--- library_name: transformers license: apache-2.0 base_model: PlanTL-GOB-ES/bsc-bio-ehr-es tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/cantemist-85-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/cantemist-85-ner type: Rodrigo1771/cantemist-85-ner config: CantemistNer split: validation args: CantemistNer metrics: - name: Precision type: precision value: 0.8399232245681382 - name: Recall type: recall value: 0.8617565970854667 - name: F1 type: f1 value: 0.8506998444790046 - name: Accuracy type: accuracy value: 0.9916544445403043 --- # output This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/cantemist-85-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0496 - Precision: 0.8399 - Recall: 0.8618 - F1: 0.8507 - Accuracy: 0.9917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0542 | 1.0 | 511 | 0.0271 | 0.7485 | 0.7972 | 0.7721 | 0.9895 | | 0.0184 | 2.0 | 1022 | 0.0277 | 0.7897 | 0.8519 | 0.8196 | 0.9906 | | 0.0103 | 3.0 | 1533 | 0.0305 | 0.8238 | 0.8488 | 0.8361 | 0.9914 | | 0.0058 | 4.0 | 2044 | 0.0320 | 0.8197 | 0.8539 | 0.8364 | 0.9913 | | 0.0041 | 5.0 | 2555 | 0.0374 | 0.8397 | 0.8417 | 0.8407 | 0.9917 | | 0.0026 | 6.0 | 3066 | 0.0427 | 0.8368 | 0.8503 | 0.8435 | 0.9917 | | 0.0015 | 7.0 | 3577 | 0.0451 | 0.8207 | 0.8598 | 0.8398 | 0.9912 | | 0.0013 | 8.0 | 4088 | 0.0448 | 0.8318 | 0.8629 | 0.8471 | 0.9916 | | 0.0007 | 9.0 | 4599 | 0.0496 | 0.8399 | 0.8618 | 0.8507 | 0.9917 | | 0.0006 | 10.0 | 5110 | 0.0503 | 0.8399 | 0.8618 | 0.8507 | 0.9916 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1