|▊ | 520/6160 [02:09<21:24, 4.39it/s]
523
  8%|▊ | 521/6160 [02:09<23:07, 4.06it/s]
524
  8%|▊ | 522/6160 [02:09<24:19, 3.86it/s]
525
  8%|▊ | 523/6160 [02:09<24:23, 3.85it/s]
526
  9%|▊ | 524/6160 [02:10<22:43, 4.13it/s]
527
  9%|▊ | 525/6160 [02:10<21:54, 4.29it/s]
528
  9%|▊ | 526/6160 [02:10<21:55, 4.28it/s]
529
  9%|▊ | 527/6160 [02:10<24:22, 3.85it/s]
530
  9%|▊ | 528/6160 [02:11<24:25, 3.84it/s]
531
  9%|▊ | 529/6160 [02:11<23:07, 4.06it/s]
532
  9%|▊ | 530/6160 [02:11<21:37, 4.34it/s]
533
  9%|▊ | 531/6160 [02:11<22:36, 4.15it/s]
534
  9%|▊ | 532/6160 [02:11<21:51, 4.29it/s]
535
  9%|▊ | 533/6160 [02:12<21:14, 4.42it/s]
536
  9%|▊ | 534/6160 [02:12<21:41, 4.32it/s]
537
  9%|▊ | 535/6160 [02:12<22:57, 4.08it/s]
538
  9%|▊ | 536/6160 [02:13<24:06, 3.89it/s]
539
  9%|▊ | 537/6160 [02:13<23:58, 3.91it/s]
540
  9%|▊ | 538/6160 [02:13<25:42, 3.64it/s]
541
  9%|▉ | 539/6160 [02:13<23:48, 3.94it/s]
542
  9%|▉ | 540/6160 [02:14<23:11, 4.04it/s]
543
  9%|▉ | 541/6160 [02:14<23:45, 3.94it/s]
544
  9%|▉ | 542/6160 [02:14<22:41, 4.13it/s]
545
  9%|▉ | 543/6160 [02:14<22:27, 4.17it/s]
546
  9%|▉ | 544/6160 [02:14<22:18, 4.20it/s]
547
  9%|▉ | 545/6160 [02:15<23:48, 3.93it/s]
548
  9%|▉ | 546/6160 [02:15<23:06, 4.05it/s]
549
  9%|▉ | 547/6160 [02:15<22:25, 4.17it/s]
550
  9%|▉ | 548/6160 [02:15<23:08, 4.04it/s]
551
  9%|▉ | 549/6160 [02:16<23:14, 4.03it/s]
552
  9%|▉ | 550/6160 [02:16<24:01, 3.89it/s]
553
  9%|▉ | 551/6160 [02:16<24:00, 3.89it/s]
554
  9%|▉ | 552/6160 [02:17<23:50, 3.92it/s]
555
  9%|▉ | 553/6160 [02:17<24:57, 3.74it/s]
556
  9%|▉ | 554/6160 [02:17<24:16, 3.85it/s]
557
  9%|▉ | 555/6160 [02:17<24:12, 3.86it/s]
558
  9%|▉ | 556/6160 [02:18<23:09, 4.03it/s]
559
  9%|▉ | 557/6160 [02:18<22:28, 4.16it/s]
560
  9%|▉ | 558/6160 [02:18<22:35, 4.13it/s]
561
  9%|▉ | 559/6160 [02:18<21:55, 4.26it/s]
562
  9%|▉ | 560/6160 [02:18<21:28, 4.35it/s]
563
  9%|▉ | 561/6160 [02:19<21:37, 4.31it/s]
564
  9%|▉ | 562/6160 [02:19<23:01, 4.05it/s]
565
  9%|▉ | 563/6160 [02:19<24:05, 3.87it/s]
566
  9%|▉ | 564/6160 [02:19<22:27, 4.15it/s]
567
  9%|▉ | 565/6160 [02:20<22:19, 4.18it/s]
568
  9%|▉ | 566/6160 [02:20<22:10, 4.20it/s]
569
  9%|▉ | 567/6160 [02:20<21:10, 4.40it/s]
570
  9%|▉ | 568/6160 [02:20<20:35, 4.53it/s]
571
  9%|▉ | 569/6160 [02:21<21:49, 4.27it/s]
572
  9%|▉ | 570/6160 [02:21<22:35, 4.13it/s]
573
  9%|▉ | 571/6160 [02:21<22:45, 4.09it/s]
574
  9%|▉ | 572/6160 [02:21<24:58, 3.73it/s]
575
  9%|▉ | 573/6160 [02:22<24:44, 3.76it/s]
576
  9%|▉ | 574/6160 [02:22<25:03, 3.71it/s]
577
  9%|▉ | 575/6160 [02:22<26:35, 3.50it/s]
578
  9%|▉ | 576/6160 [02:23<28:13, 3.30it/s]
579
  9%|▉ | 577/6160 [02:23<27:08, 3.43it/s]
580
  9%|▉ | 578/6160 [02:23<27:30, 3.38it/s]
581
  9%|▉ | 579/6160 [02:23<26:28, 3.51it/s]
582
  9%|▉ | 580/6160 [02:24<24:24, 3.81it/s]
583
  9%|▉ | 581/6160 [02:24<26:01, 3.57it/s]
584
  9%|▉ | 582/6160 [02:24<24:27, 3.80it/s]
585
  9%|▉ | 583/6160 [02:24<24:41, 3.76it/s]
586
  9%|▉ | 584/6160 [02:25<25:29, 3.64it/s]
587
  9%|▉ | 585/6160 [02:25<23:42, 3.92it/s]
588
  10%|▉ | 586/6160 [02:25<23:32, 3.95it/s]
589
  10%|▉ | 587/6160 [02:25<23:33, 3.94it/s]
590
  10%|▉ | 588/6160 [02:26<27:00, 3.44it/s]
591
  10%|▉ | 589/6160 [02:26<25:38, 3.62it/s]
592
  10%|▉ | 590/6160 [02:26<25:37, 3.62it/s]
593
  10%|▉ | 591/6160 [02:27<24:13, 3.83it/s]
594
  10%|▉ | 592/6160 [02:27<26:15, 3.53it/s]
595
  10%|▉ | 593/6160 [02:27<24:00, 3.86it/s]
596
  10%|▉ | 594/6160 [02:27<22:44, 4.08it/s]
597
  10%|▉ | 595/6160 [02:28<23:13, 3.99it/s]
598
  10%|▉ | 596/6160 [02:28<23:18, 3.98it/s]
599
  10%|▉ | 597/6160 [02:28<22:31, 4.12it/s]
600
  10%|▉ | 598/6160 [02:28<24:07, 3.84it/s]
601
  10%|▉ | 599/6160 [02:29<27:07, 3.42it/s]
602
  10%|▉ | 600/6160 [02:29<25:47, 3.59it/s]
603
  10%|▉ | 601/6160 [02:29<23:36, 3.92it/s]
604
  10%|▉ | 602/6160 [02:30<26:07, 3.55it/s]
605
  10%|▉ | 603/6160 [02:30<23:30, 3.94it/s]
606
  10%|▉ | 604/6160 [02:30<23:49, 3.89it/s]
607
  10%|▉ | 605/6160 [02:30<23:18, 3.97it/s]
608
  10%|▉ | 606/6160 [02:30<22:15, 4.16it/s]
609
  10%|▉ | 607/6160 [02:31<22:53, 4.04it/s]
610
  10%|▉ | 608/6160 [02:31<23:22, 3.96it/s]
611
  10%|▉ | 609/6160 [02:31<23:11, 3.99it/s]
612
  10%|▉ | 610/6160 [02:31<23:15, 3.98it/s]
613
  10%|▉ | 611/6160 [02:32<22:15, 4.16it/s]
614
  10%|▉ | 612/6160 [02:32<23:05, 4.01it/s]
615
  10%|▉ | 613/6160 [02:32<25:04, 3.69it/s]
616
  10%|▉ | 614/6160 [02:33<24:20, 3.80it/s]
617
  10%|▉ | 615/6160 [02:33<23:22, 3.95it/s]
618
  10%|█ | 616/6160 [02:33<22:39, 4.08it/s][INFO|trainer.py:811] 2024-09-09 21:06:59,288 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, tokens, id. If ner_tags, tokens, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
 
 
 
 
 
 
 
619
  0%| | 0/920 [00:00<?, ?it/s]
 
620
  1%| | 10/920 [00:00<00:10, 89.26it/s]
 
621
  2%|▏ | 19/920 [00:00<00:11, 81.44it/s]
 
622
  3%|▎ | 28/920 [00:00<00:11, 80.94it/s]
 
623
  4%|▍ | 37/920 [00:00<00:10, 80.97it/s]
 
624
  5%|▌ | 46/920 [00:00<00:10, 81.49it/s]
 
625
  6%|▌ | 55/920 [00:00<00:10, 78.70it/s]
 
626
  7%|▋ | 63/920 [00:00<00:11, 77.82it/s]
 
627
  8%|▊ | 72/920 [00:00<00:10, 79.30it/s]
 
628
  9%|▉ | 81/920 [00:01<00:10, 80.05it/s]
 
629
  10%|▉ | 90/920 [00:01<00:10, 80.37it/s]
 
630
  11%|█ | 99/920 [00:01<00:10, 79.75it/s]
 
631
  12%|█▏ | 107/920 [00:01<00:10, 79.00it/s]
 
632
  12%|█▎ | 115/920 [00:01<00:10, 79.28it/s]
 
633
  13%|█▎ | 124/920 [00:01<00:09, 81.21it/s]
 
634
  14%|█▍ | 133/920 [00:01<00:09, 81.43it/s]
 
635
  15%|█▌ | 142/920 [00:01<00:09, 81.76it/s]
 
636
  16%|█▋ | 151/920 [00:01<00:09, 82.43it/s]
 
637
  17%|█▋ | 160/920 [00:01<00:09, 80.82it/s]
 
638
  18%|█▊ | 169/920 [00:02<00:09, 81.88it/s]
 
639
  19%|█▉ | 178/920 [00:02<00:09, 82.27it/s]
 
640
  20%|██ | 187/920 [00:02<00:08, 82.92it/s]
 
641
  21%|██▏ | 196/920 [00:02<00:08, 81.48it/s]
 
642
  22%|██▏ | 205/920 [00:02<00:08, 80.21it/s]
 
643
  23%|██▎ | 214/920 [00:02<00:09, 78.05it/s]
 
644
  24%|██▍ | 223/920 [00:02<00:08, 79.06it/s]
 
645
  25%|██▌ | 232/920 [00:02<00:08, 81.13it/s]
 
646
  26%|██▌ | 241/920 [00:02<00:08, 81.88it/s]
 
647
  27%|██▋ | 250/920 [00:03<00:08, 80.69it/s]
 
648
  28%|██▊ | 259/920 [00:03<00:08, 80.15it/s]
 
649
  29%|██▉ | 268/920 [00:03<00:08, 78.79it/s]
 
650
  30%|███ | 277/920 [00:03<00:08, 79.60it/s]
 
651
  31%|███ | 286/920 [00:03<00:07, 80.69it/s]
 
652
  32%|███▏ | 295/920 [00:03<00:07, 80.33it/s]
 
653
  33%|███▎ | 304/920 [00:03<00:07, 80.80it/s]
 
654
  34%|███▍ | 313/920 [00:03<00:07, 81.72it/s]
 
655
  35%|███▌ | 322/920 [00:03<00:07, 80.29it/s]
 
656
  36%|███▌ | 331/920 [00:04<00:07, 79.91it/s]
 
657
  37%|███▋ | 339/920 [00:04<00:07, 78.94it/s]
 
658
  38%|███▊ | 348/920 [00:04<00:07, 79.72it/s]
 
659
  39%|███▊ | 356/920 [00:04<00:07, 79.51it/s]
 
660
  40%|███▉ | 364/920 [00:04<00:07, 79.26it/s]
 
661
  41%|████ | 373/920 [00:04<00:06, 79.87it/s]
 
662
  42%|████▏ | 382/920 [00:04<00:06, 81.31it/s]
 
663
  42%|████▎ | 391/920 [00:04<00:06, 82.59it/s]
 
664
  43%|████▎ | 400/920 [00:04<00:06, 77.80it/s]
 
665
  44%|████▍ | 408/920 [00:05<00:06, 76.45it/s]
 
666
  45%|████▌ | 417/920 [00:05<00:06, 77.94it/s]
 
667
  46%|████▋ | 426/920 [00:05<00:06, 78.59it/s]
 
668
  47%|████▋ | 435/920 [00:05<00:06, 79.99it/s]
 
669
  48%|████▊ | 444/920 [00:05<00:05, 80.74it/s]
 
670
  49%|████▉ | 453/920 [00:05<00:05, 81.74it/s]
 
671
  50%|█████ | 462/920 [00:05<00:05, 82.03it/s]
 
672
  51%|█████ | 471/920 [00:05<00:05, 81.37it/s]
 
673
  52%|█████▏ | 480/920 [00:05<00:05, 82.17it/s]
 
674
  53%|█████▎ | 489/920 [00:06<00:05, 82.47it/s]
 
675
  54%|█████▍ | 498/920 [00:06<00:05, 82.99it/s]
 
676
  55%|█████▌ | 507/920 [00:06<00:04, 83.85it/s]
 
677
  56%|█████▌ | 516/920 [00:06<00:04, 83.75it/s]
 
678
  57%|█████▋ | 525/920 [00:06<00:04, 83.47it/s]
 
679
  58%|█████▊ | 534/920 [00:06<00:04, 83.94it/s]
 
680
  59%|█████▉ | 543/920 [00:06<00:04, 83.17it/s]
 
681
  60%|██████ | 552/920 [00:06<00:04, 80.12it/s]
 
682
  61%|██████ | 561/920 [00:06<00:04, 78.50it/s]
 
683
  62%|██████▏ | 570/920 [00:07<00:04, 79.62it/s]
 
684
  63%|██████▎ | 579/920 [00:07<00:04, 81.03it/s]
 
685
  64%|██████▍ | 588/920 [00:07<00:04, 80.79it/s]
 
686
  65%|██████▍ | 597/920 [00:07<00:03, 81.67it/s]
 
687
  66%|██████▌ | 606/920 [00:07<00:03, 82.75it/s]
 
688
  67%|██████▋ | 615/920 [00:07<00:03, 81.52it/s]
 
689
  68%|██████▊ | 624/920 [00:07<00:03, 82.03it/s]
 
690
  69%|██████▉ | 633/920 [00:07<00:03, 80.64it/s]
 
691
  70%|██████▉ | 642/920 [00:07<00:03, 81.34it/s]
 
692
  71%|███████ | 651/920 [00:08<00:03, 82.56it/s]
 
693
  72%|███████▏ | 660/920 [00:08<00:03, 82.34it/s]
 
694
  73%|███████▎ | 669/920 [00:08<00:03, 81.94it/s]
 
695
  74%|███████▎ | 678/920 [00:08<00:02, 83.32it/s]
 
696
  75%|███████▍ | 687/920 [00:08<00:02, 83.30it/s]
 
697
  76%|███████▌ | 696/920 [00:08<00:02, 82.32it/s]
 
698
  77%|███████▋ | 705/920 [00:08<00:02, 82.00it/s]
 
699
  78%|███████▊ | 714/920 [00:08<00:02, 80.92it/s]
 
700
  79%|███████▊ | 723/920 [00:08<00:02, 81.63it/s]
 
701
  80%|███████▉ | 732/920 [00:09<00:02, 82.58it/s]
 
702
  81%|████████ | 741/920 [00:09<00:02, 79.40it/s]
 
703
  82%|████████▏ | 750/920 [00:09<00:02, 80.83it/s]
 
704
  82%|████████▎ | 759/920 [00:09<00:02, 79.99it/s]
 
705
  83%|████████▎ | 768/920 [00:09<00:01, 81.76it/s]
 
706
  84%|████████▍ | 777/920 [00:09<00:01, 81.59it/s]
 
707
  85%|████████▌ | 786/920 [00:09<00:01, 82.68it/s]
 
708
  86%|████████▋ | 795/920 [00:09<00:01, 82.81it/s]
 
709
  87%|████████▋ | 804/920 [00:09<00:01, 81.21it/s]
 
710
  88%|████████▊ | 813/920 [00:10<00:01, 81.57it/s]
 
711
  89%|████████▉ | 822/920 [00:10<00:01, 82.33it/s]
 
712
  90%|█████████ | 831/920 [00:10<00:01, 82.55it/s]
 
713
  91%|█████████▏| 840/920 [00:10<00:00, 83.05it/s]
 
714
  92%|█████████▏| 849/920 [00:10<00:00, 82.15it/s]
 
715
  93%|█████████▎| 858/920 [00:10<00:00, 77.00it/s]
 
716
  94%|█████████▍| 867/920 [00:10<00:00, 78.62it/s]
 
717
  95%|█████████▌| 876/920 [00:10<00:00, 80.33it/s]
 
718
  96%|█████████▌| 885/920 [00:10<00:00, 81.47it/s]
 
719
  97%|█████████▋| 894/920 [00:11<00:00, 77.37it/s]
 
720
  98%|█████████▊| 903/920 [00:11<00:00, 78.89it/s]
 
721
  99%|█████████▉| 911/920 [00:11<00:00, 79.04it/s]
 
722
 
 
723
 
724
  10%|█ | 616/6160 [02:48<22:39, 4.08it/s]
 
 
725
  [INFO|trainer.py:3503] 2024-09-09 21:07:14,685 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-616
 
 
 
 
 
 
 
726
  10%|█ | 617/6160 [02:53<9:29:05, 6.16s/it]
727
  10%|█ | 618/6160 [02:53<6:45:40, 4.39s/it]
728
  10%|█ | 619/6160 [02:53<4:50:21, 3.14s/it]
729
  10%|█ | 620/6160 [02:54<3:34:18, 2.32s/it]
730
  10%|█ | 621/6160 [02:54<2:38:44, 1.72s/it]
731
  10%|█ | 622/6160 [02:54<1:57:50, 1.28s/it]
732
  10%|█ | 623/6160 [02:55<1:29:03, 1.04it/s]
733
  10%|█ | 624/6160 [02:55<1:08:48, 1.34it/s]
734
  10%|█ | 625/6160 [02:55<54:39, 1.69it/s]
735
  10%|█ | 626/6160 [02:55<47:13, 1.95it/s]
736
  10%|█ | 627/6160 [02:56<38:56, 2.37it/s]
737
  10%|█ | 628/6160 [02:56<32:04, 2.87it/s]
738
  10%|█ | 629/6160 [02:56<29:02, 3.17it/s]
739
  10%|█ | 630/6160 [02:56<27:37, 3.34it/s]
740
  10%|█ | 631/6160 [02:57<26:09, 3.52it/s]
741
  10%|█ | 632/6160 [02:57<25:25, 3.62it/s]
742
  10%|█ | 633/6160 [02:57<24:02, 3.83it/s]
743
  10%|█ | 634/6160 [02:57<24:04, 3.83it/s]
744
  10%|█ | 635/6160 [02:58<22:55, 4.02it/s]
745
  10%|█ | 636/6160 [02:58<21:38, 4.25it/s]
746
  10%|█ | 637/6160 [02:58<21:22, 4.31it/s]
747
  10%|█ | 638/6160 [02:58<22:07, 4.16it/s]
748
  10%|█ | 639/6160 [02:58<21:55, 4.20it/s]
749
  10%|█ | 640/6160 [02:59<22:00, 4.18it/s]
750
  10%|█ | 641/6160 [02:59<23:14, 3.96it/s]
751
  10%|█ | 642/6160 [02:59<21:50, 4.21it/s]
752
  10%|█ | 643/6160 [03:00<24:42, 3.72it/s]
753
  10%|█ | 644/6160 [03:00<24:39, 3.73it/s]
754
  10%|█ | 645/6160 [03:00<23:34, 3.90it/s]
755
  10%|█ | 646/6160 [03:00<22:11, 4.14it/s]
756
  11%|█ | 647/6160 [03:01<24:55, 3.69it/s]
757
  11%|█ | 648/6160 [03:01<23:08, 3.97it/s]
758
  11%|█ | 649/6160 [03:01<22:36, 4.06it/s]
759
  11%|█ | 650/6160 [03:01<20:34, 4.47it/s]
760
  11%|█ | 651/6160 [03:01<19:33, 4.70it/s]
761
  11%|█ | 652/6160 [03:02<19:15, 4.77it/s]
762
  11%|█ | 653/6160 [03:02<19:50, 4.63it/s]
763
  11%|█ | 654/6160 [03:02<19:04, 4.81it/s]
764
  11%|█ | 655/6160 [03:02<19:45, 4.64it/s]
765
  11%|█ | 656/6160 [03:02<20:18, 4.52it/s]
766
  11%|█ | 657/6160 [03:03<21:02, 4.36it/s]
767
  11%|█ | 658/6160 [03:03<22:59, 3.99it/s]
768
  11%|█ | 659/6160 [03:03<22:01, 4.16it/s]
769
  11%|█ | 660/6160 [03:03<21:34, 4.25it/s]
770
  11%|█ | 661/6160 [03:04<21:11, 4.33it/s]
771
  11%|█ | 662/6160 [03:04<21:50, 4.20it/s]
772
  11%|█ | 663/6160 [03:04<20:43, 4.42it/s]
773
  11%|█ | 664/6160 [03:04<19:39, 4.66it/s]
774
  11%|█ | 665/6160 [03:05<19:31, 4.69it/s]
775
  11%|█ | 666/6160 [03:05<19:40, 4.65it/s]
776
  11%|█ | 667/6160 [03:05<20:04, 4.56it/s]
777
  11%|█ | 668/6160 [03:05<23:03, 3.97it/s]
778
  11%|█ | 669/6160 [03:06<21:58, 4.16it/s]
779
  11%|█ | 670/6160 [03:06<22:57, 3.99it/s]
780
  11%|█ | 671/6160 [03:06<22:38, 4.04it/s]
781
  11%|█ | 672/6160 [03:06<21:29, 4.26it/s]
782
  11%|█ | 673/6160 [03:06<21:45, 4.20it/s]
783
  11%|█ | 674/6160 [03:07<23:10, 3.95it/s]
784
  11%|█ | 675/6160 [03:07<21:57, 4.16it/s]
785
  11%|█ | 676/6160 [03:07<21:08, 4.32it/s]
786
  11%|█ | 677/6160 [03:07<21:36, 4.23it/s]
787
  11%|█ | 678/6160 [03:08<21:30, 4.25it/s]
788
  11%|█ | 679/6160 [03:08<27:25, 3.33it/s]
789
  11%|█ | 680/6160 [03:08<25:19, 3.61it/s]
790
  11%|█ | 681/6160 [03:09<24:54, 3.67it/s]
791
  11%|█ | 682/6160 [03:09<24:20, 3.75it/s]
792
  11%|█ | 683/6160 [03:09<22:44, 4.01it/s]
793
  11%|█ | 684/6160 [03:09<22:23, 4.08it/s]
794
  11%|█ | 685/6160 [03:10<22:04, 4.13it/s]
795
  11%|█ | 686/6160 [03:10<20:21, 4.48it/s]
796
  11%|█ | 687/6160 [03:10<20:39, 4.42it/s]
797
  11%|█ | 688/6160 [03:10<22:34, 4.04it/s]
798
  11%|█ | 689/6160 [03:11<23:45, 3.84it/s]
799
  11%|█ | 690/6160 [03:11<22:24, 4.07it/s]
800
  11%|█ | 691/6160 [03:11<23:21, 3.90it/s]
801
  11%|█ | 692/6160 [03:11<23:06, 3.94it/s]
802
  11%|█▏ | 693/6160 [03:12<21:56, 4.15it/s]
803
  11%|█▏ | 694/6160 [03:12<22:17, 4.09it/s]
804
  11%|█▏ | 695/6160 [03:12<21:20, 4.27it/s]
805
  11%|█▏ | 696/6160 [03:12<21:36, 4.21it/s]
806
  11%|█▏ | 697/6160 [03:12<20:34, 4.43it/s]
807
  11%|█▏ | 698/6160 [03:13<20:06, 4.53it/s]
808
  11%|█▏ | 699/6160 [03:13<19:49, 4.59it/s]
809
  11%|█▏ | 700/6160 [03:13<21:21, 4.26it/s]
810
  11%|█▏ | 701/6160 [03:13<20:19, 4.48it/s]
811
  11%|█▏ | 702/6160 [03:14<19:58, 4.56it/s]
812
  11%|█▏ | 703/6160 [03:14<21:33, 4.22it/s]
813
  11%|█▏ | 704/6160 [03:14<21:41, 4.19it/s]
814
  11%|█▏ | 705/6160 [03:14<19:28, 4.67it/s]
815
  11%|█▏ | 706/6160 [03:14<20:01, 4.54it/s]
816
  11%|█▏ | 707/6160 [03:15<20:15, 4.48it/s]
817
  11%|█▏ | 708/6160 [03:15<21:49, 4.16it/s]
818
  12%|█▏ | 709/6160 [03:15<22:07, 4.11it/s]
819
  12%|█▏ | 710/6160 [03:15<22:16, 4.08it/s]
820
  12%|█▏ | 711/6160 [03:16<21:42, 4.18it/s]
821
  12%|█▏ | 712/6160 [03:16<21:57, 4.14it/s]
822
  12%|█▏ | 713/6160 [03:16<22:13, 4.08it/s]
823
  12%|█▏ | 714/6160 [03:16<22:41, 4.00it/s]
824
  12%|█▏ | 715/6160 [03:17<21:43, 4.18it/s]
825
  12%|█▏ | 716/6160 [03:17<24:34, 3.69it/s]
826
  12%|█▏ | 717/6160 [03:17<23:22, 3.88it/s]
827
  12%|█▏ | 718/6160 [03:17<22:26, 4.04it/s]
828
  12%|█▏ | 719/6160 [03:18<21:15, 4.27it/s]
829
  12%|█▏ | 720/6160 [03:18<20:23, 4.45it/s]
830
  12%|█▏ | 721/6160 [03:18<21:20, 4.25it/s]
831
  12%|█▏ | 722/6160 [03:18<20:19, 4.46it/s]
832
  12%|█▏ | 723/6160 [03:19<21:22, 4.24it/s]
833
  12%|█▏ | 724/6160 [03:19<23:37, 3.84it/s]
834
  12%|█▏ | 725/6160 [03:19<25:41, 3.53it/s]
835
  12%|█▏ | 726/6160 [03:19<23:55, 3.79it/s]
836
  12%|█▏ | 727/6160 [03:20<22:50, 3.97it/s]
 
1
+ 2024-09-09 21:03:52.700445: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2
+ 2024-09-09 21:03:52.718609: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
3
+ 2024-09-09 21:03:52.739675: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
4
+ 2024-09-09 21:03:52.746064: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
5
+ 2024-09-09 21:03:52.761965: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
6
+ To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
7
+ 2024-09-09 21:03:54.014019: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
8
+ /usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
9
+ warnings.warn(
10
+ 09/09/2024 21:03:55 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
11
+ 09/09/2024 21:03:55 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
12
+ _n_gpu=1,
13
+ accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
14
+ adafactor=False,
15
+ adam_beta1=0.9,
16
+ adam_beta2=0.999,
17
+ adam_epsilon=1e-08,
18
+ auto_find_batch_size=False,
19
+ batch_eval_metrics=False,
20
+ bf16=False,
21
+ bf16_full_eval=False,
22
+ data_seed=None,
23
+ dataloader_drop_last=False,
24
+ dataloader_num_workers=0,
25
+ dataloader_persistent_workers=False,
26
+ dataloader_pin_memory=True,
27
+ dataloader_prefetch_factor=None,
28
+ ddp_backend=None,
29
+ ddp_broadcast_buffers=None,
30
+ ddp_bucket_cap_mb=None,
31
+ ddp_find_unused_parameters=None,
32
+ ddp_timeout=1800,
33
+ debug=[],
34
+ deepspeed=None,
35
+ disable_tqdm=False,
36
+ dispatch_batches=None,
37
+ do_eval=True,
38
+ do_predict=True,
39
+ do_train=True,
40
+ eval_accumulation_steps=None,
41
+ eval_delay=0,
42
+ eval_do_concat_batches=True,
43
+ eval_on_start=False,
44
+ eval_steps=None,
45
+ eval_strategy=epoch,
46
+ eval_use_gather_object=False,
47
+ evaluation_strategy=epoch,
48
+ fp16=False,
49
+ fp16_backend=auto,
50
+ fp16_full_eval=False,
51
+ fp16_opt_level=O1,
52
+ fsdp=[],
53
+ fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
54
+ fsdp_min_num_params=0,
55
+ fsdp_transformer_layer_cls_to_wrap=None,
56
+ full_determinism=False,
57
+ gradient_accumulation_steps=2,
58
+ gradient_checkpointing=False,
59
+ gradient_checkpointing_kwargs=None,
60
+ greater_is_better=True,
61
+ group_by_length=False,
62
+ half_precision_backend=auto,
63
+ hub_always_push=False,
64
+ hub_model_id=None,
65
+ hub_private_repo=False,
66
+ hub_strategy=every_save,
67
+ hub_token=<HUB_TOKEN>,
68
+ ignore_data_skip=False,
69
+ include_inputs_for_metrics=False,
70
+ include_num_input_tokens_seen=False,
71
+ include_tokens_per_second=False,
72
+ jit_mode_eval=False,
73
+ label_names=None,
74
+ label_smoothing_factor=0.0,
75
+ learning_rate=5e-05,
76
+ length_column_name=length,
77
+ load_best_model_at_end=True,
78
+ local_rank=0,
79
+ log_level=passive,
80
+ log_level_replica=warning,
81
+ log_on_each_node=True,
82
+ logging_dir=/content/dissertation/scripts/ner/output/tb,
83
+ logging_first_step=False,
84
+ logging_nan_inf_filter=True,
85
+ logging_steps=500,
86
+ logging_strategy=steps,
87
+ lr_scheduler_kwargs={},
88
+ lr_scheduler_type=linear,
89
+ max_grad_norm=1.0,
90
+ max_steps=-1,
91
+ metric_for_best_model=f1,
92
+ mp_parameters=,
93
+ neftune_noise_alpha=None,
94
+ no_cuda=False,
95
+ num_train_epochs=10.0,
96
+ optim=adamw_torch,
97
+ optim_args=None,
98
+ optim_target_modules=None,
99
+ output_dir=/content/dissertation/scripts/ner/output,
100
+ overwrite_output_dir=True,
101
+ past_index=-1,
102
+ per_device_eval_batch_size=8,
103
+ per_device_train_batch_size=32,
104
+ prediction_loss_only=False,
105
+ push_to_hub=True,
106
+ push_to_hub_model_id=None,
107
+ push_to_hub_organization=None,
108
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
109
+ ray_scope=last,
110
+ remove_unused_columns=True,
111
+ report_to=['tensorboard'],
112
+ restore_callback_states_from_checkpoint=False,
113
+ resume_from_checkpoint=None,
114
+ run_name=/content/dissertation/scripts/ner/output,
115
+ save_on_each_node=False,
116
+ save_only_model=False,
117
+ save_safetensors=True,
118
+ save_steps=500,
119
+ save_strategy=epoch,
120
+ save_total_limit=None,
121
+ seed=42,
122
+ skip_memory_metrics=True,
123
+ split_batches=None,
124
+ tf32=None,
125
+ torch_compile=False,
126
+ torch_compile_backend=None,
127
+ torch_compile_mode=None,
128
+ torch_empty_cache_steps=None,
129
+ torchdynamo=None,
130
+ tpu_metrics_debug=False,
131
+ tpu_num_cores=None,
132
+ use_cpu=False,
133
+ use_ipex=False,
134
+ use_legacy_prediction_loop=False,
135
+ use_mps_device=False,
136
+ warmup_ratio=0.0,
137
+ warmup_steps=0,
138
+ weight_decay=0.0,
139
+ )
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+ [INFO|configuration_utils.py:733] 2024-09-09 21:04:16,367 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
148
+ [INFO|configuration_utils.py:800] 2024-09-09 21:04:16,371 >> Model config RobertaConfig {
149
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
150
+ "architectures": [
151
+ "RobertaForMaskedLM"
152
+ ],
153
+ "attention_probs_dropout_prob": 0.1,
154
+ "bos_token_id": 0,
155
+ "classifier_dropout": null,
156
+ "eos_token_id": 2,
157
+ "finetuning_task": "ner",
158
+ "gradient_checkpointing": false,
159
+ "hidden_act": "gelu",
160
+ "hidden_dropout_prob": 0.1,
161
+ "hidden_size": 768,
162
+ "id2label": {
163
+ "0": "O",
164
+ "1": "B-MORFOLOGIA_NEOPLASIA",
165
+ "2": "I-MORFOLOGIA_NEOPLASIA"
166
+ },
167
+ "initializer_range": 0.02,
168
+ "intermediate_size": 3072,
169
+ "label2id": {
170
+ "B-MORFOLOGIA_NEOPLASIA": 1,
171
+ "I-MORFOLOGIA_NEOPLASIA": 2,
172
+ "O": 0
173
+ },
174
+ "layer_norm_eps": 1e-05,
175
+ "max_position_embeddings": 514,
176
+ "model_type": "roberta",
177
+ "num_attention_heads": 12,
178
+ "num_hidden_layers": 12,
179
+ "pad_token_id": 1,
180
+ "position_embedding_type": "absolute",
181
+ "transformers_version": "4.44.2",
182
+ "type_vocab_size": 1,
183
+ "use_cache": true,
184
+ "vocab_size": 50262
185
+ }
186
+
187
+ [INFO|configuration_utils.py:733] 2024-09-09 21:04:16,606 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
188
+ [INFO|configuration_utils.py:800] 2024-09-09 21:04:16,607 >> Model config RobertaConfig {
189
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
190
+ "architectures": [
191
+ "RobertaForMaskedLM"
192
+ ],
193
+ "attention_probs_dropout_prob": 0.1,
194
+ "bos_token_id": 0,
195
+ "classifier_dropout": null,
196
+ "eos_token_id": 2,
197
+ "gradient_checkpointing": false,
198
+ "hidden_act": "gelu",
199
+ "hidden_dropout_prob": 0.1,
200
+ "hidden_size": 768,
201
+ "initializer_range": 0.02,
202
+ "intermediate_size": 3072,
203
+ "layer_norm_eps": 1e-05,
204
+ "max_position_embeddings": 514,
205
+ "model_type": "roberta",
206
+ "num_attention_heads": 12,
207
+ "num_hidden_layers": 12,
208
+ "pad_token_id": 1,
209
+ "position_embedding_type": "absolute",
210
+ "transformers_version": "4.44.2",
211
+ "type_vocab_size": 1,
212
+ "use_cache": true,
213
+ "vocab_size": 50262
214
+ }
215
+
216
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 21:04:16,617 >> loading file vocab.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/vocab.json
217
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 21:04:16,617 >> loading file merges.txt from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/merges.txt
218
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 21:04:16,617 >> loading file tokenizer.json from cache at None
219
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 21:04:16,617 >> loading file added_tokens.json from cache at None
220
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 21:04:16,617 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/special_tokens_map.json
221
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 21:04:16,617 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/tokenizer_config.json
222
+ [INFO|configuration_utils.py:733] 2024-09-09 21:04:16,617 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
223
+ [INFO|configuration_utils.py:800] 2024-09-09 21:04:16,618 >> Model config RobertaConfig {
224
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
225
+ "architectures": [
226
+ "RobertaForMaskedLM"
227
+ ],
228
+ "attention_probs_dropout_prob": 0.1,
229
+ "bos_token_id": 0,
230
+ "classifier_dropout": null,
231
+ "eos_token_id": 2,
232
+ "gradient_checkpointing": false,
233
+ "hidden_act": "gelu",
234
+ "hidden_dropout_prob": 0.1,
235
+ "hidden_size": 768,
236
+ "initializer_range": 0.02,
237
+ "intermediate_size": 3072,
238
+ "layer_norm_eps": 1e-05,
239
+ "max_position_embeddings": 514,
240
+ "model_type": "roberta",
241
+ "num_attention_heads": 12,
242
+ "num_hidden_layers": 12,
243
+ "pad_token_id": 1,
244
+ "position_embedding_type": "absolute",
245
+ "transformers_version": "4.44.2",
246
+ "type_vocab_size": 1,
247
+ "use_cache": true,
248
+ "vocab_size": 50262
249
+ }
250
+
251
+ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
252
+ warnings.warn(
253
+ [INFO|configuration_utils.py:733] 2024-09-09 21:04:16,696 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
254
+ [INFO|configuration_utils.py:800] 2024-09-09 21:04:16,698 >> Model config RobertaConfig {
255
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
256
+ "architectures": [
257
+ "RobertaForMaskedLM"
258
+ ],
259
+ "attention_probs_dropout_prob": 0.1,
260
+ "bos_token_id": 0,
261
+ "classifier_dropout": null,
262
+ "eos_token_id": 2,
263
+ "gradient_checkpointing": false,
264
+ "hidden_act": "gelu",
265
+ "hidden_dropout_prob": 0.1,
266
+ "hidden_size": 768,
267
+ "initializer_range": 0.02,
268
+ "intermediate_size": 3072,
269
+ "layer_norm_eps": 1e-05,
270
+ "max_position_embeddings": 514,
271
+ "model_type": "roberta",
272
+ "num_attention_heads": 12,
273
+ "num_hidden_layers": 12,
274
+ "pad_token_id": 1,
275
+ "position_embedding_type": "absolute",
276
+ "transformers_version": "4.44.2",
277
+ "type_vocab_size": 1,
278
+ "use_cache": true,
279
+ "vocab_size": 50262
280
+ }
281
+
282
+ [INFO|modeling_utils.py:3678] 2024-09-09 21:04:17,023 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/pytorch_model.bin
283
+ [INFO|modeling_utils.py:4497] 2024-09-09 21:04:17,101 >> Some weights of the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es were not used when initializing RobertaForTokenClassification: ['lm_head.bias', 'lm_head.decoder.bias', 'lm_head.decoder.weight', 'lm_head.dense.bias', 'lm_head.dense.weight', 'lm_head.layer_norm.bias', 'lm_head.layer_norm.weight']
284
+ - This IS expected if you are initializing RobertaForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
285
+ - This IS NOT expected if you are initializing RobertaForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
286
+ [WARNING|modeling_utils.py:4509] 2024-09-09 21:04:17,101 >> Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es and are newly initialized: ['classifier.bias', 'classifier.weight']
287
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
288
+
289
+
290
+
291
+ /content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
292
+ metric = load_metric("seqeval", trust_remote_code=True)
293
+ [INFO|trainer.py:811] 2024-09-09 21:04:25,177 >> The following columns in the training set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, tokens, id. If ner_tags, tokens, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
294
+ [INFO|trainer.py:2134] 2024-09-09 21:04:25,739 >> ***** Running training *****
295
+ [INFO|trainer.py:2135] 2024-09-09 21:04:25,740 >> Num examples = 39,426
296
+ [INFO|trainer.py:2136] 2024-09-09 21:04:25,740 >> Num Epochs = 10
297
+ [INFO|trainer.py:2137] 2024-09-09 21:04:25,740 >> Instantaneous batch size per device = 32
298
+ [INFO|trainer.py:2140] 2024-09-09 21:04:25,740 >> Total train batch size (w. parallel, distributed & accumulation) = 64
299
+ [INFO|trainer.py:2141] 2024-09-09 21:04:25,740 >> Gradient Accumulation steps = 2
300
+ [INFO|trainer.py:2142] 2024-09-09 21:04:25,740 >> Total optimization steps = 6,160
301
+ [INFO|trainer.py:2143] 2024-09-09 21:04:25,740 >> Number of trainable parameters = 124,055,043
302
+
303
  0%| | 0/6160 [00:00<?, ?it/s]
304
  0%| | 1/6160 [00:01<1:51:55, 1.09s/it]
305
  0%| | 2/6160 [00:01<1:00:56, 1.68it/s]
306
  0%| | 3/6160 [00:01<45:52, 2.24it/s]
307
  0%| | 4/6160 [00:01<39:30, 2.60it/s]
308
  0%| | 5/6160 [00:02<33:30, 3.06it/s]
309
  0%| | 6/6160 [00:02<30:47, 3.33it/s]
310
  0%| | 7/6160 [00:02<29:15, 3.50it/s]
311
  0%| | 8/6160 [00:02<27:30, 3.73it/s]
312
  0%| | 9/6160 [00:03<26:19, 3.89it/s]
313
  0%| | 10/6160 [00:03<27:26, 3.74it/s]
314
  0%| | 11/6160 [00:03<24:46, 4.14it/s]
315
  0%| | 12/6160 [00:03<27:19, 3.75it/s]
316
  0%| | 13/6160 [00:04<26:20, 3.89it/s]
317
  0%| | 14/6160 [00:04<24:47, 4.13it/s]
318
  0%| | 15/6160 [00:04<24:49, 4.13it/s]
319
  0%| | 16/6160 [00:04<24:14, 4.22it/s]
320
  0%| | 17/6160 [00:05<23:51, 4.29it/s]
321
  0%| | 18/6160 [00:05<24:44, 4.14it/s]
322
  0%| | 19/6160 [00:05<23:35, 4.34it/s]
323
  0%| | 20/6160 [00:05<23:01, 4.44it/s]
324
  0%| | 21/6160 [00:06<26:31, 3.86it/s]
325
  0%| | 22/6160 [00:06<26:00, 3.93it/s]
326
  0%| | 23/6160 [00:06<25:39, 3.99it/s]
327
  0%| | 24/6160 [00:06<28:02, 3.65it/s]
328
  0%| | 25/6160 [00:07<29:47, 3.43it/s]
329
  0%| | 26/6160 [00:07<26:54, 3.80it/s]
330
  0%| | 27/6160 [00:07<26:31, 3.85it/s]
331
  0%| | 28/6160 [00:07<24:30, 4.17it/s]
332
  0%| | 29/6160 [00:08<26:34, 3.84it/s]
333
  0%| | 30/6160 [00:08<28:24, 3.60it/s]
334
  1%| | 31/6160 [00:08<29:53, 3.42it/s]
335
  1%| | 32/6160 [00:09<29:43, 3.44it/s]
336
  1%| | 33/6160 [00:09<28:30, 3.58it/s]
337
  1%| | 34/6160 [00:09<27:36, 3.70it/s]
338
  1%| | 35/6160 [00:09<24:55, 4.10it/s]
339
  1%| | 36/6160 [00:09<24:39, 4.14it/s]
340
  1%| | 37/6160 [00:10<24:12, 4.21it/s]
341
  1%| | 38/6160 [00:10<22:44, 4.49it/s]
342
  1%| | 39/6160 [00:10<26:24, 3.86it/s]
343
  1%| | 40/6160 [00:11<26:13, 3.89it/s]
344
  1%| | 41/6160 [00:11<24:19, 4.19it/s]
345
  1%| | 42/6160 [00:11<22:49, 4.47it/s]
346
  1%| | 43/6160 [00:11<26:27, 3.85it/s]
347
  1%| | 44/6160 [00:11<26:17, 3.88it/s]
348
  1%| | 45/6160 [00:12<25:59, 3.92it/s]
349
  1%| | 46/6160 [00:12<27:14, 3.74it/s]
350
  1%| | 47/6160 [00:12<25:01, 4.07it/s]
351
  1%| | 48/6160 [00:12<23:53, 4.26it/s]
352
  1%| | 49/6160 [00:13<23:56, 4.25it/s]
353
  1%| | 50/6160 [00:13<23:50, 4.27it/s]
354
  1%| | 51/6160 [00:13<24:48, 4.11it/s]
355
  1%| | 52/6160 [00:13<24:33, 4.14it/s]
356
  1%| | 53/6160 [00:14<23:12, 4.39it/s]
357
  1%| | 54/6160 [00:14<26:07, 3.90it/s]
358
  1%| | 55/6160 [00:14<26:33, 3.83it/s]
359
  1%| | 56/6160 [00:15<30:29, 3.34it/s]
360
  1%| | 57/6160 [00:15<28:09, 3.61it/s]
361
  1%| | 58/6160 [00:15<27:15, 3.73it/s]
362
  1%| | 59/6160 [00:15<25:54, 3.92it/s]
363
  1%| | 60/6160 [00:16<25:03, 4.06it/s]
364
  1%| | 61/6160 [00:16<25:27, 3.99it/s]
365
  1%| | 62/6160 [00:16<23:45, 4.28it/s]
366
  1%| | 63/6160 [00:16<23:59, 4.24it/s]
367
  1%| | 64/6160 [00:16<24:49, 4.09it/s]
368
  1%| | 65/6160 [00:17<23:21, 4.35it/s]
369
  1%| | 66/6160 [00:17<25:19, 4.01it/s]
370
  1%| | 67/6160 [00:17<26:13, 3.87it/s]
371
  1%| | 68/6160 [00:18<27:31, 3.69it/s]
372
  1%| | 69/6160 [00:18<25:44, 3.94it/s]
373
  1%| | 70/6160 [00:18<27:47, 3.65it/s]
374
  1%| | 71/6160 [00:18<29:09, 3.48it/s]
375
  1%| | 72/6160 [00:19<28:03, 3.62it/s]
376
  1%| | 73/6160 [00:19<28:44, 3.53it/s]
377
  1%| | 74/6160 [00:19<27:33, 3.68it/s]
378
  1%| | 75/6160 [00:19<26:02, 3.89it/s]
379
  1%| | 76/6160 [00:20<25:44, 3.94it/s]
380
  1%|▏ | 77/6160 [00:20<24:24, 4.15it/s]
381
  1%|▏ | 78/6160 [00:20<24:43, 4.10it/s]
382
  1%|▏ | 79/6160 [00:20<25:17, 4.01it/s]
383
  1%|▏ | 80/6160 [00:21<30:03, 3.37it/s]
384
  1%|▏ | 81/6160 [00:21<26:35, 3.81it/s]
385
  1%|▏ | 82/6160 [00:21<24:36, 4.12it/s]
386
  1%|▏ | 83/6160 [00:21<24:22, 4.16it/s]
387
  1%|▏ | 84/6160 [00:22<23:05, 4.38it/s]
388
  1%|▏ | 85/6160 [00:22<23:08, 4.38it/s]
389
  1%|▏ | 86/6160 [00:22<23:45, 4.26it/s]
390
  1%|▏ | 87/6160 [00:22<23:39, 4.28it/s]
391
  1%|▏ | 88/6160 [00:23<24:14, 4.18it/s]
392
  1%|▏ | 89/6160 [00:23<24:57, 4.05it/s]
393
  1%|▏ | 90/6160 [00:23<25:50, 3.91it/s]
394
  1%|▏ | 91/6160 [00:23<24:03, 4.20it/s]
395
  1%|▏ | 92/6160 [00:23<22:46, 4.44it/s]
396
  2%|▏ | 93/6160 [00:24<24:03, 4.20it/s]
397
  2%|▏ | 94/6160 [00:24<23:40, 4.27it/s]
398
  2%|▏ | 95/6160 [00:24<23:31, 4.30it/s]
399
  2%|▏ | 96/6160 [00:24<25:00, 4.04it/s]
400
  2%|▏ | 97/6160 [00:25<23:25, 4.31it/s]
401
  2%|▏ | 98/6160 [00:25<23:43, 4.26it/s]
402
  2%|▏ | 99/6160 [00:25<24:15, 4.16it/s]
403
  2%|▏ | 100/6160 [00:25<25:58, 3.89it/s]
404
  2%|▏ | 101/6160 [00:26<23:33, 4.29it/s]
405
  2%|▏ | 102/6160 [00:26<25:05, 4.02it/s]
406
  2%|▏ | 103/6160 [00:26<26:53, 3.75it/s]
407
  2%|▏ | 104/6160 [00:27<34:05, 2.96it/s]
408
  2%|▏ | 105/6160 [00:27<30:44, 3.28it/s]
409
  2%|▏ | 106/6160 [00:27<29:15, 3.45it/s]
410
  2%|▏ | 107/6160 [00:27<26:20, 3.83it/s]
411
  2%|▏ | 108/6160 [00:28<24:48, 4.07it/s]
412
  2%|▏ | 109/6160 [00:28<27:51, 3.62it/s]
413
  2%|▏ | 110/6160 [00:28<28:39, 3.52it/s]
414
  2%|▏ | 111/6160 [00:29<32:07, 3.14it/s]
415
  2%|▏ | 112/6160 [00:29<31:32, 3.20it/s]
416
  2%|▏ | 113/6160 [00:29<28:32, 3.53it/s]
417
  2%|▏ | 114/6160 [00:29<27:07, 3.72it/s]
418
  2%|▏ | 115/6160 [00:30<28:03, 3.59it/s]
419
  2%|▏ | 116/6160 [00:30<25:09, 4.00it/s]
420
  2%|▏ | 117/6160 [00:30<25:42, 3.92it/s]
421
  2%|▏ | 118/6160 [00:30<25:14, 3.99it/s]
422
  2%|▏ | 119/6160 [00:31<25:44, 3.91it/s]
423
  2%|▏ | 120/6160 [00:31<25:49, 3.90it/s]
424
  2%|▏ | 121/6160 [00:31<24:06, 4.17it/s]
425
  2%|▏ | 122/6160 [00:31<23:53, 4.21it/s]
426
  2%|▏ | 123/6160 [00:32<23:42, 4.24it/s]
427
  2%|▏ | 124/6160 [00:32<23:40, 4.25it/s]
428
  2%|▏ | 125/6160 [00:32<22:54, 4.39it/s]
429
  2%|▏ | 126/6160 [00:32<22:39, 4.44it/s]
430
  2%|▏ | 127/6160 [00:33<24:46, 4.06it/s]
431
  2%|▏ | 128/6160 [00:33<24:10, 4.16it/s]
432
  2%|▏ | 129/6160 [00:33<24:17, 4.14it/s]
433
  2%|▏ | 130/6160 [00:33<26:06, 3.85it/s]
434
  2%|▏ | 131/6160 [00:34<25:23, 3.96it/s]
435
  2%|▏ | 132/6160 [00:34<24:54, 4.03it/s]
436
  2%|▏ | 133/6160 [00:34<24:26, 4.11it/s]
437
  2%|▏ | 134/6160 [00:34<23:13, 4.32it/s]
438
  2%|▏ | 135/6160 [00:34<22:06, 4.54it/s]
439
  2%|▏ | 136/6160 [00:35<21:52, 4.59it/s]
440
  2%|▏ | 137/6160 [00:35<22:37, 4.44it/s]
441
  2%|▏ | 138/6160 [00:35<24:46, 4.05it/s]
442
  2%|▏ | 139/6160 [00:35<23:54, 4.20it/s]
443
  2%|▏ | 140/6160 [00:36<25:44, 3.90it/s]
444
  2%|▏ | 141/6160 [00:36<24:27, 4.10it/s]
445
  2%|▏ | 142/6160 [00:36<22:47, 4.40it/s]
446
  2%|▏ | 143/6160 [00:36<24:11, 4.15it/s]
447
  2%|▏ | 144/6160 [00:37<23:41, 4.23it/s]
448
  2%|▏ | 145/6160 [00:37<23:01, 4.35it/s]
449
  2%|▏ | 146/6160 [00:37<23:21, 4.29it/s]
450
  2%|▏ | 147/6160 [00:37<24:34, 4.08it/s]
451
  2%|▏ | 148/6160 [00:38<24:45, 4.05it/s]
452
  2%|▏ | 149/6160 [00:38<23:41, 4.23it/s]
453
  2%|▏ | 150/6160 [00:38<25:27, 3.94it/s]
454
  2%|▏ | 151/6160 [00:38<24:48, 4.04it/s]
455
  2%|▏ | 152/6160 [00:39<23:29, 4.26it/s]
456
  2%|▏ | 153/6160 [00:39<26:10, 3.82it/s]
457
  2%|▎ | 154/6160 [00:39<25:19, 3.95it/s]
458
  3%|▎ | 155/6160 [00:39<25:15, 3.96it/s]
459
  3%|▎ | 156/6160 [00:40<24:43, 4.05it/s]
460
  3%|▎ | 157/6160 [00:40<25:30, 3.92it/s]
461
  3%|▎ | 158/6160 [00:40<23:34, 4.24it/s]
462
  3%|▎ | 159/6160 [00:40<23:42, 4.22it/s]
463
  3%|▎ | 160/6160 [00:41<24:57, 4.01it/s]
464
  3%|▎ | 161/6160 [00:41<27:42, 3.61it/s]
465
  3%|▎ | 162/6160 [00:41<26:54, 3.72it/s]
466
  3%|▎ | 163/6160 [00:41<27:39, 3.61it/s]
467
  3%|▎ | 164/6160 [00:42<25:58, 3.85it/s]
468
  3%|▎ | 165/6160 [00:42<26:02, 3.84it/s]
469
  3%|▎ | 166/6160 [00:42<24:27, 4.08it/s]
470
  3%|▎ | 167/6160 [00:42<24:20, 4.10it/s]
471
  3%|▎ | 168/6160 [00:43<25:26, 3.93it/s]
472
  3%|▎ | 169/6160 [00:43<25:38, 3.89it/s]
473
  3%|▎ | 170/6160 [00:43<25:24, 3.93it/s]
474
  3%|▎ | 171/6160 [00:43<23:18, 4.28it/s]
475
  3%|▎ | 172/6160 [00:44<23:12, 4.30it/s]
476
  3%|▎ | 173/6160 [00:44<25:35, 3.90it/s]
477
  3%|▎ | 174/6160 [00:44<26:19, 3.79it/s]
478
  3%|▎ | 175/6160 [00:44<24:59, 3.99it/s]
479
  3%|▎ | 176/6160 [00:45<24:57, 4.00it/s]
480
  3%|▎ | 177/6160 [00:45<23:10, 4.30it/s]
481
  3%|▎ | 178/6160 [00:45<23:23, 4.26it/s]
482
  3%|▎ | 179/6160 [00:45<22:27, 4.44it/s]
483
  3%|▎ | 180/6160 [00:46<21:55, 4.55it/s]
484
  3%|▎ | 181/6160 [00:46<22:48, 4.37it/s]
485
  3%|▎ | 182/6160 [00:46<24:46, 4.02it/s]
486
  3%|▎ | 183/6160 [00:46<23:13, 4.29it/s]
487
  3%|▎ | 184/6160 [00:46<23:40, 4.21it/s]
488
  3%|▎ | 185/6160 [00:47<22:21, 4.45it/s]
489
  3%|▎ | 186/6160 [00:47<21:07, 4.71it/s]
490
  3%|▎ | 187/6160 [00:47<20:51, 4.77it/s]
491
  3%|▎ | 188/6160 [00:47<23:36, 4.22it/s]
492
  3%|▎ | 189/6160 [00:48<25:25, 3.91it/s]
493
  3%|▎ | 190/6160 [00:48<25:10, 3.95it/s]
494
  3%|▎ | 191/6160 [00:48<26:33, 3.75it/s]
495
  3%|▎ | 192/6160 [00:48<25:58, 3.83it/s]
496
  3%|▎ | 193/6160 [00:49<27:51, 3.57it/s]
497
  3%|▎ | 194/6160 [00:49<27:36, 3.60it/s]
498
  3%|▎ | 195/6160 [00:49<26:14, 3.79it/s]
499
  3%|▎ | 196/6160 [00:50<24:43, 4.02it/s]
500
  3%|▎ | 197/6160 [00:50<27:48, 3.57it/s]
501
  3%|▎ | 198/6160 [00:50<28:02, 3.54it/s]
502
  3%|▎ | 199/6160 [00:50<26:53, 3.70it/s]
503
  3%|▎ | 200/6160 [00:51<24:54, 3.99it/s]
504
  3%|▎ | 201/6160 [00:51<24:05, 4.12it/s]
505
  3%|▎ | 202/6160 [00:51<22:45, 4.36it/s]
506
  3%|▎ | 203/6160 [00:51<23:22, 4.25it/s]
507
  3%|▎ | 204/6160 [00:52<24:27, 4.06it/s]
508
  3%|▎ | 205/6160 [00:52<23:59, 4.14it/s]
509
  3%|▎ | 206/6160 [00:52<25:04, 3.96it/s]
510
  3%|▎ | 207/6160 [00:52<24:28, 4.05it/s]
511
  3%|▎ | 208/6160 [00:52<23:06, 4.29it/s]
512
  3%|▎ | 209/6160 [00:53<24:34, 4.04it/s]
513
  3%|▎ | 210/6160 [00:53<24:42, 4.01it/s]
514
  3%|▎ | 211/6160 [00:53<22:28, 4.41it/s]
515
  3%|▎ | 212/6160 [00:53<21:56, 4.52it/s]
516
  3%|▎ | 213/6160 [00:54<23:54, 4.15it/s]
517
  3%|▎ | 214/6160 [00:54<22:58, 4.31it/s]
518
  3%|▎ | 215/6160 [00:54<22:55, 4.32it/s]
519
  4%|▎ | 216/6160 [00:54<22:07, 4.48it/s]
520
  4%|▎ | 217/6160 [00:55<22:11, 4.46it/s]
521
  4%|▎ | 218/6160 [00:55<21:14, 4.66it/s]
522
  4%|▎ | 219/6160 [00:55<21:04, 4.70it/s]
523
  4%|▎ | 220/6160 [00:55<20:58, 4.72it/s]
524
  4%|▎ | 221/6160 [00:55<22:03, 4.49it/s]
525
  4%|▎ | 222/6160 [00:56<21:43, 4.56it/s]
526
  4%|▎ | 223/6160 [00:56<21:30, 4.60it/s]
527
  4%|▎ | 224/6160 [00:56<21:30, 4.60it/s]
528
  4%|▎ | 225/6160 [00:56<25:14, 3.92it/s]
529
  4%|▎ | 226/6160 [00:57<23:46, 4.16it/s]
530
  4%|▎ | 227/6160 [00:57<24:19, 4.06it/s]
531
  4%|▎ | 228/6160 [00:57<23:55, 4.13it/s]
532
  4%|▎ | 229/6160 [00:57<22:32, 4.38it/s]
533
  4%|▎ | 230/6160 [00:58<22:26, 4.40it/s]
534
  4%|▍ | 231/6160 [00:58<23:16, 4.25it/s]
535
  4%|▍ | 232/6160 [00:58<25:13, 3.92it/s]
536
  4%|▍ | 233/6160 [00:58<25:51, 3.82it/s]
537
  4%|▍ | 234/6160 [00:59<24:13, 4.08it/s]
538
  4%|▍ | 235/6160 [00:59<23:16, 4.24it/s]
539
  4%|▍ | 236/6160 [00:59<24:03, 4.10it/s]
540
  4%|▍ | 237/6160 [00:59<23:40, 4.17it/s]
541
  4%|▍ | 238/6160 [00:59<22:04, 4.47it/s]
542
  4%|▍ | 239/6160 [01:00<21:40, 4.55it/s]
543
  4%|▍ | 240/6160 [01:00<23:34, 4.19it/s]
544
  4%|▍ | 241/6160 [01:00<23:18, 4.23it/s]
545
  4%|▍ | 242/6160 [01:00<21:47, 4.53it/s]
546
  4%|▍ | 243/6160 [01:01<21:41, 4.55it/s]
547
  4%|▍ | 244/6160 [01:01<22:03, 4.47it/s]
548
  4%|▍ | 245/6160 [01:01<21:49, 4.52it/s]
549
  4%|▍ | 246/6160 [01:01<21:46, 4.53it/s]
550
  4%|▍ | 247/6160 [01:01<22:06, 4.46it/s]
551
  4%|▍ | 248/6160 [01:02<23:44, 4.15it/s]
552
  4%|▍ | 249/6160 [01:02<25:24, 3.88it/s]
553
  4%|▍ | 250/6160 [01:02<24:34, 4.01it/s]
554
  4%|▍ | 251/6160 [01:03<23:30, 4.19it/s]
555
  4%|▍ | 252/6160 [01:03<25:53, 3.80it/s]
556
  4%|▍ | 253/6160 [01:03<26:17, 3.74it/s]
557
  4%|▍ | 254/6160 [01:03<28:55, 3.40it/s]
558
  4%|▍ | 255/6160 [01:04<27:16, 3.61it/s]
559
  4%|▍ | 256/6160 [01:04<26:51, 3.66it/s]
560
  4%|▍ | 257/6160 [01:04<25:30, 3.86it/s]
561
  4%|▍ | 258/6160 [01:04<24:29, 4.02it/s]
562
  4%|▍ | 259/6160 [01:05<22:46, 4.32it/s]
563
  4%|▍ | 260/6160 [01:05<24:01, 4.09it/s]
564
  4%|▍ | 261/6160 [01:05<24:17, 4.05it/s]
565
  4%|▍ | 262/6160 [01:05<24:29, 4.01it/s]
566
  4%|▍ | 263/6160 [01:06<24:17, 4.05it/s]
567
  4%|▍ | 264/6160 [01:06<23:56, 4.10it/s]
568
  4%|▍ | 265/6160 [01:06<24:05, 4.08it/s]
569
  4%|▍ | 266/6160 [01:06<24:10, 4.06it/s]
570
  4%|▍ | 267/6160 [01:07<25:41, 3.82it/s]
571
  4%|▍ | 268/6160 [01:07<24:34, 4.00it/s]
572
  4%|▍ | 269/6160 [01:07<23:45, 4.13it/s]
573
  4%|▍ | 270/6160 [01:07<23:39, 4.15it/s]
574
  4%|▍ | 271/6160 [01:08<26:03, 3.77it/s]
575
  4%|▍ | 272/6160 [01:08<25:05, 3.91it/s]
576
  4%|▍ | 273/6160 [01:08<24:16, 4.04it/s]
577
  4%|▍ | 274/6160 [01:08<26:44, 3.67it/s]
578
  4%|▍ | 275/6160 [01:09<25:23, 3.86it/s]
579
  4%|▍ | 276/6160 [01:09<23:56, 4.09it/s]
580
  4%|▍ | 277/6160 [01:09<23:03, 4.25it/s]
581
  5%|▍ | 278/6160 [01:09<22:59, 4.26it/s]
582
  5%|▍ | 279/6160 [01:10<24:43, 3.96it/s]
583
  5%|▍ | 280/6160 [01:10<22:19, 4.39it/s]
584
  5%|▍ | 281/6160 [01:10<23:43, 4.13it/s]
585
  5%|▍ | 282/6160 [01:10<26:23, 3.71it/s]
586
  5%|▍ | 283/6160 [01:11<26:49, 3.65it/s]
587
  5%|▍ | 284/6160 [01:11<30:45, 3.18it/s]
588
  5%|▍ | 285/6160 [01:11<28:04, 3.49it/s]
589
  5%|▍ | 286/6160 [01:12<26:59, 3.63it/s]
590
  5%|▍ | 287/6160 [01:12<26:23, 3.71it/s]
591
  5%|▍ | 288/6160 [01:12<27:43, 3.53it/s]
592
  5%|▍ | 289/6160 [01:12<26:14, 3.73it/s]
593
  5%|▍ | 290/6160 [01:13<24:10, 4.05it/s]
594
  5%|▍ | 291/6160 [01:13<24:03, 4.06it/s]
595
  5%|▍ | 292/6160 [01:13<24:35, 3.98it/s]
596
  5%|▍ | 293/6160 [01:13<25:57, 3.77it/s]
597
  5%|▍ | 294/6160 [01:14<26:51, 3.64it/s]
598
  5%|▍ | 295/6160 [01:14<25:59, 3.76it/s]
599
  5%|▍ | 296/6160 [01:14<24:05, 4.06it/s]
600
  5%|▍ | 297/6160 [01:14<23:05, 4.23it/s]
601
  5%|▍ | 298/6160 [01:15<25:37, 3.81it/s]
602
  5%|▍ | 299/6160 [01:15<24:30, 3.99it/s]
603
  5%|▍ | 300/6160 [01:15<23:55, 4.08it/s]
604
  5%|▍ | 301/6160 [01:15<23:42, 4.12it/s]
605
  5%|▍ | 302/6160 [01:16<23:57, 4.08it/s]
606
  5%|▍ | 303/6160 [01:16<22:49, 4.28it/s]
607
  5%|▍ | 304/6160 [01:16<24:45, 3.94it/s]
608
  5%|▍ | 305/6160 [01:16<25:36, 3.81it/s]
609
  5%|▍ | 306/6160 [01:17<25:48, 3.78it/s]
610
  5%|▍ | 307/6160 [01:17<25:10, 3.88it/s]
611
  5%|▌ | 308/6160 [01:17<24:45, 3.94it/s]
612
  5%|▌ | 309/6160 [01:17<23:23, 4.17it/s]
613
  5%|▌ | 310/6160 [01:18<24:33, 3.97it/s]
614
  5%|▌ | 311/6160 [01:18<24:11, 4.03it/s]
615
  5%|▌ | 312/6160 [01:18<23:05, 4.22it/s]
616
  5%|▌ | 313/6160 [01:18<26:10, 3.72it/s]
617
  5%|▌ | 314/6160 [01:19<25:44, 3.79it/s]
618
  5%|▌ | 315/6160 [01:19<24:52, 3.92it/s]
619
  5%|▌ | 316/6160 [01:19<23:48, 4.09it/s]
620
  5%|▌ | 317/6160 [01:19<22:42, 4.29it/s]
621
  5%|▌ | 318/6160 [01:20<24:03, 4.05it/s]
622
  5%|▌ | 319/6160 [01:20<23:55, 4.07it/s]
623
  5%|▌ | 320/6160 [01:20<23:48, 4.09it/s]
624
  5%|▌ | 321/6160 [01:20<22:58, 4.24it/s]
625
  5%|▌ | 322/6160 [01:21<24:22, 3.99it/s]
626
  5%|▌ | 323/6160 [01:21<25:10, 3.86it/s]
627
  5%|▌ | 324/6160 [01:21<24:02, 4.04it/s]
628
  5%|▌ | 325/6160 [01:21<24:10, 4.02it/s]
629
  5%|▌ | 326/6160 [01:22<23:53, 4.07it/s]
630
  5%|▌ | 327/6160 [01:22<22:59, 4.23it/s]
631
  5%|▌ | 328/6160 [01:22<23:49, 4.08it/s]
632
  5%|▌ | 329/6160 [01:22<23:21, 4.16it/s]
633
  5%|▌ | 330/6160 [01:23<23:24, 4.15it/s]
634
  5%|▌ | 331/6160 [01:23<24:25, 3.98it/s]
635
  5%|▌ | 332/6160 [01:23<22:06, 4.39it/s]
636
  5%|▌ | 333/6160 [01:23<22:28, 4.32it/s]
637
  5%|▌ | 334/6160 [01:23<22:57, 4.23it/s]
638
  5%|▌ | 335/6160 [01:24<23:17, 4.17it/s]
639
  5%|▌ | 336/6160 [01:24<22:51, 4.25it/s]
640
  5%|▌ | 337/6160 [01:24<24:12, 4.01it/s]
641
  5%|▌ | 338/6160 [01:25<28:11, 3.44it/s]
642
  6%|▌ | 339/6160 [01:25<25:48, 3.76it/s]
643
  6%|▌ | 340/6160 [01:25<24:22, 3.98it/s]
644
  6%|▌ | 341/6160 [01:25<25:02, 3.87it/s]
645
  6%|▌ | 342/6160 [01:26<24:21, 3.98it/s]
646
  6%|▌ | 343/6160 [01:26<23:27, 4.13it/s]
647
  6%|▌ | 344/6160 [01:26<23:55, 4.05it/s]
648
  6%|▌ | 345/6160 [01:26<22:59, 4.21it/s]
649
  6%|▌ | 346/6160 [01:27<23:31, 4.12it/s]
650
  6%|▌ | 347/6160 [01:27<24:07, 4.01it/s]
651
  6%|▌ | 348/6160 [01:27<22:58, 4.22it/s]
652
  6%|▌ | 349/6160 [01:27<24:20, 3.98it/s]
653
  6%|▌ | 350/6160 [01:27<23:03, 4.20it/s]
654
  6%|▌ | 351/6160 [01:28<24:32, 3.94it/s]
655
  6%|▌ | 352/6160 [01:28<24:53, 3.89it/s]
656
  6%|▌ | 353/6160 [01:28<24:01, 4.03it/s]
657
  6%|▌ | 354/6160 [01:28<23:02, 4.20it/s]
658
  6%|▌ | 355/6160 [01:29<24:17, 3.98it/s]
659
  6%|▌ | 356/6160 [01:29<22:23, 4.32it/s]
660
  6%|▌ | 357/6160 [01:29<23:13, 4.16it/s]
661
  6%|▌ | 358/6160 [01:29<23:54, 4.04it/s]
662
  6%|▌ | 359/6160 [01:30<23:56, 4.04it/s]
663
  6%|▌ | 360/6160 [01:30<22:36, 4.28it/s]
664
  6%|▌ | 361/6160 [01:30<22:32, 4.29it/s]
665
  6%|▌ | 362/6160 [01:30<21:55, 4.41it/s]
666
  6%|▌ | 363/6160 [01:31<23:07, 4.18it/s]
667
  6%|▌ | 364/6160 [01:31<23:43, 4.07it/s]
668
  6%|▌ | 365/6160 [01:31<24:23, 3.96it/s]
669
  6%|▌ | 366/6160 [01:31<23:26, 4.12it/s]
670
  6%|▌ | 367/6160 [01:32<23:34, 4.09it/s]
671
  6%|▌ | 368/6160 [01:32<23:23, 4.13it/s]
672
  6%|▌ | 369/6160 [01:32<23:15, 4.15it/s]
673
  6%|▌ | 370/6160 [01:32<22:33, 4.28it/s]
674
  6%|▌ | 371/6160 [01:33<23:13, 4.15it/s]
675
  6%|▌ | 372/6160 [01:33<23:12, 4.16it/s]
676
  6%|▌ | 373/6160 [01:33<23:02, 4.19it/s]
677
  6%|▌ | 374/6160 [01:33<23:33, 4.09it/s]
678
  6%|▌ | 375/6160 [01:34<24:26, 3.94it/s]
679
  6%|▌ | 376/6160 [01:34<26:34, 3.63it/s]
680
  6%|▌ | 377/6160 [01:34<24:48, 3.89it/s]
681
  6%|▌ | 378/6160 [01:34<23:32, 4.09it/s]
682
  6%|▌ | 379/6160 [01:35<24:11, 3.98it/s]
683
  6%|▌ | 380/6160 [01:35<22:58, 4.19it/s]
684
  6%|▌ | 381/6160 [01:35<23:21, 4.12it/s]
685
  6%|▌ | 382/6160 [01:35<24:51, 3.87it/s]
686
  6%|▌ | 383/6160 [01:36<23:36, 4.08it/s]
687
  6%|▌ | 384/6160 [01:36<22:08, 4.35it/s]
688
  6%|▋ | 385/6160 [01:36<22:06, 4.35it/s]
689
  6%|▋ | 386/6160 [01:36<21:38, 4.45it/s]
690
  6%|▋ | 387/6160 [01:36<21:50, 4.40it/s]
691
  6%|▋ | 388/6160 [01:37<20:56, 4.59it/s]
692
  6%|▋ | 389/6160 [01:37<22:18, 4.31it/s]
693
  6%|▋ | 390/6160 [01:37<23:34, 4.08it/s]
694
  6%|▋ | 391/6160 [01:37<25:14, 3.81it/s]
695
  6%|▋ | 392/6160 [01:38<23:27, 4.10it/s]
696
  6%|▋ | 393/6160 [01:38<22:44, 4.23it/s]
697
  6%|▋ | 394/6160 [01:38<23:11, 4.14it/s]
698
  6%|▋ | 395/6160 [01:38<22:07, 4.34it/s]
699
  6%|▋ | 396/6160 [01:39<21:43, 4.42it/s]
700
  6%|▋ | 397/6160 [01:39<20:06, 4.78it/s]
701
  6%|▋ | 398/6160 [01:39<21:13, 4.53it/s]
702
  6%|▋ | 399/6160 [01:39<22:25, 4.28it/s]
703
  6%|▋ | 400/6160 [01:40<23:03, 4.16it/s]
704
  7%|▋ | 401/6160 [01:40<23:17, 4.12it/s]
705
  7%|▋ | 402/6160 [01:40<21:55, 4.38it/s]
706
  7%|▋ | 403/6160 [01:40<21:21, 4.49it/s]
707
  7%|▋ | 404/6160 [01:40<21:45, 4.41it/s]
708
  7%|▋ | 405/6160 [01:41<22:58, 4.17it/s]
709
  7%|▋ | 406/6160 [01:41<22:23, 4.28it/s]
710
  7%|▋ | 407/6160 [01:41<20:59, 4.57it/s]
711
  7%|▋ | 408/6160 [01:41<20:11, 4.75it/s]
712
  7%|▋ | 409/6160 [01:41<20:30, 4.67it/s]
713
  7%|▋ | 410/6160 [01:42<21:42, 4.42it/s]
714
  7%|▋ | 411/6160 [01:42<24:29, 3.91it/s]
715
  7%|▋ | 412/6160 [01:42<23:45, 4.03it/s]
716
  7%|▋ | 413/6160 [01:43<22:41, 4.22it/s]
717
  7%|▋ | 414/6160 [01:43<23:05, 4.15it/s]
718
  7%|▋ | 415/6160 [01:43<22:53, 4.18it/s]
719
  7%|▋ | 416/6160 [01:43<26:32, 3.61it/s]
720
  7%|▋ | 417/6160 [01:44<24:20, 3.93it/s]
721
  7%|▋ | 418/6160 [01:44<25:22, 3.77it/s]
722
  7%|▋ | 419/6160 [01:44<24:43, 3.87it/s]
723
  7%|��� | 420/6160 [01:44<23:54, 4.00it/s]
724
  7%|▋ | 421/6160 [01:45<22:46, 4.20it/s]
725
  7%|▋ | 422/6160 [01:45<22:20, 4.28it/s]
726
  7%|▋ | 423/6160 [01:45<23:01, 4.15it/s]
727
  7%|▋ | 424/6160 [01:45<22:50, 4.18it/s]
728
  7%|▋ | 425/6160 [01:45<22:34, 4.24it/s]
729
  7%|▋ | 426/6160 [01:46<21:48, 4.38it/s]
730
  7%|▋ | 427/6160 [01:46<23:10, 4.12it/s]
731
  7%|▋ | 428/6160 [01:46<23:06, 4.13it/s]
732
  7%|▋ | 429/6160 [01:46<23:09, 4.12it/s]
733
  7%|▋ | 430/6160 [01:47<23:14, 4.11it/s]
734
  7%|▋ | 431/6160 [01:47<23:08, 4.12it/s]
735
  7%|▋ | 432/6160 [01:47<23:18, 4.09it/s]
736
  7%|▋ | 433/6160 [01:47<22:25, 4.26it/s]
737
  7%|▋ | 434/6160 [01:48<21:49, 4.37it/s]
738
  7%|▋ | 435/6160 [01:48<23:18, 4.09it/s]
739
  7%|▋ | 436/6160 [01:48<22:43, 4.20it/s]
740
  7%|▋ | 437/6160 [01:48<21:35, 4.42it/s]
741
  7%|▋ | 438/6160 [01:49<21:37, 4.41it/s]
742
  7%|▋ | 439/6160 [01:49<21:01, 4.53it/s]
743
  7%|▋ | 440/6160 [01:49<20:21, 4.68it/s]
744
  7%|▋ | 441/6160 [01:49<20:22, 4.68it/s]
745
  7%|▋ | 442/6160 [01:49<21:44, 4.38it/s]
746
  7%|▋ | 443/6160 [01:50<21:23, 4.45it/s]
747
  7%|▋ | 444/6160 [01:50<21:08, 4.51it/s]
748
  7%|▋ | 445/6160 [01:50<19:41, 4.84it/s]
749
  7%|▋ | 446/6160 [01:50<20:50, 4.57it/s]
750
  7%|▋ | 447/6160 [01:51<21:36, 4.41it/s]
751
  7%|▋ | 448/6160 [01:51<21:30, 4.42it/s]
752
  7%|▋ | 449/6160 [01:51<22:48, 4.17it/s]
753
  7%|▋ | 450/6160 [01:51<22:06, 4.30it/s]
754
  7%|▋ | 451/6160 [01:51<21:11, 4.49it/s]
755
  7%|▋ | 452/6160 [01:52<25:50, 3.68it/s]
756
  7%|▋ | 453/6160 [01:52<24:12, 3.93it/s]
757
  7%|▋ | 454/6160 [01:52<23:11, 4.10it/s]
758
  7%|▋ | 455/6160 [01:52<23:05, 4.12it/s]
759
  7%|▋ | 456/6160 [01:53<22:17, 4.27it/s]
760
  7%|▋ | 457/6160 [01:53<24:02, 3.95it/s]
761
  7%|▋ | 458/6160 [01:53<28:38, 3.32it/s]
762
  7%|▋ | 459/6160 [01:54<26:04, 3.64it/s]
763
  7%|▋ | 460/6160 [01:54<24:28, 3.88it/s]
764
  7%|▋ | 461/6160 [01:54<23:22, 4.06it/s]
765
  8%|▊ | 462/6160 [01:54<23:27, 4.05it/s]
766
  8%|▊ | 463/6160 [01:55<21:33, 4.41it/s]
767
  8%|▊ | 464/6160 [01:55<23:08, 4.10it/s]
768
  8%|▊ | 465/6160 [01:55<21:54, 4.33it/s]
769
  8%|▊ | 466/6160 [01:55<24:29, 3.88it/s]
770
  8%|▊ | 467/6160 [01:56<23:21, 4.06it/s]
771
  8%|▊ | 468/6160 [01:56<22:55, 4.14it/s]
772
  8%|▊ | 469/6160 [01:56<23:35, 4.02it/s]
773
  8%|▊ | 470/6160 [01:56<25:29, 3.72it/s]
774
  8%|▊ | 471/6160 [01:57<25:00, 3.79it/s]
775
  8%|▊ | 472/6160 [01:57<27:53, 3.40it/s]
776
  8%|▊ | 473/6160 [01:57<25:43, 3.68it/s]
777
  8%|▊ | 474/6160 [01:57<24:00, 3.95it/s]
778
  8%|▊ | 475/6160 [01:58<23:30, 4.03it/s]
779
  8%|▊ | 476/6160 [01:58<24:02, 3.94it/s]
780
  8%|▊ | 477/6160 [01:58<24:34, 3.85it/s]
781
  8%|▊ | 478/6160 [01:58<23:57, 3.95it/s]
782
  8%|▊ | 479/6160 [01:59<23:32, 4.02it/s]
783
  8%|▊ | 480/6160 [01:59<23:45, 3.98it/s]
784
  8%|▊ | 481/6160 [01:59<23:27, 4.04it/s]
785
  8%|▊ | 482/6160 [01:59<23:11, 4.08it/s]
786
  8%|▊ | 483/6160 [02:00<24:07, 3.92it/s]
787
  8%|▊ | 484/6160 [02:00<23:02, 4.10it/s]
788
  8%|▊ | 485/6160 [02:00<22:33, 4.19it/s]
789
  8%|▊ | 486/6160 [02:00<22:10, 4.26it/s]
790
  8%|▊ | 487/6160 [02:01<23:03, 4.10it/s]
791
  8%|▊ | 488/6160 [02:01<24:23, 3.88it/s]
792
  8%|▊ | 489/6160 [02:01<22:07, 4.27it/s]
793
  8%|▊ | 490/6160 [02:01<22:21, 4.23it/s]
794
  8%|▊ | 491/6160 [02:02<21:48, 4.33it/s]
795
  8%|▊ | 492/6160 [02:02<20:39, 4.57it/s]
796
  8%|▊ | 493/6160 [02:02<21:41, 4.36it/s]
797
  8%|▊ | 494/6160 [02:02<23:12, 4.07it/s]
798
  8%|▊ | 495/6160 [02:02<22:43, 4.16it/s]
799
  8%|▊ | 496/6160 [02:03<22:09, 4.26it/s]
800
  8%|▊ | 497/6160 [02:03<22:46, 4.14it/s]
801
  8%|▊ | 498/6160 [02:03<24:43, 3.82it/s]
802
  8%|▊ | 499/6160 [02:03<23:42, 3.98it/s]
803
  8%|▊ | 500/6160 [02:04<22:26, 4.20it/s]
804
 
805
  8%|▊ | 500/6160 [02:04<22:26, 4.20it/s]
806
  8%|▊ | 501/6160 [02:04<25:45, 3.66it/s]
807
  8%|▊ | 502/6160 [02:04<23:48, 3.96it/s]
808
  8%|▊ | 503/6160 [02:05<24:01, 3.92it/s]
809
  8%|▊ | 504/6160 [02:05<25:32, 3.69it/s]
810
  8%|▊ | 505/6160 [02:05<23:20, 4.04it/s]
811
  8%|▊ | 506/6160 [02:05<24:16, 3.88it/s]
812
  8%|▊ | 507/6160 [02:06<22:53, 4.12it/s]
813
  8%|▊ | 508/6160 [02:06<22:31, 4.18it/s]
814
  8%|▊ | 509/6160 [02:06<22:17, 4.22it/s]
815
  8%|▊ | 510/6160 [02:06<21:06, 4.46it/s]
816
  8%|▊ | 511/6160 [02:07<24:23, 3.86it/s]
817
  8%|▊ | 512/6160 [02:07<23:18, 4.04it/s]
818
  8%|▊ | 513/6160 [02:07<23:13, 4.05it/s]
819
  8%|▊ | 514/6160 [02:07<22:36, 4.16it/s]
820
  8%|▊ | 515/6160 [02:07<22:51, 4.12it/s]
821
  8%|▊ | 516/6160 [02:08<21:10, 4.44it/s]
822
  8%|▊ | 517/6160 [02:08<19:54, 4.72it/s]
823
  8%|▊ | 518/6160 [02:08<21:31, 4.37it/s]
824
  8%|▊ | 519/6160 [02:08<22:05, 4.26it/s]
825
  8%|▊ | 520/6160 [02:09<21:24, 4.39it/s]
826
  8%|▊ | 521/6160 [02:09<23:07, 4.06it/s]
827
  8%|▊ | 522/6160 [02:09<24:19, 3.86it/s]
828
  8%|▊ | 523/6160 [02:09<24:23, 3.85it/s]
829
  9%|▊ | 524/6160 [02:10<22:43, 4.13it/s]
830
  9%|▊ | 525/6160 [02:10<21:54, 4.29it/s]
831
  9%|▊ | 526/6160 [02:10<21:55, 4.28it/s]
832
  9%|▊ | 527/6160 [02:10<24:22, 3.85it/s]
833
  9%|▊ | 528/6160 [02:11<24:25, 3.84it/s]
834
  9%|▊ | 529/6160 [02:11<23:07, 4.06it/s]
835
  9%|▊ | 530/6160 [02:11<21:37, 4.34it/s]
836
  9%|▊ | 531/6160 [02:11<22:36, 4.15it/s]
837
  9%|▊ | 532/6160 [02:11<21:51, 4.29it/s]
838
  9%|▊ | 533/6160 [02:12<21:14, 4.42it/s]
839
  9%|▊ | 534/6160 [02:12<21:41, 4.32it/s]
840
  9%|▊ | 535/6160 [02:12<22:57, 4.08it/s]
841
  9%|▊ | 536/6160 [02:13<24:06, 3.89it/s]
842
  9%|▊ | 537/6160 [02:13<23:58, 3.91it/s]
843
  9%|▊ | 538/6160 [02:13<25:42, 3.64it/s]
844
  9%|▉ | 539/6160 [02:13<23:48, 3.94it/s]
845
  9%|▉ | 540/6160 [02:14<23:11, 4.04it/s]
846
  9%|▉ | 541/6160 [02:14<23:45, 3.94it/s]
847
  9%|▉ | 542/6160 [02:14<22:41, 4.13it/s]
848
  9%|▉ | 543/6160 [02:14<22:27, 4.17it/s]
849
  9%|▉ | 544/6160 [02:14<22:18, 4.20it/s]
850
  9%|▉ | 545/6160 [02:15<23:48, 3.93it/s]
851
  9%|▉ | 546/6160 [02:15<23:06, 4.05it/s]
852
  9%|▉ | 547/6160 [02:15<22:25, 4.17it/s]
853
  9%|▉ | 548/6160 [02:15<23:08, 4.04it/s]
854
  9%|▉ | 549/6160 [02:16<23:14, 4.03it/s]
855
  9%|▉ | 550/6160 [02:16<24:01, 3.89it/s]
856
  9%|▉ | 551/6160 [02:16<24:00, 3.89it/s]
857
  9%|▉ | 552/6160 [02:17<23:50, 3.92it/s]
858
  9%|▉ | 553/6160 [02:17<24:57, 3.74it/s]
859
  9%|▉ | 554/6160 [02:17<24:16, 3.85it/s]
860
  9%|▉ | 555/6160 [02:17<24:12, 3.86it/s]
861
  9%|▉ | 556/6160 [02:18<23:09, 4.03it/s]
862
  9%|▉ | 557/6160 [02:18<22:28, 4.16it/s]
863
  9%|▉ | 558/6160 [02:18<22:35, 4.13it/s]
864
  9%|▉ | 559/6160 [02:18<21:55, 4.26it/s]
865
  9%|▉ | 560/6160 [02:18<21:28, 4.35it/s]
866
  9%|▉ | 561/6160 [02:19<21:37, 4.31it/s]
867
  9%|▉ | 562/6160 [02:19<23:01, 4.05it/s]
868
  9%|▉ | 563/6160 [02:19<24:05, 3.87it/s]
869
  9%|▉ | 564/6160 [02:19<22:27, 4.15it/s]
870
  9%|▉ | 565/6160 [02:20<22:19, 4.18it/s]
871
  9%|▉ | 566/6160 [02:20<22:10, 4.20it/s]
872
  9%|▉ | 567/6160 [02:20<21:10, 4.40it/s]
873
  9%|▉ | 568/6160 [02:20<20:35, 4.53it/s]
874
  9%|▉ | 569/6160 [02:21<21:49, 4.27it/s]
875
  9%|▉ | 570/6160 [02:21<22:35, 4.13it/s]
876
  9%|▉ | 571/6160 [02:21<22:45, 4.09it/s]
877
  9%|▉ | 572/6160 [02:21<24:58, 3.73it/s]
878
  9%|▉ | 573/6160 [02:22<24:44, 3.76it/s]
879
  9%|▉ | 574/6160 [02:22<25:03, 3.71it/s]
880
  9%|▉ | 575/6160 [02:22<26:35, 3.50it/s]
881
  9%|▉ | 576/6160 [02:23<28:13, 3.30it/s]
882
  9%|▉ | 577/6160 [02:23<27:08, 3.43it/s]
883
  9%|▉ | 578/6160 [02:23<27:30, 3.38it/s]
884
  9%|▉ | 579/6160 [02:23<26:28, 3.51it/s]
885
  9%|▉ | 580/6160 [02:24<24:24, 3.81it/s]
886
  9%|▉ | 581/6160 [02:24<26:01, 3.57it/s]
887
  9%|▉ | 582/6160 [02:24<24:27, 3.80it/s]
888
  9%|▉ | 583/6160 [02:24<24:41, 3.76it/s]
889
  9%|▉ | 584/6160 [02:25<25:29, 3.64it/s]
890
  9%|▉ | 585/6160 [02:25<23:42, 3.92it/s]
891
  10%|▉ | 586/6160 [02:25<23:32, 3.95it/s]
892
  10%|▉ | 587/6160 [02:25<23:33, 3.94it/s]
893
  10%|▉ | 588/6160 [02:26<27:00, 3.44it/s]
894
  10%|▉ | 589/6160 [02:26<25:38, 3.62it/s]
895
  10%|▉ | 590/6160 [02:26<25:37, 3.62it/s]
896
  10%|▉ | 591/6160 [02:27<24:13, 3.83it/s]
897
  10%|▉ | 592/6160 [02:27<26:15, 3.53it/s]
898
  10%|▉ | 593/6160 [02:27<24:00, 3.86it/s]
899
  10%|▉ | 594/6160 [02:27<22:44, 4.08it/s]
900
  10%|▉ | 595/6160 [02:28<23:13, 3.99it/s]
901
  10%|▉ | 596/6160 [02:28<23:18, 3.98it/s]
902
  10%|▉ | 597/6160 [02:28<22:31, 4.12it/s]
903
  10%|▉ | 598/6160 [02:28<24:07, 3.84it/s]
904
  10%|▉ | 599/6160 [02:29<27:07, 3.42it/s]
905
  10%|▉ | 600/6160 [02:29<25:47, 3.59it/s]
906
  10%|▉ | 601/6160 [02:29<23:36, 3.92it/s]
907
  10%|▉ | 602/6160 [02:30<26:07, 3.55it/s]
908
  10%|▉ | 603/6160 [02:30<23:30, 3.94it/s]
909
  10%|▉ | 604/6160 [02:30<23:49, 3.89it/s]
910
  10%|▉ | 605/6160 [02:30<23:18, 3.97it/s]
911
  10%|▉ | 606/6160 [02:30<22:15, 4.16it/s]
912
  10%|▉ | 607/6160 [02:31<22:53, 4.04it/s]
913
  10%|▉ | 608/6160 [02:31<23:22, 3.96it/s]
914
  10%|▉ | 609/6160 [02:31<23:11, 3.99it/s]
915
  10%|▉ | 610/6160 [02:31<23:15, 3.98it/s]
916
  10%|▉ | 611/6160 [02:32<22:15, 4.16it/s]
917
  10%|▉ | 612/6160 [02:32<23:05, 4.01it/s]
918
  10%|▉ | 613/6160 [02:32<25:04, 3.69it/s]
919
  10%|▉ | 614/6160 [02:33<24:20, 3.80it/s]
920
  10%|▉ | 615/6160 [02:33<23:22, 3.95it/s]
921
  10%|█ | 616/6160 [02:33<22:39, 4.08it/s][INFO|trainer.py:811] 2024-09-09 21:06:59,288 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, tokens, id. If ner_tags, tokens, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
922
+ [INFO|trainer.py:3819] 2024-09-09 21:06:59,291 >>
923
+ ***** Running Evaluation *****
924
+ [INFO|trainer.py:3821] 2024-09-09 21:06:59,291 >> Num examples = 7354
925
+ [INFO|trainer.py:3824] 2024-09-09 21:06:59,291 >> Batch size = 8
926
+ {'loss': 0.0571, 'grad_norm': 0.7429273724555969, 'learning_rate': 4.5941558441558444e-05, 'epoch': 0.81}
927
+
928
+
929
  0%| | 0/920 [00:00<?, ?it/s]
930
+
931
  1%| | 10/920 [00:00<00:10, 89.26it/s]
932
+
933
  2%|▏ | 19/920 [00:00<00:11, 81.44it/s]
934
+
935
  3%|▎ | 28/920 [00:00<00:11, 80.94it/s]
936
+
937
  4%|▍ | 37/920 [00:00<00:10, 80.97it/s]
938
+
939
  5%|▌ | 46/920 [00:00<00:10, 81.49it/s]
940
+
941
  6%|▌ | 55/920 [00:00<00:10, 78.70it/s]
942
+
943
  7%|▋ | 63/920 [00:00<00:11, 77.82it/s]
944
+
945
  8%|▊ | 72/920 [00:00<00:10, 79.30it/s]
946
+
947
  9%|▉ | 81/920 [00:01<00:10, 80.05it/s]
948
+
949
  10%|▉ | 90/920 [00:01<00:10, 80.37it/s]
950
+
951
  11%|█ | 99/920 [00:01<00:10, 79.75it/s]
952
+
953
  12%|█▏ | 107/920 [00:01<00:10, 79.00it/s]
954
+
955
  12%|█▎ | 115/920 [00:01<00:10, 79.28it/s]
956
+
957
  13%|█▎ | 124/920 [00:01<00:09, 81.21it/s]
958
+
959
  14%|█▍ | 133/920 [00:01<00:09, 81.43it/s]
960
+
961
  15%|█▌ | 142/920 [00:01<00:09, 81.76it/s]
962
+
963
  16%|█▋ | 151/920 [00:01<00:09, 82.43it/s]
964
+
965
  17%|█▋ | 160/920 [00:01<00:09, 80.82it/s]
966
+
967
  18%|█▊ | 169/920 [00:02<00:09, 81.88it/s]
968
+
969
  19%|█▉ | 178/920 [00:02<00:09, 82.27it/s]
970
+
971
  20%|██ | 187/920 [00:02<00:08, 82.92it/s]
972
+
973
  21%|██▏ | 196/920 [00:02<00:08, 81.48it/s]
974
+
975
  22%|██▏ | 205/920 [00:02<00:08, 80.21it/s]
976
+
977
  23%|██▎ | 214/920 [00:02<00:09, 78.05it/s]
978
+
979
  24%|██▍ | 223/920 [00:02<00:08, 79.06it/s]
980
+
981
  25%|██▌ | 232/920 [00:02<00:08, 81.13it/s]
982
+
983
  26%|██▌ | 241/920 [00:02<00:08, 81.88it/s]
984
+
985
  27%|██▋ | 250/920 [00:03<00:08, 80.69it/s]
986
+
987
  28%|██▊ | 259/920 [00:03<00:08, 80.15it/s]
988
+
989
  29%|██▉ | 268/920 [00:03<00:08, 78.79it/s]
990
+
991
  30%|███ | 277/920 [00:03<00:08, 79.60it/s]
992
+
993
  31%|███ | 286/920 [00:03<00:07, 80.69it/s]
994
+
995
  32%|███▏ | 295/920 [00:03<00:07, 80.33it/s]
996
+
997
  33%|███▎ | 304/920 [00:03<00:07, 80.80it/s]
998
+
999
  34%|███▍ | 313/920 [00:03<00:07, 81.72it/s]
1000
+
1001
  35%|███▌ | 322/920 [00:03<00:07, 80.29it/s]
1002
+
1003
  36%|███▌ | 331/920 [00:04<00:07, 79.91it/s]
1004
+
1005
  37%|███▋ | 339/920 [00:04<00:07, 78.94it/s]
1006
+
1007
  38%|███▊ | 348/920 [00:04<00:07, 79.72it/s]
1008
+
1009
  39%|███▊ | 356/920 [00:04<00:07, 79.51it/s]
1010
+
1011
  40%|███▉ | 364/920 [00:04<00:07, 79.26it/s]
1012
+
1013
  41%|████ | 373/920 [00:04<00:06, 79.87it/s]
1014
+
1015
  42%|████▏ | 382/920 [00:04<00:06, 81.31it/s]
1016
+
1017
  42%|████▎ | 391/920 [00:04<00:06, 82.59it/s]
1018
+
1019
  43%|████▎ | 400/920 [00:04<00:06, 77.80it/s]
1020
+
1021
  44%|████▍ | 408/920 [00:05<00:06, 76.45it/s]
1022
+
1023
  45%|████▌ | 417/920 [00:05<00:06, 77.94it/s]
1024
+
1025
  46%|████▋ | 426/920 [00:05<00:06, 78.59it/s]
1026
+
1027
  47%|████▋ | 435/920 [00:05<00:06, 79.99it/s]
1028
+
1029
  48%|████▊ | 444/920 [00:05<00:05, 80.74it/s]
1030
+
1031
  49%|████▉ | 453/920 [00:05<00:05, 81.74it/s]
1032
+
1033
  50%|█████ | 462/920 [00:05<00:05, 82.03it/s]
1034
+
1035
  51%|█████ | 471/920 [00:05<00:05, 81.37it/s]
1036
+
1037
  52%|█████▏ | 480/920 [00:05<00:05, 82.17it/s]
1038
+
1039
  53%|█████▎ | 489/920 [00:06<00:05, 82.47it/s]
1040
+
1041
  54%|█████▍ | 498/920 [00:06<00:05, 82.99it/s]
1042
+
1043
  55%|█████▌ | 507/920 [00:06<00:04, 83.85it/s]
1044
+
1045
  56%|█████▌ | 516/920 [00:06<00:04, 83.75it/s]
1046
+
1047
  57%|█████▋ | 525/920 [00:06<00:04, 83.47it/s]
1048
+
1049
  58%|█████▊ | 534/920 [00:06<00:04, 83.94it/s]
1050
+
1051
  59%|█████▉ | 543/920 [00:06<00:04, 83.17it/s]
1052
+
1053
  60%|██████ | 552/920 [00:06<00:04, 80.12it/s]
1054
+
1055
  61%|██████ | 561/920 [00:06<00:04, 78.50it/s]
1056
+
1057
  62%|██████▏ | 570/920 [00:07<00:04, 79.62it/s]
1058
+
1059
  63%|██████▎ | 579/920 [00:07<00:04, 81.03it/s]
1060
+
1061
  64%|██████▍ | 588/920 [00:07<00:04, 80.79it/s]
1062
+
1063
  65%|██████▍ | 597/920 [00:07<00:03, 81.67it/s]
1064
+
1065
  66%|██████▌ | 606/920 [00:07<00:03, 82.75it/s]
1066
+
1067
  67%|██████▋ | 615/920 [00:07<00:03, 81.52it/s]
1068
+
1069
  68%|██████▊ | 624/920 [00:07<00:03, 82.03it/s]
1070
+
1071
  69%|██████▉ | 633/920 [00:07<00:03, 80.64it/s]
1072
+
1073
  70%|██████▉ | 642/920 [00:07<00:03, 81.34it/s]
1074
+
1075
  71%|███████ | 651/920 [00:08<00:03, 82.56it/s]
1076
+
1077
  72%|███████▏ | 660/920 [00:08<00:03, 82.34it/s]
1078
+
1079
  73%|███████▎ | 669/920 [00:08<00:03, 81.94it/s]
1080
+
1081
  74%|███████▎ | 678/920 [00:08<00:02, 83.32it/s]
1082
+
1083
  75%|███████▍ | 687/920 [00:08<00:02, 83.30it/s]
1084
+
1085
  76%|███████▌ | 696/920 [00:08<00:02, 82.32it/s]
1086
+
1087
  77%|███████▋ | 705/920 [00:08<00:02, 82.00it/s]
1088
+
1089
  78%|███████▊ | 714/920 [00:08<00:02, 80.92it/s]
1090
+
1091
  79%|███████▊ | 723/920 [00:08<00:02, 81.63it/s]
1092
+
1093
  80%|███████▉ | 732/920 [00:09<00:02, 82.58it/s]
1094
+
1095
  81%|████████ | 741/920 [00:09<00:02, 79.40it/s]
1096
+
1097
  82%|████████▏ | 750/920 [00:09<00:02, 80.83it/s]
1098
+
1099
  82%|████████▎ | 759/920 [00:09<00:02, 79.99it/s]
1100
+
1101
  83%|████████▎ | 768/920 [00:09<00:01, 81.76it/s]
1102
+
1103
  84%|████████▍ | 777/920 [00:09<00:01, 81.59it/s]
1104
+
1105
  85%|████████▌ | 786/920 [00:09<00:01, 82.68it/s]
1106
+
1107
  86%|████████▋ | 795/920 [00:09<00:01, 82.81it/s]
1108
+
1109
  87%|████████▋ | 804/920 [00:09<00:01, 81.21it/s]
1110
+
1111
  88%|████████▊ | 813/920 [00:10<00:01, 81.57it/s]
1112
+
1113
  89%|████████▉ | 822/920 [00:10<00:01, 82.33it/s]
1114
+
1115
  90%|█████████ | 831/920 [00:10<00:01, 82.55it/s]
1116
+
1117
  91%|█████████▏| 840/920 [00:10<00:00, 83.05it/s]
1118
+
1119
  92%|█████████▏| 849/920 [00:10<00:00, 82.15it/s]
1120
+
1121
  93%|█████████▎| 858/920 [00:10<00:00, 77.00it/s]
1122
+
1123
  94%|█████████▍| 867/920 [00:10<00:00, 78.62it/s]
1124
+
1125
  95%|█████████▌| 876/920 [00:10<00:00, 80.33it/s]
1126
+
1127
  96%|█████████▌| 885/920 [00:10<00:00, 81.47it/s]
1128
+
1129
  97%|█████████▋| 894/920 [00:11<00:00, 77.37it/s]
1130
+
1131
  98%|█████████▊| 903/920 [00:11<00:00, 78.89it/s]
1132
+
1133
  99%|█████████▉| 911/920 [00:11<00:00, 79.04it/s]
1134
+
1135
 
1136
+
1137
 
1138
  10%|█ | 616/6160 [02:48<22:39, 4.08it/s]
1139
+
1140
+
1141
  [INFO|trainer.py:3503] 2024-09-09 21:07:14,685 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-616
1142
+ [INFO|configuration_utils.py:472] 2024-09-09 21:07:14,686 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-616/config.json
1143
+ [INFO|modeling_utils.py:2799] 2024-09-09 21:07:15,712 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-616/model.safetensors
1144
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 21:07:15,713 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-616/tokenizer_config.json
1145
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 21:07:15,714 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-616/special_tokens_map.json
1146
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 21:07:18,923 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1147
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 21:07:18,923 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1148
+
1149
  10%|█ | 617/6160 [02:53<9:29:05, 6.16s/it]
1150
  10%|█ | 618/6160 [02:53<6:45:40, 4.39s/it]
1151
  10%|█ | 619/6160 [02:53<4:50:21, 3.14s/it]
1152
  10%|█ | 620/6160 [02:54<3:34:18, 2.32s/it]
1153
  10%|█ | 621/6160 [02:54<2:38:44, 1.72s/it]
1154
  10%|█ | 622/6160 [02:54<1:57:50, 1.28s/it]
1155
  10%|█ | 623/6160 [02:55<1:29:03, 1.04it/s]
1156
  10%|█ | 624/6160 [02:55<1:08:48, 1.34it/s]
1157
  10%|█ | 625/6160 [02:55<54:39, 1.69it/s]
1158
  10%|█ | 626/6160 [02:55<47:13, 1.95it/s]
1159
  10%|█ | 627/6160 [02:56<38:56, 2.37it/s]
1160
  10%|█ | 628/6160 [02:56<32:04, 2.87it/s]
1161
  10%|█ | 629/6160 [02:56<29:02, 3.17it/s]
1162
  10%|█ | 630/6160 [02:56<27:37, 3.34it/s]
1163
  10%|█ | 631/6160 [02:57<26:09, 3.52it/s]
1164
  10%|█ | 632/6160 [02:57<25:25, 3.62it/s]
1165
  10%|█ | 633/6160 [02:57<24:02, 3.83it/s]
1166
  10%|█ | 634/6160 [02:57<24:04, 3.83it/s]
1167
  10%|█ | 635/6160 [02:58<22:55, 4.02it/s]
1168
  10%|█ | 636/6160 [02:58<21:38, 4.25it/s]
1169
  10%|█ | 637/6160 [02:58<21:22, 4.31it/s]
1170
  10%|█ | 638/6160 [02:58<22:07, 4.16it/s]
1171
  10%|█ | 639/6160 [02:58<21:55, 4.20it/s]
1172
  10%|█ | 640/6160 [02:59<22:00, 4.18it/s]
1173
  10%|█ | 641/6160 [02:59<23:14, 3.96it/s]
1174
  10%|█ | 642/6160 [02:59<21:50, 4.21it/s]
1175
  10%|█ | 643/6160 [03:00<24:42, 3.72it/s]
1176
  10%|█ | 644/6160 [03:00<24:39, 3.73it/s]
1177
  10%|█ | 645/6160 [03:00<23:34, 3.90it/s]
1178
  10%|█ | 646/6160 [03:00<22:11, 4.14it/s]
1179
  11%|█ | 647/6160 [03:01<24:55, 3.69it/s]
1180
  11%|█ | 648/6160 [03:01<23:08, 3.97it/s]
1181
  11%|█ | 649/6160 [03:01<22:36, 4.06it/s]
1182
  11%|█ | 650/6160 [03:01<20:34, 4.47it/s]
1183
  11%|█ | 651/6160 [03:01<19:33, 4.70it/s]
1184
  11%|█ | 652/6160 [03:02<19:15, 4.77it/s]
1185
  11%|█ | 653/6160 [03:02<19:50, 4.63it/s]
1186
  11%|█ | 654/6160 [03:02<19:04, 4.81it/s]
1187
  11%|█ | 655/6160 [03:02<19:45, 4.64it/s]
1188
  11%|█ | 656/6160 [03:02<20:18, 4.52it/s]
1189
  11%|█ | 657/6160 [03:03<21:02, 4.36it/s]
1190
  11%|█ | 658/6160 [03:03<22:59, 3.99it/s]
1191
  11%|█ | 659/6160 [03:03<22:01, 4.16it/s]
1192
  11%|█ | 660/6160 [03:03<21:34, 4.25it/s]
1193
  11%|█ | 661/6160 [03:04<21:11, 4.33it/s]
1194
  11%|█ | 662/6160 [03:04<21:50, 4.20it/s]
1195
  11%|█ | 663/6160 [03:04<20:43, 4.42it/s]
1196
  11%|█ | 664/6160 [03:04<19:39, 4.66it/s]
1197
  11%|█ | 665/6160 [03:05<19:31, 4.69it/s]
1198
  11%|█ | 666/6160 [03:05<19:40, 4.65it/s]
1199
  11%|█ | 667/6160 [03:05<20:04, 4.56it/s]
1200
  11%|█ | 668/6160 [03:05<23:03, 3.97it/s]
1201
  11%|█ | 669/6160 [03:06<21:58, 4.16it/s]
1202
  11%|█ | 670/6160 [03:06<22:57, 3.99it/s]
1203
  11%|█ | 671/6160 [03:06<22:38, 4.04it/s]
1204
  11%|█ | 672/6160 [03:06<21:29, 4.26it/s]
1205
  11%|█ | 673/6160 [03:06<21:45, 4.20it/s]
1206
  11%|█ | 674/6160 [03:07<23:10, 3.95it/s]
1207
  11%|█ | 675/6160 [03:07<21:57, 4.16it/s]
1208
  11%|█ | 676/6160 [03:07<21:08, 4.32it/s]
1209
  11%|█ | 677/6160 [03:07<21:36, 4.23it/s]
1210
  11%|█ | 678/6160 [03:08<21:30, 4.25it/s]
1211
  11%|█ | 679/6160 [03:08<27:25, 3.33it/s]
1212
  11%|█ | 680/6160 [03:08<25:19, 3.61it/s]
1213
  11%|█ | 681/6160 [03:09<24:54, 3.67it/s]
1214
  11%|█ | 682/6160 [03:09<24:20, 3.75it/s]
1215
  11%|█ | 683/6160 [03:09<22:44, 4.01it/s]
1216
  11%|█ | 684/6160 [03:09<22:23, 4.08it/s]
1217
  11%|█ | 685/6160 [03:10<22:04, 4.13it/s]
1218
  11%|█ | 686/6160 [03:10<20:21, 4.48it/s]
1219
  11%|█ | 687/6160 [03:10<20:39, 4.42it/s]
1220
  11%|█ | 688/6160 [03:10<22:34, 4.04it/s]
1221
  11%|█ | 689/6160 [03:11<23:45, 3.84it/s]
1222
  11%|█ | 690/6160 [03:11<22:24, 4.07it/s]
1223
  11%|█ | 691/6160 [03:11<23:21, 3.90it/s]
1224
  11%|█ | 692/6160 [03:11<23:06, 3.94it/s]
1225
  11%|█▏ | 693/6160 [03:12<21:56, 4.15it/s]
1226
  11%|█▏ | 694/6160 [03:12<22:17, 4.09it/s]
1227
  11%|█▏ | 695/6160 [03:12<21:20, 4.27it/s]
1228
  11%|█▏ | 696/6160 [03:12<21:36, 4.21it/s]
1229
  11%|█▏ | 697/6160 [03:12<20:34, 4.43it/s]
1230
  11%|█▏ | 698/6160 [03:13<20:06, 4.53it/s]
1231
  11%|█▏ | 699/6160 [03:13<19:49, 4.59it/s]
1232
  11%|█▏ | 700/6160 [03:13<21:21, 4.26it/s]
1233
  11%|█▏ | 701/6160 [03:13<20:19, 4.48it/s]
1234
  11%|█▏ | 702/6160 [03:14<19:58, 4.56it/s]
1235
  11%|█▏ | 703/6160 [03:14<21:33, 4.22it/s]
1236
  11%|█▏ | 704/6160 [03:14<21:41, 4.19it/s]
1237
  11%|█▏ | 705/6160 [03:14<19:28, 4.67it/s]
1238
  11%|█▏ | 706/6160 [03:14<20:01, 4.54it/s]
1239
  11%|█▏ | 707/6160 [03:15<20:15, 4.48it/s]
1240
  11%|█▏ | 708/6160 [03:15<21:49, 4.16it/s]
1241
  12%|█▏ | 709/6160 [03:15<22:07, 4.11it/s]
1242
  12%|█▏ | 710/6160 [03:15<22:16, 4.08it/s]
1243
  12%|█▏ | 711/6160 [03:16<21:42, 4.18it/s]
1244
  12%|█▏ | 712/6160 [03:16<21:57, 4.14it/s]
1245
  12%|█▏ | 713/6160 [03:16<22:13, 4.08it/s]
1246
  12%|█▏ | 714/6160 [03:16<22:41, 4.00it/s]
1247
  12%|█▏ | 715/6160 [03:17<21:43, 4.18it/s]
1248
  12%|█▏ | 716/6160 [03:17<24:34, 3.69it/s]
1249
  12%|█▏ | 717/6160 [03:17<23:22, 3.88it/s]
1250
  12%|█▏ | 718/6160 [03:17<22:26, 4.04it/s]
1251
  12%|█▏ | 719/6160 [03:18<21:15, 4.27it/s]
1252
  12%|█▏ | 720/6160 [03:18<20:23, 4.45it/s]
1253
  12%|█▏ | 721/6160 [03:18<21:20, 4.25it/s]
1254
  12%|█▏ | 722/6160 [03:18<20:19, 4.46it/s]
1255
  12%|█▏ | 723/6160 [03:19<21:22, 4.24it/s]
1256
  12%|█▏ | 724/6160 [03:19<23:37, 3.84it/s]
1257
  12%|█▏ | 725/6160 [03:19<25:41, 3.53it/s]
1258
  12%|█▏ | 726/6160 [03:19<23:55, 3.79it/s]
1259
  12%|█▏ | 727/6160 [03:20<22:50, 3.97it/s]
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 1.5694885147146138e+16,
4
+ "train_loss": 0.002533856062142209,
5
+ "train_runtime": 1422.7831,
6
+ "train_samples": 31229,
7
+ "train_samples_per_second": 219.492,
8
+ "train_steps_per_second": 3.43
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.9521203830369357,
3
+ "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-2440",
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 4880,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.9987641945981572,
14
+ "eval_f1": 0.9355123674911661,
15
+ "eval_loss": 0.003916793502867222,
16
+ "eval_precision": 0.9005102040816326,
17
+ "eval_recall": 0.9733455882352942,
18
+ "eval_runtime": 13.936,
19
+ "eval_samples_per_second": 488.661,
20
+ "eval_steps_per_second": 61.136,
21
+ "step": 488
22
+ },
23
+ {
24
+ "epoch": 1.0245901639344261,
25
+ "grad_norm": 0.24995087087154388,
26
+ "learning_rate": 4.487704918032787e-05,
27
+ "loss": 0.0189,
28
+ "step": 500
29
+ },
30
+ {
31
+ "epoch": 2.0,
32
+ "eval_accuracy": 0.9989495654084337,
33
+ "eval_f1": 0.9413886384129847,
34
+ "eval_loss": 0.0032420416828244925,
35
+ "eval_precision": 0.9238938053097345,
36
+ "eval_recall": 0.9595588235294118,
37
+ "eval_runtime": 14.0058,
38
+ "eval_samples_per_second": 486.228,
39
+ "eval_steps_per_second": 60.832,
40
+ "step": 976
41
+ },
42
+ {
43
+ "epoch": 2.0491803278688523,
44
+ "grad_norm": 0.04940846189856529,
45
+ "learning_rate": 3.975409836065574e-05,
46
+ "loss": 0.0027,
47
+ "step": 1000
48
+ },
49
+ {
50
+ "epoch": 3.0,
51
+ "eval_accuracy": 0.9989358342373021,
52
+ "eval_f1": 0.9402784014369105,
53
+ "eval_loss": 0.0043699671514332294,
54
+ "eval_precision": 0.9192273924495171,
55
+ "eval_recall": 0.9623161764705882,
56
+ "eval_runtime": 14.0607,
57
+ "eval_samples_per_second": 484.329,
58
+ "eval_steps_per_second": 60.594,
59
+ "step": 1464
60
+ },
61
+ {
62
+ "epoch": 3.0737704918032787,
63
+ "grad_norm": 0.01636342518031597,
64
+ "learning_rate": 3.463114754098361e-05,
65
+ "loss": 0.0015,
66
+ "step": 1500
67
+ },
68
+ {
69
+ "epoch": 4.0,
70
+ "eval_accuracy": 0.9990594147774864,
71
+ "eval_f1": 0.9445208619899129,
72
+ "eval_loss": 0.0036185304634273052,
73
+ "eval_precision": 0.9423604757548033,
74
+ "eval_recall": 0.9466911764705882,
75
+ "eval_runtime": 14.26,
76
+ "eval_samples_per_second": 477.56,
77
+ "eval_steps_per_second": 59.748,
78
+ "step": 1952
79
+ },
80
+ {
81
+ "epoch": 4.098360655737705,
82
+ "grad_norm": 0.006754329428076744,
83
+ "learning_rate": 2.9508196721311478e-05,
84
+ "loss": 0.0007,
85
+ "step": 2000
86
+ },
87
+ {
88
+ "epoch": 5.0,
89
+ "eval_accuracy": 0.9991418018042759,
90
+ "eval_f1": 0.9521203830369357,
91
+ "eval_loss": 0.004440780263394117,
92
+ "eval_precision": 0.9447963800904977,
93
+ "eval_recall": 0.9595588235294118,
94
+ "eval_runtime": 14.0071,
95
+ "eval_samples_per_second": 486.182,
96
+ "eval_steps_per_second": 60.826,
97
+ "step": 2440
98
+ },
99
+ {
100
+ "epoch": 5.122950819672131,
101
+ "grad_norm": 0.0005009469459764659,
102
+ "learning_rate": 2.4385245901639343e-05,
103
+ "loss": 0.0004,
104
+ "step": 2500
105
+ },
106
+ {
107
+ "epoch": 6.0,
108
+ "eval_accuracy": 0.9990456836063548,
109
+ "eval_f1": 0.9464368886818817,
110
+ "eval_loss": 0.005531433038413525,
111
+ "eval_precision": 0.959395656279509,
112
+ "eval_recall": 0.9338235294117647,
113
+ "eval_runtime": 14.0724,
114
+ "eval_samples_per_second": 483.926,
115
+ "eval_steps_per_second": 60.544,
116
+ "step": 2928
117
+ },
118
+ {
119
+ "epoch": 6.147540983606557,
120
+ "grad_norm": 0.7484572529792786,
121
+ "learning_rate": 1.9262295081967212e-05,
122
+ "loss": 0.0002,
123
+ "step": 3000
124
+ },
125
+ {
126
+ "epoch": 7.0,
127
+ "eval_accuracy": 0.9989907589218284,
128
+ "eval_f1": 0.9427393495190106,
129
+ "eval_loss": 0.004938796162605286,
130
+ "eval_precision": 0.9397260273972603,
131
+ "eval_recall": 0.9457720588235294,
132
+ "eval_runtime": 13.9575,
133
+ "eval_samples_per_second": 487.909,
134
+ "eval_steps_per_second": 61.042,
135
+ "step": 3416
136
+ },
137
+ {
138
+ "epoch": 7.172131147540983,
139
+ "grad_norm": 0.00041869020787999034,
140
+ "learning_rate": 1.4139344262295081e-05,
141
+ "loss": 0.0002,
142
+ "step": 3500
143
+ },
144
+ {
145
+ "epoch": 8.0,
146
+ "eval_accuracy": 0.999073145948618,
147
+ "eval_f1": 0.9468864468864469,
148
+ "eval_loss": 0.005282656755298376,
149
+ "eval_precision": 0.9434306569343066,
150
+ "eval_recall": 0.9503676470588235,
151
+ "eval_runtime": 14.1087,
152
+ "eval_samples_per_second": 482.68,
153
+ "eval_steps_per_second": 60.388,
154
+ "step": 3904
155
+ },
156
+ {
157
+ "epoch": 8.19672131147541,
158
+ "grad_norm": 0.004756764974445105,
159
+ "learning_rate": 9.016393442622952e-06,
160
+ "loss": 0.0001,
161
+ "step": 4000
162
+ },
163
+ {
164
+ "epoch": 9.0,
165
+ "eval_accuracy": 0.9990525491919205,
166
+ "eval_f1": 0.946404031149794,
167
+ "eval_loss": 0.0050343358889222145,
168
+ "eval_precision": 0.94337899543379,
169
+ "eval_recall": 0.9494485294117647,
170
+ "eval_runtime": 14.373,
171
+ "eval_samples_per_second": 473.804,
172
+ "eval_steps_per_second": 59.278,
173
+ "step": 4392
174
+ },
175
+ {
176
+ "epoch": 9.221311475409836,
177
+ "grad_norm": 0.00033881032140925527,
178
+ "learning_rate": 3.89344262295082e-06,
179
+ "loss": 0.0001,
180
+ "step": 4500
181
+ },
182
+ {
183
+ "epoch": 10.0,
184
+ "eval_accuracy": 0.9990525491919205,
185
+ "eval_f1": 0.945537757437071,
186
+ "eval_loss": 0.005196314305067062,
187
+ "eval_precision": 0.9416590701914311,
188
+ "eval_recall": 0.9494485294117647,
189
+ "eval_runtime": 14.6459,
190
+ "eval_samples_per_second": 464.976,
191
+ "eval_steps_per_second": 58.173,
192
+ "step": 4880
193
+ },
194
+ {
195
+ "epoch": 10.0,
196
+ "step": 4880,
197
+ "total_flos": 1.5694885147146138e+16,
198
+ "train_loss": 0.002533856062142209,
199
+ "train_runtime": 1422.7831,
200
+ "train_samples_per_second": 219.492,
201
+ "train_steps_per_second": 3.43
202
+ }
203
+ ],
204
+ "logging_steps": 500,
205
+ "max_steps": 4880,
206
+ "num_input_tokens_seen": 0,
207
+ "num_train_epochs": 10,
208
+ "save_steps": 500,
209
+ "stateful_callbacks": {
210
+ "TrainerControl": {
211
+ "args": {
212
+ "should_epoch_stop": false,
213
+ "should_evaluate": false,
214
+ "should_log": false,
215
+ "should_save": true,
216
+ "should_training_stop": true
217
+ },
218
+ "attributes": {}
219
+ }
220
+ },
221
+ "total_flos": 1.5694885147146138e+16,
222
+ "train_batch_size": 32,
223
+ "trial_name": null,
224
+ "trial_params": null
225
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13556e6c97b2f39e25d5830ab0bc61ce81f807bcf643d150d23dd97c2f606c57
3
+ size 5240
vocab.json ADDED
The diff for this file is too large to render. See raw diff