--- library_name: transformers license: apache-2.0 base_model: PlanTL-GOB-ES/bsc-bio-ehr-es tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/cantemist-fasttext-75-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/cantemist-fasttext-75-ner type: Rodrigo1771/cantemist-fasttext-75-ner config: CantemistNer split: validation args: CantemistNer metrics: - name: Precision type: precision value: 0.8462436745815493 - name: Recall type: recall value: 0.8562426152028357 - name: F1 type: f1 value: 0.8512137823022711 - name: Accuracy type: accuracy value: 0.991867253328732 --- # output This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/cantemist-fasttext-75-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0478 - Precision: 0.8462 - Recall: 0.8562 - F1: 0.8512 - Accuracy: 0.9919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0571 | 0.9992 | 616 | 0.0266 | 0.7767 | 0.8492 | 0.8113 | 0.9906 | | 0.018 | 2.0 | 1233 | 0.0304 | 0.8075 | 0.8476 | 0.8271 | 0.9914 | | 0.0101 | 2.9992 | 1849 | 0.0356 | 0.8159 | 0.8468 | 0.8311 | 0.9906 | | 0.0057 | 4.0 | 2466 | 0.0365 | 0.8239 | 0.8460 | 0.8348 | 0.9910 | | 0.0027 | 4.9992 | 3082 | 0.0396 | 0.8211 | 0.8480 | 0.8343 | 0.9916 | | 0.0018 | 6.0 | 3699 | 0.0435 | 0.8306 | 0.8633 | 0.8467 | 0.9915 | | 0.0013 | 6.9992 | 4315 | 0.0478 | 0.8462 | 0.8562 | 0.8512 | 0.9919 | | 0.0008 | 8.0 | 4932 | 0.0469 | 0.8347 | 0.8614 | 0.8478 | 0.9915 | | 0.0004 | 8.9992 | 5548 | 0.0515 | 0.8414 | 0.8610 | 0.8511 | 0.9919 | | 0.0002 | 9.9919 | 6160 | 0.0520 | 0.8386 | 0.8598 | 0.8491 | 0.9918 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1