Model save
Browse files- README.md +102 -0
- model.safetensors +1 -1
- tb/events.out.tfevents.1725576279.2a66098fac87.2185.0 +2 -2
- train.log +13 -0
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- distemist-85-ner
|
9 |
+
metrics:
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
- accuracy
|
14 |
+
model-index:
|
15 |
+
- name: output
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Token Classification
|
19 |
+
type: token-classification
|
20 |
+
dataset:
|
21 |
+
name: distemist-85-ner
|
22 |
+
type: distemist-85-ner
|
23 |
+
config: DisTEMIST NER
|
24 |
+
split: validation
|
25 |
+
args: DisTEMIST NER
|
26 |
+
metrics:
|
27 |
+
- name: Precision
|
28 |
+
type: precision
|
29 |
+
value: 0.7898351648351648
|
30 |
+
- name: Recall
|
31 |
+
type: recall
|
32 |
+
value: 0.8072063640617688
|
33 |
+
- name: F1
|
34 |
+
type: f1
|
35 |
+
value: 0.7984262902105993
|
36 |
+
- name: Accuracy
|
37 |
+
type: accuracy
|
38 |
+
value: 0.9768286487154489
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# output
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the distemist-85-ner dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.1497
|
49 |
+
- Precision: 0.7898
|
50 |
+
- Recall: 0.8072
|
51 |
+
- F1: 0.7984
|
52 |
+
- Accuracy: 0.9768
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 5e-05
|
72 |
+
- train_batch_size: 32
|
73 |
+
- eval_batch_size: 8
|
74 |
+
- seed: 42
|
75 |
+
- gradient_accumulation_steps: 2
|
76 |
+
- total_train_batch_size: 64
|
77 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
78 |
+
- lr_scheduler_type: linear
|
79 |
+
- num_epochs: 10.0
|
80 |
+
|
81 |
+
### Training results
|
82 |
+
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
84 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
85 |
+
| No log | 0.9990 | 499 | 0.0739 | 0.7271 | 0.7953 | 0.7596 | 0.9731 |
|
86 |
+
| 0.105 | 2.0 | 999 | 0.0908 | 0.7436 | 0.7890 | 0.7656 | 0.9729 |
|
87 |
+
| 0.0448 | 2.9990 | 1498 | 0.0930 | 0.7676 | 0.7990 | 0.7830 | 0.9744 |
|
88 |
+
| 0.0255 | 4.0 | 1998 | 0.1052 | 0.7806 | 0.7983 | 0.7894 | 0.9757 |
|
89 |
+
| 0.0164 | 4.9990 | 2497 | 0.1100 | 0.7756 | 0.8007 | 0.7879 | 0.9750 |
|
90 |
+
| 0.0112 | 6.0 | 2997 | 0.1266 | 0.7869 | 0.8124 | 0.7994 | 0.9768 |
|
91 |
+
| 0.0073 | 6.9990 | 3496 | 0.1288 | 0.7929 | 0.8009 | 0.7969 | 0.9763 |
|
92 |
+
| 0.0054 | 8.0 | 3996 | 0.1424 | 0.8032 | 0.8049 | 0.8040 | 0.9765 |
|
93 |
+
| 0.0038 | 8.9990 | 4495 | 0.1455 | 0.7901 | 0.8042 | 0.7971 | 0.9765 |
|
94 |
+
| 0.0028 | 9.9900 | 4990 | 0.1497 | 0.7898 | 0.8072 | 0.7984 | 0.9768 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.44.2
|
100 |
+
- Pytorch 2.4.0+cu121
|
101 |
+
- Datasets 2.21.0
|
102 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 496244100
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fccb6184ef6162e71a85ec0c1929a0347a15ee60327c8a3da1c5764f8caf6f1
|
3 |
size 496244100
|
tb/events.out.tfevents.1725576279.2a66098fac87.2185.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26ae516745ddff30692f4c665463f21acb32fb831f7fd631ed58c86455b7b8df
|
3 |
+
size 12158
|
train.log
CHANGED
@@ -1454,3 +1454,16 @@ Training completed. Do not forget to share your model on huggingface.co/models =
|
|
1454 |
[INFO|trainer.py:2632] 2024-09-05 23:07:44,060 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-3996 (score: 0.8040201005025126).
|
1455 |
|
1456 |
|
1457 |
[INFO|trainer.py:4283] 2024-09-05 23:07:44,259 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1454 |
[INFO|trainer.py:2632] 2024-09-05 23:07:44,060 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-3996 (score: 0.8040201005025126).
|
1455 |
|
1456 |
|
1457 |
[INFO|trainer.py:4283] 2024-09-05 23:07:44,259 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
|
1458 |
+
[INFO|trainer.py:3503] 2024-09-05 23:08:00,051 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
|
1459 |
+
[INFO|configuration_utils.py:472] 2024-09-05 23:08:00,053 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
|
1460 |
+
[INFO|modeling_utils.py:2799] 2024-09-05 23:08:01,524 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
|
1461 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-05 23:08:01,525 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
1462 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-05 23:08:01,525 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
1463 |
+
[INFO|trainer.py:3503] 2024-09-05 23:08:01,574 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
|
1464 |
+
[INFO|configuration_utils.py:472] 2024-09-05 23:08:01,576 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
|
1465 |
+
[INFO|modeling_utils.py:2799] 2024-09-05 23:08:02,935 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
|
1466 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-05 23:08:02,936 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
1467 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-05 23:08:02,937 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
1468 |
+
{'eval_loss': 0.14972682297229767, 'eval_precision': 0.7898351648351648, 'eval_recall': 0.8072063640617688, 'eval_f1': 0.7984262902105993, 'eval_accuracy': 0.9768286487154489, 'eval_runtime': 14.3927, 'eval_samples_per_second': 473.158, 'eval_steps_per_second': 59.197, 'epoch': 9.99}
|
1469 |
+
{'train_runtime': 1385.1143, 'train_samples_per_second': 230.645, 'train_steps_per_second': 3.603, 'train_loss': 0.022475468706272407, 'epoch': 9.99}
|
1470 |
+
|