--- library_name: transformers license: apache-2.0 base_model: PlanTL-GOB-ES/bsc-bio-ehr-es tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/distemist-85-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/distemist-85-ner type: Rodrigo1771/distemist-85-ner config: DisTEMIST NER split: validation args: DisTEMIST NER metrics: - name: Precision type: precision value: 0.803175344384777 - name: Recall type: recall value: 0.8048666354702855 - name: F1 type: f1 value: 0.8040201005025126 - name: Accuracy type: accuracy value: 0.9764853694371592 --- # output This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/distemist-85-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.1424 - Precision: 0.8032 - Recall: 0.8049 - F1: 0.8040 - Accuracy: 0.9765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9990 | 499 | 0.0739 | 0.7271 | 0.7953 | 0.7596 | 0.9731 | | 0.105 | 2.0 | 999 | 0.0908 | 0.7436 | 0.7890 | 0.7656 | 0.9729 | | 0.0448 | 2.9990 | 1498 | 0.0930 | 0.7676 | 0.7990 | 0.7830 | 0.9744 | | 0.0255 | 4.0 | 1998 | 0.1052 | 0.7806 | 0.7983 | 0.7894 | 0.9757 | | 0.0164 | 4.9990 | 2497 | 0.1100 | 0.7756 | 0.8007 | 0.7879 | 0.9750 | | 0.0112 | 6.0 | 2997 | 0.1266 | 0.7869 | 0.8124 | 0.7994 | 0.9768 | | 0.0073 | 6.9990 | 3496 | 0.1288 | 0.7929 | 0.8009 | 0.7969 | 0.9763 | | 0.0054 | 8.0 | 3996 | 0.1424 | 0.8032 | 0.8049 | 0.8040 | 0.9765 | | 0.0038 | 8.9990 | 4495 | 0.1455 | 0.7901 | 0.8042 | 0.7971 | 0.9765 | | 0.0028 | 9.9900 | 4990 | 0.1497 | 0.7898 | 0.8072 | 0.7984 | 0.9768 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1