Rodrigo1771 commited on
Commit
34160f4
·
verified ·
1 Parent(s): 6920a69

Training in progress, epoch 1

Browse files
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
5
+ tags:
6
+ - token-classification
7
+ - generated_from_trainer
8
+ datasets:
9
+ - Rodrigo1771/distemist-fasttext-75-ner
10
+ metrics:
11
+ - precision
12
+ - recall
13
+ - f1
14
+ - accuracy
15
+ model-index:
16
+ - name: output
17
+ results:
18
+ - task:
19
+ name: Token Classification
20
+ type: token-classification
21
+ dataset:
22
+ name: Rodrigo1771/distemist-fasttext-75-ner
23
+ type: Rodrigo1771/distemist-fasttext-75-ner
24
+ config: DisTEMIST NER
25
+ split: validation
26
+ args: DisTEMIST NER
27
+ metrics:
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.7991246256622898
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.8116518483855872
34
+ - name: F1
35
+ type: f1
36
+ value: 0.8053395240858967
37
+ - name: Accuracy
38
+ type: accuracy
39
+ value: 0.9758743323218038
40
+ ---
41
+
42
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
43
+ should probably proofread and complete it, then remove this comment. -->
44
+
45
+ # output
46
+
47
+ This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/distemist-fasttext-75-ner dataset.
48
+ It achieves the following results on the evaluation set:
49
+ - Loss: 0.1711
50
+ - Precision: 0.7991
51
+ - Recall: 0.8117
52
+ - F1: 0.8053
53
+ - Accuracy: 0.9759
54
+
55
+ ## Model description
56
+
57
+ More information needed
58
+
59
+ ## Intended uses & limitations
60
+
61
+ More information needed
62
+
63
+ ## Training and evaluation data
64
+
65
+ More information needed
66
+
67
+ ## Training procedure
68
+
69
+ ### Training hyperparameters
70
+
71
+ The following hyperparameters were used during training:
72
+ - learning_rate: 5e-05
73
+ - train_batch_size: 32
74
+ - eval_batch_size: 8
75
+ - seed: 42
76
+ - gradient_accumulation_steps: 2
77
+ - total_train_batch_size: 64
78
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
79
+ - lr_scheduler_type: linear
80
+ - num_epochs: 10.0
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
85
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
86
+ | 0.1165 | 0.9993 | 702 | 0.0809 | 0.7455 | 0.8039 | 0.7736 | 0.9735 |
87
+ | 0.0461 | 2.0 | 1405 | 0.0956 | 0.7611 | 0.8067 | 0.7833 | 0.9747 |
88
+ | 0.0165 | 2.9993 | 2107 | 0.1057 | 0.7721 | 0.7990 | 0.7853 | 0.9744 |
89
+ | 0.011 | 4.0 | 2810 | 0.1274 | 0.7759 | 0.8196 | 0.7971 | 0.9751 |
90
+ | 0.006 | 4.9993 | 3512 | 0.1358 | 0.7904 | 0.8049 | 0.7976 | 0.9745 |
91
+ | 0.0045 | 6.0 | 4215 | 0.1420 | 0.7911 | 0.7985 | 0.7948 | 0.9746 |
92
+ | 0.0037 | 6.9993 | 4917 | 0.1601 | 0.7925 | 0.8000 | 0.7962 | 0.9749 |
93
+ | 0.0022 | 8.0 | 5620 | 0.1621 | 0.8000 | 0.8102 | 0.8051 | 0.9758 |
94
+ | 0.0016 | 8.9993 | 6322 | 0.1681 | 0.7972 | 0.8086 | 0.8029 | 0.9758 |
95
+ | 0.0013 | 9.9929 | 7020 | 0.1711 | 0.7991 | 0.8117 | 0.8053 | 0.9759 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.44.2
101
+ - Pytorch 2.4.0+cu121
102
+ - Datasets 2.21.0
103
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.99288256227758,
3
+ "eval_accuracy": 0.9758743323218038,
4
+ "eval_f1": 0.8053395240858967,
5
+ "eval_loss": 0.17113561928272247,
6
+ "eval_precision": 0.7991246256622898,
7
+ "eval_recall": 0.8116518483855872,
8
+ "eval_runtime": 14.1813,
9
+ "eval_samples": 6810,
10
+ "eval_samples_per_second": 480.21,
11
+ "eval_steps_per_second": 60.079,
12
+ "predict_accuracy": 0.9755136059661639,
13
+ "predict_f1": 0.8018404526518684,
14
+ "predict_loss": 0.161112979054451,
15
+ "predict_precision": 0.7862455798073406,
16
+ "predict_recall": 0.818066480588683,
17
+ "predict_runtime": 29.1457,
18
+ "predict_samples_per_second": 501.411,
19
+ "predict_steps_per_second": 62.685,
20
+ "total_flos": 2.130317416831723e+16,
21
+ "train_loss": 0.017706579814779112,
22
+ "train_runtime": 1901.5665,
23
+ "train_samples": 44938,
24
+ "train_samples_per_second": 236.321,
25
+ "train_steps_per_second": 3.692
26
+ }
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
3
+ "architectures": [
4
+ "RobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "finetuning_task": "ner",
11
+ "gradient_checkpointing": false,
12
+ "hidden_act": "gelu",
13
+ "hidden_dropout_prob": 0.1,
14
+ "hidden_size": 768,
15
+ "id2label": {
16
+ "0": "O",
17
+ "1": "B-FARMACO",
18
+ "2": "I-FARMACO"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "B-FARMACO": 1,
24
+ "I-FARMACO": 2,
25
+ "O": 0
26
+ },
27
+ "layer_norm_eps": 1e-05,
28
+ "max_position_embeddings": 514,
29
+ "model_type": "roberta",
30
+ "num_attention_heads": 12,
31
+ "num_hidden_layers": 12,
32
+ "pad_token_id": 1,
33
+ "position_embedding_type": "absolute",
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.44.2",
36
+ "type_vocab_size": 1,
37
+ "use_cache": true,
38
+ "vocab_size": 50262
39
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.99288256227758,
3
+ "eval_accuracy": 0.9758743323218038,
4
+ "eval_f1": 0.8053395240858967,
5
+ "eval_loss": 0.17113561928272247,
6
+ "eval_precision": 0.7991246256622898,
7
+ "eval_recall": 0.8116518483855872,
8
+ "eval_runtime": 14.1813,
9
+ "eval_samples": 6810,
10
+ "eval_samples_per_second": 480.21,
11
+ "eval_steps_per_second": 60.079
12
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3aebeaa296e85a82ea161a93feaf408a33f23f38fe04044a7f0fda8f18f0a2fe
3
+ size 496244100
predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_accuracy": 0.9755136059661639,
3
+ "predict_f1": 0.8018404526518684,
4
+ "predict_loss": 0.161112979054451,
5
+ "predict_precision": 0.7862455798073406,
6
+ "predict_recall": 0.818066480588683,
7
+ "predict_runtime": 29.1457,
8
+ "predict_samples_per_second": 501.411,
9
+ "predict_steps_per_second": 62.685
10
+ }
predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tb/events.out.tfevents.1725911599.0ada7e7d1d89.3073.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5816f5dda3b32e02f4eaf786675db7f9a58883db7fed71ab3a319cb3cdef0814
3
+ size 13213
tb/events.out.tfevents.1725913533.0ada7e7d1d89.3073.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bac376227477ed56be640720bee3901400d0b77a1b47bd01abe47f5a9812732
3
+ size 560
tb/events.out.tfevents.1725913932.0ada7e7d1d89.13010.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:674da0d93ba53762b090167b15a68a72f2dfa2143b514065154e098e35eb57c1
3
+ size 5645
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50261": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "max_len": 512,
52
+ "model_max_length": 512,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
train.log ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/4880 [00:00<?, ?it/s]
1
  0%| | 1/4880 [00:01<1:27:08, 1.07s/it]
2
  0%| | 2/4880 [00:01<51:50, 1.57it/s]
3
  0%| | 3/4880 [00:01<40:04, 2.03it/s]
4
  0%| | 4/4880 [00:01<32:00, 2.54it/s]
5
  0%| | 5/4880 [00:02<27:14, 2.98it/s]
6
  0%| | 6/4880 [00:02<23:04, 3.52it/s]
7
  0%| | 7/4880 [00:02<20:44, 3.92it/s]
8
  0%| | 8/4880 [00:02<19:50, 4.09it/s]
9
  0%| | 9/4880 [00:02<18:14, 4.45it/s]
10
  0%| | 10/4880 [00:03<18:16, 4.44it/s]
11
  0%| | 11/4880 [00:03<18:21, 4.42it/s]
12
  0%| | 12/4880 [00:03<18:13, 4.45it/s]
13
  0%| | 13/4880 [00:03<20:48, 3.90it/s]
14
  0%| | 14/4880 [00:04<19:12, 4.22it/s]
15
  0%| | 15/4880 [00:04<18:57, 4.28it/s]
16
  0%| | 16/4880 [00:04<20:26, 3.97it/s]
17
  0%| | 17/4880 [00:04<18:54, 4.29it/s]
18
  0%| | 18/4880 [00:05<18:43, 4.33it/s]
19
  0%| | 19/4880 [00:05<17:40, 4.58it/s]
20
  0%| | 20/4880 [00:05<17:42, 4.58it/s]
21
  0%| | 21/4880 [00:05<19:40, 4.12it/s]
22
  0%| | 22/4880 [00:06<21:06, 3.83it/s]
23
  0%| | 23/4880 [00:06<20:44, 3.90it/s]
24
  0%| | 24/4880 [00:06<19:05, 4.24it/s]
25
  1%| | 25/4880 [00:06<19:15, 4.20it/s]
26
  1%| | 26/4880 [00:07<32:43, 2.47it/s]
27
  1%| | 27/4880 [00:07<29:28, 2.74it/s]
28
  1%| | 28/4880 [00:08<25:53, 3.12it/s]
29
  1%| | 29/4880 [00:08<25:25, 3.18it/s]
30
  1%| | 30/4880 [00:08<24:29, 3.30it/s]
31
  1%| | 31/4880 [00:08<22:37, 3.57it/s]
32
  1%| | 32/4880 [00:09<22:12, 3.64it/s]
33
  1%| | 33/4880 [00:09<23:20, 3.46it/s]
34
  1%| | 34/4880 [00:09<20:17, 3.98it/s]
35
  1%| | 35/4880 [00:09<22:23, 3.61it/s]
36
  1%| | 36/4880 [00:10<20:55, 3.86it/s]
37
  1%| | 37/4880 [00:10<19:06, 4.22it/s]
38
  1%| | 38/4880 [00:10<19:05, 4.23it/s]
39
  1%| | 39/4880 [00:10<18:39, 4.33it/s]
40
  1%| | 40/4880 [00:11<17:34, 4.59it/s]
41
  1%| | 41/4880 [00:11<17:43, 4.55it/s]
42
  1%| | 42/4880 [00:11<18:14, 4.42it/s]
43
  1%| | 43/4880 [00:11<20:42, 3.89it/s]
44
  1%| | 44/4880 [00:12<20:32, 3.92it/s]
45
  1%| | 45/4880 [00:12<19:46, 4.07it/s]
46
  1%| | 46/4880 [00:12<23:54, 3.37it/s]
47
  1%| | 47/4880 [00:13<24:10, 3.33it/s]
48
  1%| | 48/4880 [00:13<21:41, 3.71it/s]
49
  1%| | 49/4880 [00:13<20:20, 3.96it/s]
50
  1%| | 50/4880 [00:13<22:35, 3.56it/s]
51
  1%| | 51/4880 [00:13<20:26, 3.94it/s]
52
  1%| | 52/4880 [00:14<23:08, 3.48it/s]
53
  1%| | 53/4880 [00:14<21:48, 3.69it/s]
54
  1%| | 54/4880 [00:14<20:26, 3.93it/s]
55
  1%| | 55/4880 [00:14<19:01, 4.23it/s]
56
  1%| | 56/4880 [00:15<19:21, 4.15it/s]
57
  1%| | 57/4880 [00:15<18:40, 4.30it/s]
58
  1%| | 58/4880 [00:15<18:21, 4.38it/s]
59
  1%| | 59/4880 [00:15<21:15, 3.78it/s]
60
  1%| | 60/4880 [00:16<19:39, 4.09it/s]
61
  1%|▏ | 61/4880 [00:16<18:42, 4.29it/s]
62
  1%|▏ | 62/4880 [00:16<21:29, 3.74it/s]
63
  1%|▏ | 63/4880 [00:16<19:12, 4.18it/s]
64
  1%|▏ | 64/4880 [00:17<20:40, 3.88it/s]
65
  1%|▏ | 65/4880 [00:17<21:24, 3.75it/s]
66
  1%|▏ | 66/4880 [00:17<20:20, 3.94it/s]
67
  1%|▏ | 67/4880 [00:18<21:13, 3.78it/s]
68
  1%|▏ | 68/4880 [00:18<22:13, 3.61it/s]
69
  1%|▏ | 69/4880 [00:18<27:02, 2.97it/s]
70
  1%|▏ | 70/4880 [00:19<24:24, 3.28it/s]
71
  1%|▏ | 71/4880 [00:19<23:54, 3.35it/s]
72
  1%|▏ | 72/4880 [00:19<22:06, 3.62it/s]
73
  1%|▏ | 73/4880 [00:19<20:21, 3.93it/s]
74
  2%|▏ | 74/4880 [00:19<20:15, 3.95it/s]
75
  2%|▏ | 75/4880 [00:20<18:29, 4.33it/s]
76
  2%|▏ | 76/4880 [00:20<19:05, 4.19it/s]
77
  2%|▏ | 77/4880 [00:20<18:28, 4.33it/s]
78
  2%|▏ | 78/4880 [00:21<22:00, 3.64it/s]
79
  2%|▏ | 79/4880 [00:21<20:54, 3.83it/s]
80
  2%|▏ | 80/4880 [00:21<21:07, 3.79it/s]
81
  2%|▏ | 81/4880 [00:21<19:31, 4.10it/s]
82
  2%|▏ | 82/4880 [00:21<18:51, 4.24it/s]
83
  2%|▏ | 83/4880 [00:22<17:55, 4.46it/s]
84
  2%|▏ | 84/4880 [00:22<18:01, 4.44it/s]
85
  2%|▏ | 85/4880 [00:22<16:52, 4.74it/s]
86
  2%|▏ | 86/4880 [00:22<20:18, 3.94it/s]
87
  2%|▏ | 87/4880 [00:23<18:12, 4.39it/s]
88
  2%|▏ | 88/4880 [00:23<18:41, 4.27it/s]
89
  2%|▏ | 89/4880 [00:23<20:06, 3.97it/s]
90
  2%|▏ | 90/4880 [00:23<18:53, 4.23it/s]
91
  2%|▏ | 91/4880 [00:24<20:59, 3.80it/s]
92
  2%|▏ | 92/4880 [00:24<21:49, 3.66it/s]
93
  2%|▏ | 93/4880 [00:24<20:38, 3.86it/s]
94
  2%|▏ | 94/4880 [00:24<20:24, 3.91it/s]
95
  2%|▏ | 95/4880 [00:25<19:17, 4.13it/s]
96
  2%|▏ | 96/4880 [00:25<18:43, 4.26it/s]
97
  2%|▏ | 97/4880 [00:25<17:33, 4.54it/s]
98
  2%|▏ | 98/4880 [00:26<26:49, 2.97it/s]
99
  2%|▏ | 99/4880 [00:26<24:45, 3.22it/s]
100
  2%|▏ | 100/4880 [00:26<23:12, 3.43it/s]
101
  2%|▏ | 101/4880 [00:26<21:27, 3.71it/s]
102
  2%|▏ | 102/4880 [00:27<19:15, 4.14it/s]
103
  2%|▏ | 103/4880 [00:27<20:09, 3.95it/s]
104
  2%|▏ | 104/4880 [00:27<18:53, 4.21it/s]
105
  2%|▏ | 105/4880 [00:27<18:41, 4.26it/s]
106
  2%|▏ | 106/4880 [00:28<22:02, 3.61it/s]
107
  2%|▏ | 107/4880 [00:28<21:52, 3.64it/s]
108
  2%|▏ | 108/4880 [00:28<20:29, 3.88it/s]
109
  2%|▏ | 109/4880 [00:28<22:58, 3.46it/s]
110
  2%|▏ | 110/4880 [00:29<20:57, 3.79it/s]
111
  2%|▏ | 111/4880 [00:29<20:23, 3.90it/s]
112
  2%|▏ | 112/4880 [00:29<19:20, 4.11it/s]
113
  2%|▏ | 113/4880 [00:29<18:24, 4.32it/s]
114
  2%|▏ | 114/4880 [00:30<20:43, 3.83it/s]
115
  2%|▏ | 115/4880 [00:30<19:47, 4.01it/s]
116
  2%|▏ | 116/4880 [00:30<19:29, 4.07it/s]
117
  2%|▏ | 117/4880 [00:31<23:37, 3.36it/s]
118
  2%|▏ | 118/4880 [00:31<21:15, 3.73it/s]
119
  2%|▏ | 119/4880 [00:31<19:30, 4.07it/s]
120
  2%|▏ | 120/4880 [00:31<17:52, 4.44it/s]
121
  2%|▏ | 121/4880 [00:31<18:00, 4.40it/s]
122
  2%|▎ | 122/4880 [00:32<19:07, 4.15it/s]
123
  3%|▎ | 123/4880 [00:32<20:05, 3.95it/s]
124
  3%|▎ | 124/4880 [00:32<20:37, 3.84it/s]
125
  3%|▎ | 125/4880 [00:32<21:36, 3.67it/s]
126
  3%|▎ | 126/4880 [00:33<20:03, 3.95it/s]
127
  3%|▎ | 127/4880 [00:33<19:36, 4.04it/s]
128
  3%|▎ | 128/4880 [00:33<18:48, 4.21it/s]
129
  3%|▎ | 129/4880 [00:33<18:09, 4.36it/s]
130
  3%|▎ | 130/4880 [00:34<18:15, 4.34it/s]
131
  3%|▎ | 131/4880 [00:34<18:29, 4.28it/s]
132
  3%|▎ | 132/4880 [00:34<17:20, 4.56it/s]
133
  3%|▎ | 133/4880 [00:34<15:50, 4.99it/s]
134
  3%|▎ | 134/4880 [00:34<15:53, 4.98it/s]
135
  3%|▎ | 135/4880 [00:35<18:29, 4.28it/s]
136
  3%|▎ | 136/4880 [00:35<20:17, 3.90it/s]
137
  3%|▎ | 137/4880 [00:35<18:54, 4.18it/s]
138
  3%|▎ | 138/4880 [00:35<19:28, 4.06it/s]
139
  3%|▎ | 139/4880 [00:36<18:04, 4.37it/s]
140
  3%|▎ | 140/4880 [00:36<17:41, 4.46it/s]
141
  3%|▎ | 141/4880 [00:36<20:00, 3.95it/s]
142
  3%|▎ | 142/4880 [00:36<18:07, 4.36it/s]
143
  3%|▎ | 143/4880 [00:37<17:16, 4.57it/s]
144
  3%|▎ | 144/4880 [00:37<17:35, 4.49it/s]
145
  3%|▎ | 145/4880 [00:37<17:54, 4.41it/s]
146
  3%|▎ | 146/4880 [00:37<21:07, 3.74it/s]
147
  3%|▎ | 147/4880 [00:38<19:57, 3.95it/s]
148
  3%|▎ | 148/4880 [00:38<23:03, 3.42it/s]
149
  3%|▎ | 149/4880 [00:38<22:06, 3.57it/s]
150
  3%|▎ | 150/4880 [00:38<21:17, 3.70it/s]
151
  3%|▎ | 151/4880 [00:39<23:05, 3.41it/s]
152
  3%|▎ | 152/4880 [00:39<20:47, 3.79it/s]
153
  3%|▎ | 153/4880 [00:39<19:52, 3.97it/s]
154
  3%|▎ | 154/4880 [00:39<19:24, 4.06it/s]
155
  3%|▎ | 155/4880 [00:40<23:42, 3.32it/s]
156
  3%|▎ | 156/4880 [00:40<21:24, 3.68it/s]
157
  3%|▎ | 157/4880 [00:40<22:00, 3.58it/s]
158
  3%|▎ | 158/4880 [00:41<23:59, 3.28it/s]
159
  3%|▎ | 159/4880 [00:41<23:10, 3.39it/s]
160
  3%|▎ | 160/4880 [00:41<20:35, 3.82it/s]
161
  3%|▎ | 161/4880 [00:41<19:23, 4.05it/s]
162
  3%|▎ | 162/4880 [00:42<21:14, 3.70it/s]
163
  3%|▎ | 163/4880 [00:42<21:41, 3.63it/s]
164
  3%|▎ | 164/4880 [00:42<20:54, 3.76it/s]
165
  3%|▎ | 165/4880 [00:43<26:29, 2.97it/s]
166
  3%|▎ | 166/4880 [00:43<23:33, 3.34it/s]
167
  3%|▎ | 167/4880 [00:43<23:51, 3.29it/s]
168
  3%|▎ | 168/4880 [00:44<22:20, 3.51it/s]
169
  3%|▎ | 169/4880 [00:44<22:18, 3.52it/s]
170
  3%|▎ | 170/4880 [00:44<21:28, 3.65it/s]
171
  4%|▎ | 171/4880 [00:44<20:39, 3.80it/s]
172
  4%|▎ | 172/4880 [00:45<19:56, 3.93it/s]
173
  4%|▎ | 173/4880 [00:45<18:21, 4.27it/s]
174
  4%|▎ | 174/4880 [00:45<18:18, 4.28it/s]
175
  4%|▎ | 175/4880 [00:45<17:23, 4.51it/s]
176
  4%|▎ | 176/4880 [00:45<16:41, 4.70it/s]
177
  4%|▎ | 177/4880 [00:46<16:14, 4.82it/s]
178
  4%|▎ | 178/4880 [00:46<16:21, 4.79it/s]
179
  4%|▎ | 179/4880 [00:46<17:10, 4.56it/s]
180
  4%|▎ | 180/4880 [00:46<17:32, 4.47it/s]
181
  4%|▎ | 181/4880 [00:46<18:11, 4.30it/s]
182
  4%|▎ | 182/4880 [00:47<21:09, 3.70it/s]
183
  4%|▍ | 183/4880 [00:47<20:04, 3.90it/s]
184
  4%|▍ | 184/4880 [00:47<20:54, 3.74it/s]
185
  4%|▍ | 185/4880 [00:48<20:14, 3.87it/s]
186
  4%|▍ | 186/4880 [00:48<19:08, 4.09it/s]
187
  4%|▍ | 187/4880 [00:48<17:28, 4.48it/s]
188
  4%|▍ | 188/4880 [00:48<19:06, 4.09it/s]
189
  4%|▍ | 189/4880 [00:49<18:58, 4.12it/s]
190
  4%|▍ | 190/4880 [00:49<18:33, 4.21it/s]
191
  4%|▍ | 191/4880 [00:49<19:33, 4.00it/s]
192
  4%|▍ | 192/4880 [00:49<18:21, 4.25it/s]
193
  4%|▍ | 193/4880 [00:50<21:23, 3.65it/s]
194
  4%|▍ | 194/4880 [00:50<20:18, 3.85it/s]
195
  4%|▍ | 195/4880 [00:50<18:47, 4.15it/s]
196
  4%|▍ | 196/4880 [00:50<18:15, 4.28it/s]
197
  4%|▍ | 197/4880 [00:51<29:10, 2.68it/s]
198
  4%|▍ | 198/4880 [00:51<25:33, 3.05it/s]
199
  4%|▍ | 199/4880 [00:51<23:17, 3.35it/s]
200
  4%|▍ | 200/4880 [00:52<21:36, 3.61it/s]
201
  4%|▍ | 201/4880 [00:52<19:17, 4.04it/s]
202
  4%|▍ | 202/4880 [00:52<22:08, 3.52it/s]
203
  4%|▍ | 203/4880 [00:52<20:03, 3.89it/s]
204
  4%|▍ | 204/4880 [00:53<17:55, 4.35it/s]
205
  4%|▍ | 205/4880 [00:53<17:16, 4.51it/s]
206
  4%|▍ | 206/4880 [00:53<17:24, 4.47it/s]
207
  4%|▍ | 207/4880 [00:53<18:48, 4.14it/s]
208
  4%|▍ | 208/4880 [00:53<18:10, 4.28it/s]
209
  4%|▍ | 209/4880 [00:54<19:10, 4.06it/s]
210
  4%|▍ | 210/4880 [00:54<17:59, 4.32it/s]
211
  4%|▍ | 211/4880 [00:54<17:59, 4.32it/s]
212
  4%|▍ | 212/4880 [00:54<17:19, 4.49it/s]
213
  4%|▍ | 213/4880 [00:55<16:57, 4.59it/s]
214
  4%|▍ | 214/4880 [00:55<19:35, 3.97it/s]
215
  4%|▍ | 215/4880 [00:55<18:48, 4.13it/s]
216
  4%|▍ | 216/4880 [00:55<18:20, 4.24it/s]
217
  4%|▍ | 217/4880 [00:56<17:47, 4.37it/s]
218
  4%|▍ | 218/4880 [00:56<19:04, 4.07it/s]
219
  4%|▍ | 219/4880 [00:56<18:38, 4.17it/s]
220
  5%|▍ | 220/4880 [00:56<19:40, 3.95it/s]
221
  5%|▍ | 221/4880 [00:57<20:54, 3.71it/s]
222
  5%|▍ | 222/4880 [00:57<19:41, 3.94it/s]
223
  5%|▍ | 223/4880 [00:57<21:12, 3.66it/s]
224
  5%|▍ | 224/4880 [00:57<20:18, 3.82it/s]
225
  5%|▍ | 225/4880 [00:58<20:56, 3.70it/s]
226
  5%|▍ | 226/4880 [00:58<18:45, 4.14it/s]
227
  5%|▍ | 227/4880 [00:58<18:32, 4.18it/s]
228
  5%|▍ | 228/4880 [00:58<20:35, 3.76it/s]
229
  5%|▍ | 229/4880 [00:59<29:58, 2.59it/s]
230
  5%|▍ | 230/4880 [00:59<27:43, 2.80it/s]
231
  5%|▍ | 231/4880 [01:00<24:54, 3.11it/s]
232
  5%|▍ | 232/4880 [01:00<25:56, 2.99it/s]
233
  5%|▍ | 233/4880 [01:00<26:18, 2.94it/s]
234
  5%|▍ | 234/4880 [01:01<25:14, 3.07it/s]
235
  5%|▍ | 235/4880 [01:01<22:07, 3.50it/s]
236
  5%|▍ | 236/4880 [01:01<20:46, 3.72it/s]
237
  5%|▍ | 237/4880 [01:01<19:57, 3.88it/s]
238
  5%|▍ | 238/4880 [01:01<18:35, 4.16it/s]
239
  5%|▍ | 239/4880 [01:02<20:47, 3.72it/s]
240
  5%|▍ | 240/4880 [01:02<20:05, 3.85it/s]
241
  5%|▍ | 241/4880 [01:03<30:01, 2.57it/s]
242
  5%|▍ | 242/4880 [01:03<28:00, 2.76it/s]
243
  5%|▍ | 243/4880 [01:04<36:16, 2.13it/s]
244
  5%|▌ | 244/4880 [01:04<32:19, 2.39it/s]
245
  5%|▌ | 245/4880 [01:04<27:58, 2.76it/s]
246
  5%|▌ | 246/4880 [01:05<25:08, 3.07it/s]
247
  5%|▌ | 247/4880 [01:05<22:57, 3.36it/s]
248
  5%|▌ | 248/4880 [01:05<20:15, 3.81it/s]
249
  5%|▌ | 249/4880 [01:05<19:44, 3.91it/s]
250
  5%|▌ | 250/4880 [01:06<21:45, 3.55it/s]
251
  5%|▌ | 251/4880 [01:06<21:55, 3.52it/s]
252
  5%|▌ | 252/4880 [01:06<22:48, 3.38it/s]
253
  5%|▌ | 253/4880 [01:06<21:55, 3.52it/s]
254
  5%|▌ | 254/4880 [01:07<20:59, 3.67it/s]
255
  5%|▌ | 255/4880 [01:07<19:14, 4.01it/s]
256
  5%|▌ | 256/4880 [01:07<19:15, 4.00it/s]
257
  5%|▌ | 257/4880 [01:07<18:57, 4.07it/s]
258
  5%|▌ | 258/4880 [01:08<20:10, 3.82it/s]
259
  5%|▌ | 259/4880 [01:08<22:10, 3.47it/s]
260
  5%|▌ | 260/4880 [01:08<20:45, 3.71it/s]
261
  5%|▌ | 261/4880 [01:09<22:42, 3.39it/s]
262
  5%|▌ | 262/4880 [01:09<22:25, 3.43it/s]
263
  5%|▌ | 263/4880 [01:09<22:13, 3.46it/s]
264
  5%|▌ | 264/4880 [01:09<20:42, 3.72it/s]
265
  5%|▌ | 265/4880 [01:10<19:39, 3.91it/s]
266
  5%|▌ | 266/4880 [01:10<18:21, 4.19it/s]
267
  5%|▌ | 267/4880 [01:10<29:19, 2.62it/s]
268
  5%|▌ | 268/4880 [01:11<25:09, 3.06it/s]
269
  6%|▌ | 269/4880 [01:11<21:44, 3.53it/s]
270
  6%|▌ | 270/4880 [01:11<20:29, 3.75it/s]
271
  6%|▌ | 271/4880 [01:11<19:14, 3.99it/s]
272
  6%|▌ | 272/4880 [01:11<17:20, 4.43it/s]
273
  6%|▌ | 273/4880 [01:12<17:19, 4.43it/s]
274
  6%|▌ | 274/4880 [01:12<18:06, 4.24it/s]
275
  6%|▌ | 275/4880 [01:12<18:07, 4.24it/s]
276
  6%|▌ | 276/4880 [01:12<17:05, 4.49it/s]
277
  6%|▌ | 277/4880 [01:13<17:08, 4.48it/s]
278
  6%|▌ | 278/4880 [01:13<18:37, 4.12it/s]
279
  6%|▌ | 279/4880 [01:13<17:25, 4.40it/s]
280
  6%|▌ | 280/4880 [01:13<16:56, 4.52it/s]
281
  6%|▌ | 281/4880 [01:14<18:06, 4.23it/s]
282
  6%|▌ | 282/4880 [01:14<19:03, 4.02it/s]
283
  6%|▌ | 283/4880 [01:14<18:20, 4.18it/s]
284
  6%|▌ | 284/4880 [01:14<20:47, 3.69it/s]
285
  6%|▌ | 285/4880 [01:15<27:14, 2.81it/s]
286
  6%|▌ | 286/4880 [01:15<24:54, 3.07it/s]
287
  6%|▌ | 287/4880 [01:15<21:53, 3.50it/s]
288
  6%|▌ | 288/4880 [01:16<21:35, 3.54it/s]
289
  6%|▌ | 289/4880 [01:16<20:00, 3.82it/s]
290
  6%|▌ | 290/4880 [01:16<18:43, 4.09it/s]
291
  6%|▌ | 291/4880 [01:16<18:31, 4.13it/s]
292
  6%|▌ | 292/4880 [01:17<19:01, 4.02it/s]
293
  6%|▌ | 293/4880 [01:17<19:44, 3.87it/s]
294
  6%|▌ | 294/4880 [01:17<18:35, 4.11it/s]
295
  6%|▌ | 295/4880 [01:18<22:10, 3.45it/s]
296
  6%|▌ | 296/4880 [01:18<22:03, 3.46it/s]
297
  6%|▌ | 297/4880 [01:18<21:03, 3.63it/s]
298
  6%|▌ | 298/4880 [01:18<20:06, 3.80it/s]
299
  6%|▌ | 299/4880 [01:18<18:38, 4.09it/s]
300
  6%|▌ | 300/4880 [01:19<20:05, 3.80it/s]
301
  6%|▌ | 301/4880 [01:19<19:06, 3.99it/s]
302
  6%|▌ | 302/4880 [01:19<18:59, 4.02it/s]
303
  6%|▌ | 303/4880 [01:20<19:47, 3.85it/s]
304
  6%|▌ | 304/4880 [01:20<18:31, 4.12it/s]
305
  6%|▋ | 305/4880 [01:20<19:39, 3.88it/s]
306
  6%|▋ | 306/4880 [01:20<19:49, 3.85it/s]
307
  6%|▋ | 307/4880 [01:21<21:08, 3.61it/s]
308
  6%|▋ | 308/4880 [01:21<24:27, 3.12it/s]
309
  6%|▋ | 309/4880 [01:21<23:29, 3.24it/s]
310
  6%|▋ | 310/4880 [01:22<21:31, 3.54it/s]
311
  6%|▋ | 311/4880 [01:22<22:59, 3.31it/s]
312
  6%|▋ | 312/4880 [01:22<21:31, 3.54it/s]
313
  6%|▋ | 313/4880 [01:22<19:46, 3.85it/s]
314
  6%|▋ | 314/4880 [01:23<20:07, 3.78it/s]
315
  6%|▋ | 315/4880 [01:23<18:53, 4.03it/s]
316
  6%|▋ | 316/4880 [01:23<17:05, 4.45it/s]
317
  6%|▋ | 317/4880 [01:23<17:06, 4.45it/s]
318
  7%|▋ | 318/4880 [01:23<17:40, 4.30it/s]
319
  7%|▋ | 319/4880 [01:24<17:50, 4.26it/s]
320
  7%|▋ | 320/4880 [01:24<17:07, 4.44it/s]
321
  7%|▋ | 321/4880 [01:24<16:20, 4.65it/s]
322
  7%|▋ | 322/4880 [01:24<15:45, 4.82it/s]
323
  7%|▋ | 323/4880 [01:25<18:53, 4.02it/s]
324
  7%|▋ | 324/4880 [01:25<20:46, 3.66it/s]
325
  7%|▋ | 325/4880 [01:25<19:36, 3.87it/s]
326
  7%|▋ | 326/4880 [01:25<17:54, 4.24it/s]
327
  7%|▋ | 327/4880 [01:26<17:58, 4.22it/s]
328
  7%|▋ | 328/4880 [01:26<20:19, 3.73it/s]
329
  7%|▋ | 329/4880 [01:26<19:48, 3.83it/s]
330
  7%|▋ | 330/4880 [01:26<19:04, 3.98it/s]
331
  7%|▋ | 331/4880 [01:27<17:18, 4.38it/s]
332
  7%|▋ | 332/4880 [01:27<16:50, 4.50it/s]
333
  7%|▋ | 333/4880 [01:27<17:46, 4.26it/s]
334
  7%|▋ | 334/4880 [01:27<20:28, 3.70it/s]
335
  7%|▋ | 335/4880 [01:28<21:43, 3.49it/s]
336
  7%|▋ | 336/4880 [01:28<20:54, 3.62it/s]
337
  7%|▋ | 337/4880 [01:28<20:25, 3.71it/s]
338
  7%|▋ | 338/4880 [01:29<20:40, 3.66it/s]
339
  7%|▋ | 339/4880 [01:29<20:11, 3.75it/s]
340
  7%|▋ | 340/4880 [01:29<20:01, 3.78it/s]
341
  7%|▋ | 341/4880 [01:29<19:43, 3.83it/s]
342
  7%|▋ | 342/4880 [01:30<19:45, 3.83it/s]
343
  7%|▋ | 343/4880 [01:30<18:33, 4.08it/s]
344
  7%|▋ | 344/4880 [01:30<17:39, 4.28it/s]
345
  7%|▋ | 345/4880 [01:30<17:27, 4.33it/s]
346
  7%|▋ | 346/4880 [01:30<18:11, 4.15it/s]
347
  7%|▋ | 347/4880 [01:31<17:37, 4.29it/s]
348
  7%|▋ | 348/4880 [01:31<16:00, 4.72it/s]
349
  7%|▋ | 349/4880 [01:31<16:36, 4.55it/s]
350
  7%|▋ | 350/4880 [01:31<17:36, 4.29it/s]
351
  7%|▋ | 351/4880 [01:32<17:30, 4.31it/s]
352
  7%|▋ | 352/4880 [01:32<17:19, 4.35it/s]
353
  7%|▋ | 353/4880 [01:32<18:27, 4.09it/s]
354
  7%|▋ | 354/4880 [01:32<18:16, 4.13it/s]
355
  7%|▋ | 355/4880 [01:33<19:37, 3.84it/s]
356
  7%|▋ | 356/4880 [01:33<18:40, 4.04it/s]
357
  7%|▋ | 357/4880 [01:33<17:29, 4.31it/s]
358
  7%|▋ | 358/4880 [01:33<16:25, 4.59it/s]
359
  7%|▋ | 359/4880 [01:33<17:48, 4.23it/s]
360
  7%|▋ | 360/4880 [01:34<20:25, 3.69it/s]
361
  7%|▋ | 361/4880 [01:34<19:07, 3.94it/s]
362
  7%|▋ | 362/4880 [01:34<18:07, 4.15it/s]
363
  7%|▋ | 363/4880 [01:35<18:28, 4.08it/s]
364
  7%|▋ | 364/4880 [01:35<17:45, 4.24it/s]
365
  7%|▋ | 365/4880 [01:35<17:06, 4.40it/s]
366
  8%|▊ | 366/4880 [01:35<17:25, 4.32it/s]
367
  8%|▊ | 367/4880 [01:35<16:40, 4.51it/s]
368
  8%|▊ | 368/4880 [01:36<17:05, 4.40it/s]
369
  8%|▊ | 369/4880 [01:36<18:25, 4.08it/s]
370
  8%|▊ | 370/4880 [01:36<17:22, 4.33it/s]
371
  8%|▊ | 371/4880 [01:36<16:00, 4.69it/s]
372
  8%|▊ | 372/4880 [01:37<17:24, 4.32it/s]
373
  8%|▊ | 373/4880 [01:37<17:22, 4.32it/s]
374
  8%|▊ | 374/4880 [01:37<17:59, 4.17it/s]
375
  8%|▊ | 375/4880 [01:37<18:57, 3.96it/s]
376
  8%|▊ | 376/4880 [01:37<17:13, 4.36it/s]
377
  8%|▊ | 377/4880 [01:38<18:29, 4.06it/s]
378
  8%|▊ | 378/4880 [01:38<20:46, 3.61it/s]
379
  8%|▊ | 379/4880 [01:38<19:21, 3.88it/s]
380
  8%|▊ | 380/4880 [01:39<18:44, 4.00it/s]
381
  8%|▊ | 381/4880 [01:39<19:06, 3.93it/s]
382
  8%|▊ | 382/4880 [01:39<17:53, 4.19it/s]
383
  8%|▊ | 383/4880 [01:39<17:10, 4.36it/s]
384
  8%|▊ | 384/4880 [01:40<18:17, 4.10it/s]
385
  8%|▊ | 385/4880 [01:40<17:22, 4.31it/s]
386
  8%|▊ | 386/4880 [01:40<17:48, 4.21it/s]
387
  8%|▊ | 387/4880 [01:40<18:39, 4.01it/s]
388
  8%|▊ | 388/4880 [01:40<17:23, 4.31it/s]
389
  8%|▊ | 389/4880 [01:41<17:41, 4.23it/s]
390
  8%|▊ | 390/4880 [01:41<16:44, 4.47it/s]
391
  8%|▊ | 391/4880 [01:41<15:36, 4.79it/s]
392
  8%|▊ | 392/4880 [01:41<15:45, 4.75it/s]
393
  8%|▊ | 393/4880 [01:42<16:28, 4.54it/s]
394
  8%|▊ | 394/4880 [01:42<15:57, 4.69it/s]
395
  8%|▊ | 395/4880 [01:42<15:47, 4.73it/s]
396
  8%|▊ | 396/4880 [01:42<14:58, 4.99it/s]
397
  8%|▊ | 397/4880 [01:42<14:27, 5.17it/s]
398
  8%|▊ | 398/4880 [01:43<15:28, 4.83it/s]
399
  8%|▊ | 399/4880 [01:43<17:24, 4.29it/s]
400
  8%|▊ | 400/4880 [01:43<19:01, 3.92it/s]
401
  8%|▊ | 401/4880 [01:43<19:28, 3.83it/s]
402
  8%|▊ | 402/4880 [01:44<18:12, 4.10it/s]
403
  8%|▊ | 403/4880 [01:44<18:03, 4.13it/s]
404
  8%|▊ | 404/4880 [01:44<20:43, 3.60it/s]
405
  8%|▊ | 405/4880 [01:44<20:33, 3.63it/s]
406
  8%|▊ | 406/4880 [01:45<20:00, 3.73it/s]
407
  8%|▊ | 407/4880 [01:45<18:32, 4.02it/s]
408
  8%|▊ | 408/4880 [01:45<17:42, 4.21it/s]
409
  8%|▊ | 409/4880 [01:45<17:36, 4.23it/s]
410
  8%|▊ | 410/4880 [01:46<17:49, 4.18it/s]
411
  8%|▊ | 411/4880 [01:46<23:07, 3.22it/s]
412
  8%|▊ | 412/4880 [01:46<20:55, 3.56it/s]
413
  8%|▊ | 413/4880 [01:46<19:01, 3.91it/s]
414
  8%|▊ | 414/4880 [01:47<19:54, 3.74it/s]
415
  9%|▊ | 415/4880 [01:47<19:32, 3.81it/s]
416
  9%|▊ | 416/4880 [01:47<18:28, 4.03it/s]
417
  9%|▊ | 417/4880 [01:47<17:32, 4.24it/s]
418
  9%|▊ | 418/4880 [01:48<18:10, 4.09it/s]
419
  9%|▊ | 419/4880 [01:48<17:53, 4.15it/s]
420
  9%|▊ | 420/4880 [01:48<16:12, 4.59it/s]
421
  9%|▊ | 421/4880 [01:48<15:53, 4.68it/s]
422
  9%|▊ | 422/4880 [01:49<18:30, 4.02it/s]
423
  9%|▊ | 423/4880 [01:49<18:39, 3.98it/s]
424
  9%|▊ | 424/4880 [01:49<19:06, 3.89it/s]
425
  9%|▊ | 425/4880 [01:49<17:52, 4.15it/s]
426
  9%|▊ | 426/4880 [01:50<19:16, 3.85it/s]
427
  9%|▉ | 427/4880 [01:50<18:09, 4.09it/s]
428
  9%|▉ | 428/4880 [01:50<17:46, 4.18it/s]
429
  9%|▉ | 429/4880 [01:51<20:36, 3.60it/s]
430
  9%|▉ | 430/4880 [01:51<19:26, 3.81it/s]
431
  9%|▉ | 431/4880 [01:51<19:11, 3.86it/s]
432
  9%|▉ | 432/4880 [01:51<18:48, 3.94it/s]
433
  9%|▉ | 433/4880 [01:51<18:50, 3.93it/s]
434
  9%|▉ | 434/4880 [01:52<19:43, 3.76it/s]
435
  9%|▉ | 435/4880 [01:52<17:27, 4.24it/s]
436
  9%|▉ | 436/4880 [01:52<16:47, 4.41it/s]
437
  9%|▉ | 437/4880 [01:52<16:02, 4.62it/s]
438
  9%|▉ | 438/4880 [01:53<16:47, 4.41it/s]
439
  9%|▉ | 439/4880 [01:53<18:35, 3.98it/s]
440
  9%|▉ | 440/4880 [01:53<17:37, 4.20it/s]
441
  9%|▉ | 441/4880 [01:53<18:43, 3.95it/s]
442
  9%|▉ | 442/4880 [01:54<18:25, 4.01it/s]
443
  9%|▉ | 443/4880 [01:54<17:47, 4.16it/s]
444
  9%|▉ | 444/4880 [01:54<18:59, 3.89it/s]
445
  9%|▉ | 445/4880 [01:54<17:10, 4.30it/s]
446
  9%|▉ | 446/4880 [01:55<16:48, 4.40it/s]
447
  9%|▉ | 447/4880 [01:55<15:28, 4.77it/s]
448
  9%|▉ | 448/4880 [01:55<15:04, 4.90it/s]
449
  9%|▉ | 449/4880 [01:55<15:11, 4.86it/s]
450
  9%|▉ | 450/4880 [01:55<14:54, 4.95it/s]
451
  9%|▉ | 451/4880 [01:56<15:07, 4.88it/s]
452
  9%|▉ | 452/4880 [01:56<15:59, 4.61it/s]
453
  9%|▉ | 453/4880 [01:56<17:40, 4.17it/s]
454
  9%|▉ | 454/4880 [01:56<16:52, 4.37it/s]
455
  9%|▉ | 455/4880 [01:57<17:33, 4.20it/s]
456
  9%|▉ | 456/4880 [01:57<17:25, 4.23it/s]
457
  9%|▉ | 457/4880 [01:57<16:26, 4.48it/s]
458
  9%|▉ | 458/4880 [01:57<15:19, 4.81it/s]
459
  9%|▉ | 459/4880 [01:57<14:45, 4.99it/s]
460
  9%|▉ | 460/4880 [01:58<15:33, 4.73it/s]
461
  9%|▉ | 461/4880 [01:58<16:51, 4.37it/s]
462
  9%|▉ | 462/4880 [01:58<16:24, 4.49it/s]
463
  9%|▉ | 463/4880 [01:58<16:46, 4.39it/s]
464
  10%|▉ | 464/4880 [01:58<17:21, 4.24it/s]
465
  10%|▉ | 465/4880 [01:59<21:30, 3.42it/s]
466
  10%|▉ | 466/4880 [01:59<22:22, 3.29it/s]
467
  10%|▉ | 467/4880 [02:00<21:53, 3.36it/s]
468
  10%|▉ | 468/4880 [02:00<24:02, 3.06it/s]
469
  10%|▉ | 469/4880 [02:00<24:19, 3.02it/s]
470
  10%|▉ | 470/4880 [02:01<22:17, 3.30it/s]
471
  10%|▉ | 471/4880 [02:01<21:14, 3.46it/s]
472
  10%|▉ | 472/4880 [02:01<19:40, 3.73it/s]
473
  10%|▉ | 473/4880 [02:01<18:23, 3.99it/s]
474
  10%|▉ | 474/4880 [02:01<16:40, 4.40it/s]
475
  10%|▉ | 475/4880 [02:02<15:14, 4.82it/s]
476
  10%|▉ | 476/4880 [02:02<15:35, 4.71it/s]
477
  10%|▉ | 477/4880 [02:02<19:30, 3.76it/s]
478
  10%|▉ | 478/4880 [02:02<18:43, 3.92it/s]
479
  10%|▉ | 479/4880 [02:03<19:32, 3.76it/s]
480
  10%|▉ | 480/4880 [02:03<18:19, 4.00it/s]
481
  10%|▉ | 481/4880 [02:03<16:35, 4.42it/s]
482
  10%|▉ | 482/4880 [02:03<16:39, 4.40it/s]
483
  10%|▉ | 483/4880 [02:04<18:17, 4.00it/s]
484
  10%|▉ | 484/4880 [02:04<17:41, 4.14it/s]
485
  10%|▉ | 485/4880 [02:04<19:41, 3.72it/s]
486
  10%|▉ | 486/4880 [02:04<17:24, 4.21it/s]
487
  10%|▉ | 487/4880 [02:05<17:49, 4.11it/s]
488
  10%|█ | 488/4880 [02:05<17:13, 4.25it/s][INFO|trainer.py:811] 2024-09-09 20:34:17,645 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, tokens, id. If ner_tags, tokens, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
 
 
 
 
 
 
489
  0%| | 0/852 [00:00<?, ?it/s]
 
490
  1%| | 10/852 [00:00<00:08, 95.08it/s]
 
491
  2%|▏ | 20/852 [00:00<00:09, 84.15it/s]
 
492
  3%|▎ | 29/852 [00:00<00:09, 82.37it/s]
 
493
  4%|▍ | 38/852 [00:00<00:09, 81.48it/s]
 
494
  6%|▌ | 47/852 [00:00<00:09, 81.77it/s]
 
495
  7%|▋ | 56/852 [00:00<00:09, 82.90it/s]
 
496
  8%|▊ | 65/852 [00:00<00:09, 81.44it/s]
 
497
  9%|▊ | 74/852 [00:00<00:09, 78.40it/s]
 
498
  10%|▉ | 82/852 [00:01<00:09, 77.16it/s]
 
499
  11%|█ | 91/852 [00:01<00:09, 78.96it/s]
 
500
  12%|█▏ | 100/852 [00:01<00:09, 79.19it/s]
 
501
  13%|█▎ | 109/852 [00:01<00:09, 79.85it/s]
 
502
  14%|█▍ | 118/852 [00:01<00:09, 81.27it/s]
 
503
  15%|█▍ | 127/852 [00:01<00:09, 78.40it/s]
 
504
  16%|█▌ | 136/852 [00:01<00:08, 79.81it/s]
 
505
  17%|█▋ | 145/852 [00:01<00:08, 79.57it/s]
 
506
  18%|█▊ | 154/852 [00:01<00:08, 79.99it/s]
 
507
  19%|█▉ | 163/852 [00:02<00:08, 81.18it/s]
 
508
  20%|██ | 172/852 [00:02<00:08, 82.07it/s]
 
509
  21%|██ | 181/852 [00:02<00:08, 81.93it/s]
 
510
  22%|██▏ | 190/852 [00:02<00:07, 82.93it/s]
 
511
  23%|██▎ | 199/852 [00:02<00:07, 82.66it/s]
 
512
  24%|██▍ | 208/852 [00:02<00:07, 81.16it/s]
 
513
  25%|██▌ | 217/852 [00:02<00:07, 81.34it/s]
 
514
  27%|██▋ | 226/852 [00:02<00:07, 81.72it/s]
 
515
  28%|██▊ | 235/852 [00:02<00:07, 80.54it/s]
 
516
  29%|██▊ | 244/852 [00:03<00:07, 77.84it/s]
 
517
  30%|██▉ | 253/852 [00:03<00:07, 80.37it/s]
 
518
  31%|███ | 262/852 [00:03<00:07, 82.06it/s]
 
519
  32%|███▏ | 271/852 [00:03<00:07, 81.57it/s]
 
520
  33%|███▎ | 280/852 [00:03<00:06, 83.40it/s]
 
521
  34%|███▍ | 289/852 [00:03<00:06, 82.65it/s]
 
522
  35%|███▍ | 298/852 [00:03<00:06, 83.45it/s]
 
523
  36%|███▌ | 307/852 [00:03<00:06, 84.22it/s]
 
524
  37%|███▋ | 316/852 [00:03<00:06, 82.13it/s]
 
525
  38%|███▊ | 325/852 [00:03<00:06, 82.32it/s]
 
526
  39%|███▉ | 334/852 [00:04<00:06, 82.25it/s]
 
527
  40%|████ | 343/852 [00:04<00:06, 83.35it/s]
 
528
  41%|████▏ | 352/852 [00:04<00:06, 83.19it/s]
 
529
  42%|████▏ | 361/852 [00:04<00:06, 80.97it/s]
 
530
  43%|████▎ | 370/852 [00:04<00:05, 81.66it/s]
 
531
  44%|████▍ | 379/852 [00:04<00:05, 81.74it/s]
 
532
  46%|████▌ | 388/852 [00:04<00:05, 81.25it/s]
 
533
  47%|████▋ | 397/852 [00:04<00:05, 81.47it/s]
 
534
  48%|████▊ | 406/852 [00:05<00:05, 78.66it/s]
 
535
  49%|████▊ | 415/852 [00:05<00:05, 79.89it/s]
 
536
  50%|████▉ | 424/852 [00:05<00:05, 80.80it/s]
 
537
  51%|█████ | 433/852 [00:05<00:05, 80.84it/s]
 
538
  52%|█████▏ | 442/852 [00:05<00:04, 82.40it/s]
 
539
  53%|█████▎ | 451/852 [00:05<00:04, 82.75it/s]
 
540
  54%|█████▍ | 460/852 [00:05<00:04, 82.33it/s]
 
541
  55%|█████▌ | 469/852 [00:05<00:04, 80.45it/s]
 
542
  56%|█████▌ | 478/852 [00:05<00:04, 77.02it/s]
 
543
  57%|█████▋ | 486/852 [00:05<00:04, 77.70it/s]
 
544
  58%|█████▊ | 495/852 [00:06<00:04, 79.98it/s]
 
545
  59%|█████▉ | 504/852 [00:06<00:04, 81.79it/s]
 
546
  60%|██████ | 513/852 [00:06<00:04, 82.10it/s]
 
547
  61%|██████▏ | 522/852 [00:06<00:04, 81.21it/s]
 
548
  62%|██████▏ | 531/852 [00:06<00:03, 81.14it/s]
 
549
  63%|██████▎ | 540/852 [00:06<00:03, 82.49it/s]
 
550
  64%|██████▍ | 549/852 [00:06<00:03, 80.76it/s]
 
551
  65%|██████▌ | 558/852 [00:06<00:03, 81.05it/s]
 
552
  67%|██████▋ | 567/852 [00:06<00:03, 81.88it/s]
 
553
  68%|██████▊ | 576/852 [00:07<00:03, 82.38it/s]
 
554
  69%|██████▊ | 585/852 [00:07<00:03, 80.85it/s]
 
555
  70%|██████▉ | 594/852 [00:07<00:03, 81.90it/s]
 
556
  71%|███████ | 603/852 [00:07<00:03, 81.87it/s]
 
557
  72%|███████▏ | 612/852 [00:07<00:02, 80.25it/s]
 
558
  73%|███████▎ | 621/852 [00:07<00:02, 80.24it/s]
 
559
  74%|███████▍ | 630/852 [00:07<00:02, 78.83it/s]
 
560
  75%|███████▌ | 639/852 [00:07<00:02, 79.78it/s]
 
561
  76%|███████▌ | 647/852 [00:07<00:02, 77.63it/s]
 
562
  77%|███████▋ | 656/852 [00:08<00:02, 79.59it/s]
 
563
  78%|███████▊ | 665/852 [00:08<00:02, 80.43it/s]
 
564
  79%|███████▉ | 674/852 [00:08<00:02, 80.09it/s]
 
565
  80%|████████ | 683/852 [00:08<00:02, 81.05it/s]
 
566
  81%|████████ | 692/852 [00:08<00:01, 82.71it/s]
 
567
  82%|████████▏ | 701/852 [00:08<00:01, 83.34it/s]
 
568
  83%|████████▎ | 710/852 [00:08<00:01, 84.26it/s]
 
569
  84%|████████▍ | 719/852 [00:08<00:01, 83.19it/s]
 
570
  85%|████████▌ | 728/852 [00:08<00:01, 83.95it/s]
 
571
  87%|████████▋ | 737/852 [00:09<00:01, 83.62it/s]
 
572
  88%|████████▊ | 746/852 [00:09<00:01, 84.17it/s]
 
573
  89%|████████▊ | 755/852 [00:09<00:01, 84.42it/s]
 
574
  90%|████████▉ | 764/852 [00:09<00:01, 84.99it/s]
 
575
  91%|█████████ | 773/852 [00:09<00:00, 83.65it/s]
 
576
  92%|█████████▏| 782/852 [00:09<00:00, 81.82it/s]
 
577
  93%|█████████▎| 791/852 [00:09<00:00, 82.51it/s]
 
578
  94%|█████████▍| 800/852 [00:09<00:00, 82.35it/s]
 
579
  95%|█████████▍| 809/852 [00:09<00:00, 83.95it/s]
 
580
  96%|█████████▌| 818/852 [00:10<00:00, 82.34it/s]
 
581
  97%|█████████▋| 827/852 [00:10<00:00, 84.00it/s]
 
582
  98%|█████████▊| 836/852 [00:10<00:00, 84.05it/s]
 
583
  99%|█████████▉| 845/852 [00:10<00:00, 82.65it/s]
584
 
 
585
 
586
  10%|█ | 488/4880 [02:19<17:13, 4.25it/s]
 
 
587
  [INFO|trainer.py:3503] 2024-09-09 20:34:31,586 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-488
 
 
 
 
 
 
 
588
  10%|█ | 489/4880 [02:26<7:47:21, 6.39s/it]
589
  10%|█ | 490/4880 [02:26<5:36:26, 4.60s/it]
590
  10%|█ | 491/4880 [02:26<4:03:41, 3.33s/it]
591
  10%|█ | 492/4880 [02:27<2:55:16, 2.40s/it]
592
  10%|█ | 493/4880 [02:27<2:08:23, 1.76s/it]
593
  10%|█ | 494/4880 [02:27<1:34:36, 1.29s/it]
594
  10%|█ | 495/4880 [02:27<1:10:33, 1.04it/s]
595
  10%|█ | 496/4880 [02:28<1:00:59, 1.20it/s]
596
  10%|█ | 497/4880 [02:28<47:22, 1.54it/s]
597
  10%|█ | 498/4880 [02:28<38:06, 1.92it/s]
598
  10%|█ | 499/4880 [02:28<32:59, 2.21it/s]
599
  10%|█ | 500/4880 [02:29<29:11, 2.50it/s]
600
 
601
  10%|█ | 500/4880 [02:29<29:11, 2.50it/s]
602
  10%|█ | 501/4880 [02:29<28:38, 2.55it/s]
603
  10%|█ | 502/4880 [02:29<24:03, 3.03it/s]
604
  10%|█ | 503/4880 [02:30<22:13, 3.28it/s]
605
  10%|█ | 504/4880 [02:30<21:04, 3.46it/s]
606
  10%|█ | 505/4880 [02:30<19:33, 3.73it/s]
607
  10%|█ | 506/4880 [02:30<19:55, 3.66it/s]
608
  10%|█ | 507/4880 [02:30<17:58, 4.06it/s]
609
  10%|█ | 508/4880 [02:31<17:15, 4.22it/s]
610
  10%|█ | 509/4880 [02:31<16:30, 4.41it/s]
611
  10%|█ | 510/4880 [02:31<16:42, 4.36it/s]
612
  10%|█ | 511/4880 [02:31<17:07, 4.25it/s]
613
  10%|█ | 512/4880 [02:32<16:53, 4.31it/s]
614
  11%|█ | 513/4880 [02:32<17:01, 4.28it/s]
615
  11%|█ | 514/4880 [02:32<16:01, 4.54it/s]
616
  11%|█ | 515/4880 [02:32<17:45, 4.10it/s]
617
  11%|█ | 516/4880 [02:33<17:49, 4.08it/s]
618
  11%|█ | 517/4880 [02:33<17:33, 4.14it/s]
619
  11%|█ | 518/4880 [02:33<16:13, 4.48it/s]
620
  11%|█ | 519/4880 [02:33<16:38, 4.37it/s]
621
  11%|█ | 520/4880 [02:33<16:44, 4.34it/s]
622
  11%|█ | 521/4880 [02:34<16:44, 4.34it/s]
623
  11%|█ | 522/4880 [02:34<16:13, 4.48it/s]
624
  11%|█ | 523/4880 [02:34<15:30, 4.68it/s]
625
  11%|█ | 524/4880 [02:34<14:40, 4.95it/s]
626
  11%|█ | 525/4880 [02:35<19:15, 3.77it/s]
627
  11%|█ | 526/4880 [02:35<20:08, 3.60it/s]
628
  11%|█ | 527/4880 [02:35<19:06, 3.80it/s]
629
  11%|█ | 528/4880 [02:35<17:44, 4.09it/s]
630
  11%|█ | 529/4880 [02:36<16:12, 4.48it/s]
631
  11%|█ | 530/4880 [02:36<17:48, 4.07it/s]
632
  11%|█ | 531/4880 [02:36<16:58, 4.27it/s]
633
  11%|█ | 532/4880 [02:36<17:30, 4.14it/s]
634
  11%|█ | 533/4880 [02:37<16:54, 4.29it/s]
635
  11%|█ | 534/4880 [02:37<16:35, 4.37it/s]
636
  11%|█ | 535/4880 [02:37<16:47, 4.31it/s]
637
  11%|█ | 536/4880 [02:37<16:16, 4.45it/s]
638
  11%|█ | 537/4880 [02:37<16:33, 4.37it/s]
639
  11%|█ | 538/4880 [02:38<19:00, 3.81it/s]
640
  11%|█ | 539/4880 [02:38<17:58, 4.02it/s]
641
  11%|█ | 540/4880 [02:38<16:09, 4.48it/s]
642
  11%|█ | 541/4880 [02:39<17:51, 4.05it/s]
643
  11%|█ | 542/4880 [02:39<17:42, 4.08it/s]
644
  11%|█ | 543/4880 [02:39<17:00, 4.25it/s]
645
  11%|█ | 544/4880 [02:39<20:08, 3.59it/s]
646
  11%|█ | 545/4880 [02:40<20:14, 3.57it/s]
647
  11%|█ | 546/4880 [02:40<20:19, 3.55it/s]
648
  11%|█ | 547/4880 [02:40<19:18, 3.74it/s]
649
  11%|█ | 548/4880 [02:40<18:11, 3.97it/s]
650
  11%|█▏ | 549/4880 [02:41<17:21, 4.16it/s]
651
  11%|█▏ | 550/4880 [02:41<16:37, 4.34it/s]
652
  11%|█▏ | 551/4880 [02:41<16:13, 4.44it/s]
653
  11%|█▏ | 552/4880 [02:41<14:50, 4.86it/s]
654
  11%|█▏ | 553/4880 [02:41<15:00, 4.81it/s]
655
  11%|█▏ | 554/4880 [02:42<16:26, 4.38it/s]
656
  11%|█▏ | 555/4880 [02:42<16:19, 4.41it/s]
657
  11%|█▏ | 556/4880 [02:42<15:54, 4.53it/s]
658
  11%|█▏ | 557/4880 [02:42<16:46, 4.29it/s]
659
  11%|█▏ | 558/4880 [02:43<17:45, 4.05it/s]
660
  11%|█▏ | 559/4880 [02:43<16:21, 4.40it/s]
661
  11%|█▏ | 560/4880 [02:43<15:21, 4.69it/s]
662
  11%|█▏ | 561/4880 [02:43<14:52, 4.84it/s]
663
  12%|█▏ | 562/4880 [02:43<15:23, 4.67it/s]
664
  12%|█▏ | 563/4880 [02:44<14:32, 4.95it/s]
665
  12%|█▏ | 564/4880 [02:44<14:45, 4.87it/s]
666
  12%|█▏ | 565/4880 [02:44<15:10, 4.74it/s]
667
  12%|█▏ | 566/4880 [02:44<16:14, 4.43it/s]
668
  12%|█▏ | 567/4880 [02:45<16:32, 4.35it/s]
669
  12%|█▏ | 568/4880 [02:45<17:01, 4.22it/s]
670
  12%|█▏ | 569/4880 [02:45<16:14, 4.42it/s]
671
  12%|█▏ | 570/4880 [02:45<16:17, 4.41it/s]
672
  12%|█▏ | 571/4880 [02:45<16:50, 4.27it/s]
673
  12%|█▏ | 572/4880 [02:46<17:16, 4.15it/s]
674
  12%|█▏ | 573/4880 [02:46<18:22, 3.91it/s]
675
  12%|█▏ | 574/4880 [02:46<19:40, 3.65it/s]
676
  12%|█▏ | 575/4880 [02:47<20:31, 3.50it/s]
677
  12%|█▏ | 576/4880 [02:47<27:07, 2.65it/s]
678
  12%|█▏ | 577/4880 [02:47<23:46, 3.02it/s]
679
  12%|█▏ | 578/4880 [02:48<20:54, 3.43it/s]
680
  12%|█▏ | 579/4880 [02:48<18:55, 3.79it/s]
681
  12%|█▏ | 580/4880 [02:48<16:38, 4.31it/s]
682
  12%|█▏ | 581/4880 [02:48<16:51, 4.25it/s]
683
  12%|█▏ | 582/4880 [02:49<17:48, 4.02it/s]
684
  12%|█▏ | 583/4880 [02:49<16:15, 4.41it/s]
685
  12%|█▏ | 584/4880 [02:49<15:56, 4.49it/s]
686
  12%|█▏ | 585/4880 [02:49<14:34, 4.91it/s]
687
  12%|█▏ | 586/4880 [02:49<15:24, 4.65it/s]
688
  12%|█▏ | 587/4880 [02:49<14:50, 4.82it/s]
689
  12%|█▏ | 588/4880 [02:50<15:37, 4.58it/s]
690
  12%|█▏ | 589/4880 [02:50<17:36, 4.06it/s]
691
  12%|█▏ | 590/4880 [02:50<20:27, 3.50it/s]
692
  12%|█▏ | 591/4880 [02:51<19:07, 3.74it/s]
693
  12%|█▏ | 592/4880 [02:51<19:00, 3.76it/s]
694
  12%|█▏ | 593/4880 [02:51<17:40, 4.04it/s]
695
  12%|█▏ | 594/4880 [02:51<16:42, 4.28it/s]
696
  12%|█▏ | 595/4880 [02:52<16:38, 4.29it/s]
697
  12%|█▏ | 596/4880 [02:52<17:36, 4.05it/s]
698
  12%|█▏ | 597/4880 [02:52<16:15, 4.39it/s]
699
  12%|█▏ | 598/4880 [02:52<20:08, 3.54it/s]
700
  12%|█▏ | 599/4880 [02:53<18:32, 3.85it/s]
701
  12%|█▏ | 600/4880 [02:53<20:22, 3.50it/s]
702
  12%|█▏ | 601/4880 [02:54<25:31, 2.79it/s]
703
  12%|█▏ | 602/4880 [02:54<22:15, 3.20it/s]
704
  12%|█▏ | 603/4880 [02:54<23:11, 3.07it/s]
705
  12%|█▏ | 604/4880 [02:54<21:13, 3.36it/s]
706
  12%|█▏ | 605/4880 [02:54<18:30, 3.85it/s]
707
  12%|█▏ | 606/4880 [02:55<16:50, 4.23it/s]
708
  12%|█▏ | 607/4880 [02:55<15:30, 4.59it/s]
709
  12%|█▏ | 608/4880 [02:55<15:26, 4.61it/s]
710
  12%|█▏ | 609/4880 [02:55<15:21, 4.63it/s]
711
  12%|█▎ | 610/4880 [02:56<16:03, 4.43it/s]
712
  13%|█▎ | 611/4880 [02:56<16:35, 4.29it/s]
713
  13%|█▎ | 612/4880 [02:56<15:54, 4.47it/s]
714
  13%|█▎ | 613/4880 [02:56<15:12, 4.68it/s]
715
  13%|█▎ | 614/4880 [02:56<15:18, 4.64it/s]
716
  13%|█▎ | 615/4880 [02:57<17:12, 4.13it/s]
717
  13%|█▎ | 616/4880 [02:57<17:14, 4.12it/s]
718
  13%|█▎ | 617/4880 [02:57<19:42, 3.61it/s]
719
  13%|█▎ | 618/4880 [02:57<18:16, 3.89it/s]
 
1
+ 2024-09-09 20:31:42.982639: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2
+ 2024-09-09 20:31:43.001035: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
3
+ 2024-09-09 20:31:43.022596: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
4
+ 2024-09-09 20:31:43.029063: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
5
+ 2024-09-09 20:31:43.044988: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
6
+ To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
7
+ 2024-09-09 20:31:44.304336: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
8
+ /usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
9
+ warnings.warn(
10
+ 09/09/2024 20:31:45 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
11
+ 09/09/2024 20:31:45 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
12
+ _n_gpu=1,
13
+ accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
14
+ adafactor=False,
15
+ adam_beta1=0.9,
16
+ adam_beta2=0.999,
17
+ adam_epsilon=1e-08,
18
+ auto_find_batch_size=False,
19
+ batch_eval_metrics=False,
20
+ bf16=False,
21
+ bf16_full_eval=False,
22
+ data_seed=None,
23
+ dataloader_drop_last=False,
24
+ dataloader_num_workers=0,
25
+ dataloader_persistent_workers=False,
26
+ dataloader_pin_memory=True,
27
+ dataloader_prefetch_factor=None,
28
+ ddp_backend=None,
29
+ ddp_broadcast_buffers=None,
30
+ ddp_bucket_cap_mb=None,
31
+ ddp_find_unused_parameters=None,
32
+ ddp_timeout=1800,
33
+ debug=[],
34
+ deepspeed=None,
35
+ disable_tqdm=False,
36
+ dispatch_batches=None,
37
+ do_eval=True,
38
+ do_predict=True,
39
+ do_train=True,
40
+ eval_accumulation_steps=None,
41
+ eval_delay=0,
42
+ eval_do_concat_batches=True,
43
+ eval_on_start=False,
44
+ eval_steps=None,
45
+ eval_strategy=epoch,
46
+ eval_use_gather_object=False,
47
+ evaluation_strategy=epoch,
48
+ fp16=False,
49
+ fp16_backend=auto,
50
+ fp16_full_eval=False,
51
+ fp16_opt_level=O1,
52
+ fsdp=[],
53
+ fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
54
+ fsdp_min_num_params=0,
55
+ fsdp_transformer_layer_cls_to_wrap=None,
56
+ full_determinism=False,
57
+ gradient_accumulation_steps=2,
58
+ gradient_checkpointing=False,
59
+ gradient_checkpointing_kwargs=None,
60
+ greater_is_better=True,
61
+ group_by_length=False,
62
+ half_precision_backend=auto,
63
+ hub_always_push=False,
64
+ hub_model_id=None,
65
+ hub_private_repo=False,
66
+ hub_strategy=every_save,
67
+ hub_token=<HUB_TOKEN>,
68
+ ignore_data_skip=False,
69
+ include_inputs_for_metrics=False,
70
+ include_num_input_tokens_seen=False,
71
+ include_tokens_per_second=False,
72
+ jit_mode_eval=False,
73
+ label_names=None,
74
+ label_smoothing_factor=0.0,
75
+ learning_rate=5e-05,
76
+ length_column_name=length,
77
+ load_best_model_at_end=True,
78
+ local_rank=0,
79
+ log_level=passive,
80
+ log_level_replica=warning,
81
+ log_on_each_node=True,
82
+ logging_dir=/content/dissertation/scripts/ner/output/tb,
83
+ logging_first_step=False,
84
+ logging_nan_inf_filter=True,
85
+ logging_steps=500,
86
+ logging_strategy=steps,
87
+ lr_scheduler_kwargs={},
88
+ lr_scheduler_type=linear,
89
+ max_grad_norm=1.0,
90
+ max_steps=-1,
91
+ metric_for_best_model=f1,
92
+ mp_parameters=,
93
+ neftune_noise_alpha=None,
94
+ no_cuda=False,
95
+ num_train_epochs=10.0,
96
+ optim=adamw_torch,
97
+ optim_args=None,
98
+ optim_target_modules=None,
99
+ output_dir=/content/dissertation/scripts/ner/output,
100
+ overwrite_output_dir=True,
101
+ past_index=-1,
102
+ per_device_eval_batch_size=8,
103
+ per_device_train_batch_size=32,
104
+ prediction_loss_only=False,
105
+ push_to_hub=True,
106
+ push_to_hub_model_id=None,
107
+ push_to_hub_organization=None,
108
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
109
+ ray_scope=last,
110
+ remove_unused_columns=True,
111
+ report_to=['tensorboard'],
112
+ restore_callback_states_from_checkpoint=False,
113
+ resume_from_checkpoint=None,
114
+ run_name=/content/dissertation/scripts/ner/output,
115
+ save_on_each_node=False,
116
+ save_only_model=False,
117
+ save_safetensors=True,
118
+ save_steps=500,
119
+ save_strategy=epoch,
120
+ save_total_limit=None,
121
+ seed=42,
122
+ skip_memory_metrics=True,
123
+ split_batches=None,
124
+ tf32=None,
125
+ torch_compile=False,
126
+ torch_compile_backend=None,
127
+ torch_compile_mode=None,
128
+ torch_empty_cache_steps=None,
129
+ torchdynamo=None,
130
+ tpu_metrics_debug=False,
131
+ tpu_num_cores=None,
132
+ use_cpu=False,
133
+ use_ipex=False,
134
+ use_legacy_prediction_loop=False,
135
+ use_mps_device=False,
136
+ warmup_ratio=0.0,
137
+ warmup_steps=0,
138
+ weight_decay=0.0,
139
+ )
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+ [INFO|configuration_utils.py:733] 2024-09-09 20:32:03,967 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
148
+ [INFO|configuration_utils.py:800] 2024-09-09 20:32:03,971 >> Model config RobertaConfig {
149
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
150
+ "architectures": [
151
+ "RobertaForMaskedLM"
152
+ ],
153
+ "attention_probs_dropout_prob": 0.1,
154
+ "bos_token_id": 0,
155
+ "classifier_dropout": null,
156
+ "eos_token_id": 2,
157
+ "finetuning_task": "ner",
158
+ "gradient_checkpointing": false,
159
+ "hidden_act": "gelu",
160
+ "hidden_dropout_prob": 0.1,
161
+ "hidden_size": 768,
162
+ "id2label": {
163
+ "0": "O",
164
+ "1": "B-FARMACO",
165
+ "2": "I-FARMACO"
166
+ },
167
+ "initializer_range": 0.02,
168
+ "intermediate_size": 3072,
169
+ "label2id": {
170
+ "B-FARMACO": 1,
171
+ "I-FARMACO": 2,
172
+ "O": 0
173
+ },
174
+ "layer_norm_eps": 1e-05,
175
+ "max_position_embeddings": 514,
176
+ "model_type": "roberta",
177
+ "num_attention_heads": 12,
178
+ "num_hidden_layers": 12,
179
+ "pad_token_id": 1,
180
+ "position_embedding_type": "absolute",
181
+ "transformers_version": "4.44.2",
182
+ "type_vocab_size": 1,
183
+ "use_cache": true,
184
+ "vocab_size": 50262
185
+ }
186
+
187
+ [INFO|configuration_utils.py:733] 2024-09-09 20:32:04,220 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
188
+ [INFO|configuration_utils.py:800] 2024-09-09 20:32:04,221 >> Model config RobertaConfig {
189
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
190
+ "architectures": [
191
+ "RobertaForMaskedLM"
192
+ ],
193
+ "attention_probs_dropout_prob": 0.1,
194
+ "bos_token_id": 0,
195
+ "classifier_dropout": null,
196
+ "eos_token_id": 2,
197
+ "gradient_checkpointing": false,
198
+ "hidden_act": "gelu",
199
+ "hidden_dropout_prob": 0.1,
200
+ "hidden_size": 768,
201
+ "initializer_range": 0.02,
202
+ "intermediate_size": 3072,
203
+ "layer_norm_eps": 1e-05,
204
+ "max_position_embeddings": 514,
205
+ "model_type": "roberta",
206
+ "num_attention_heads": 12,
207
+ "num_hidden_layers": 12,
208
+ "pad_token_id": 1,
209
+ "position_embedding_type": "absolute",
210
+ "transformers_version": "4.44.2",
211
+ "type_vocab_size": 1,
212
+ "use_cache": true,
213
+ "vocab_size": 50262
214
+ }
215
+
216
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 20:32:04,231 >> loading file vocab.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/vocab.json
217
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 20:32:04,231 >> loading file merges.txt from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/merges.txt
218
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 20:32:04,231 >> loading file tokenizer.json from cache at None
219
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 20:32:04,231 >> loading file added_tokens.json from cache at None
220
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 20:32:04,231 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/special_tokens_map.json
221
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 20:32:04,231 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/tokenizer_config.json
222
+ [INFO|configuration_utils.py:733] 2024-09-09 20:32:04,231 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
223
+ [INFO|configuration_utils.py:800] 2024-09-09 20:32:04,232 >> Model config RobertaConfig {
224
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
225
+ "architectures": [
226
+ "RobertaForMaskedLM"
227
+ ],
228
+ "attention_probs_dropout_prob": 0.1,
229
+ "bos_token_id": 0,
230
+ "classifier_dropout": null,
231
+ "eos_token_id": 2,
232
+ "gradient_checkpointing": false,
233
+ "hidden_act": "gelu",
234
+ "hidden_dropout_prob": 0.1,
235
+ "hidden_size": 768,
236
+ "initializer_range": 0.02,
237
+ "intermediate_size": 3072,
238
+ "layer_norm_eps": 1e-05,
239
+ "max_position_embeddings": 514,
240
+ "model_type": "roberta",
241
+ "num_attention_heads": 12,
242
+ "num_hidden_layers": 12,
243
+ "pad_token_id": 1,
244
+ "position_embedding_type": "absolute",
245
+ "transformers_version": "4.44.2",
246
+ "type_vocab_size": 1,
247
+ "use_cache": true,
248
+ "vocab_size": 50262
249
+ }
250
+
251
+ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
252
+ warnings.warn(
253
+ [INFO|configuration_utils.py:733] 2024-09-09 20:32:04,315 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
254
+ [INFO|configuration_utils.py:800] 2024-09-09 20:32:04,317 >> Model config RobertaConfig {
255
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
256
+ "architectures": [
257
+ "RobertaForMaskedLM"
258
+ ],
259
+ "attention_probs_dropout_prob": 0.1,
260
+ "bos_token_id": 0,
261
+ "classifier_dropout": null,
262
+ "eos_token_id": 2,
263
+ "gradient_checkpointing": false,
264
+ "hidden_act": "gelu",
265
+ "hidden_dropout_prob": 0.1,
266
+ "hidden_size": 768,
267
+ "initializer_range": 0.02,
268
+ "intermediate_size": 3072,
269
+ "layer_norm_eps": 1e-05,
270
+ "max_position_embeddings": 514,
271
+ "model_type": "roberta",
272
+ "num_attention_heads": 12,
273
+ "num_hidden_layers": 12,
274
+ "pad_token_id": 1,
275
+ "position_embedding_type": "absolute",
276
+ "transformers_version": "4.44.2",
277
+ "type_vocab_size": 1,
278
+ "use_cache": true,
279
+ "vocab_size": 50262
280
+ }
281
+
282
+ [INFO|modeling_utils.py:3678] 2024-09-09 20:32:04,638 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/pytorch_model.bin
283
+ [INFO|modeling_utils.py:4497] 2024-09-09 20:32:04,717 >> Some weights of the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es were not used when initializing RobertaForTokenClassification: ['lm_head.bias', 'lm_head.decoder.bias', 'lm_head.decoder.weight', 'lm_head.dense.bias', 'lm_head.dense.weight', 'lm_head.layer_norm.bias', 'lm_head.layer_norm.weight']
284
+ - This IS expected if you are initializing RobertaForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
285
+ - This IS NOT expected if you are initializing RobertaForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
286
+ [WARNING|modeling_utils.py:4509] 2024-09-09 20:32:04,717 >> Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es and are newly initialized: ['classifier.bias', 'classifier.weight']
287
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
288
+
289
+
290
+
291
+ /content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
292
+ metric = load_metric("seqeval", trust_remote_code=True)
293
+ [INFO|trainer.py:811] 2024-09-09 20:32:11,813 >> The following columns in the training set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, tokens, id. If ner_tags, tokens, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
294
+ [INFO|trainer.py:2134] 2024-09-09 20:32:12,365 >> ***** Running training *****
295
+ [INFO|trainer.py:2135] 2024-09-09 20:32:12,365 >> Num examples = 31,229
296
+ [INFO|trainer.py:2136] 2024-09-09 20:32:12,365 >> Num Epochs = 10
297
+ [INFO|trainer.py:2137] 2024-09-09 20:32:12,365 >> Instantaneous batch size per device = 32
298
+ [INFO|trainer.py:2140] 2024-09-09 20:32:12,365 >> Total train batch size (w. parallel, distributed & accumulation) = 64
299
+ [INFO|trainer.py:2141] 2024-09-09 20:32:12,365 >> Gradient Accumulation steps = 2
300
+ [INFO|trainer.py:2142] 2024-09-09 20:32:12,365 >> Total optimization steps = 4,880
301
+ [INFO|trainer.py:2143] 2024-09-09 20:32:12,366 >> Number of trainable parameters = 124,055,043
302
+
303
  0%| | 0/4880 [00:00<?, ?it/s]
304
  0%| | 1/4880 [00:01<1:27:08, 1.07s/it]
305
  0%| | 2/4880 [00:01<51:50, 1.57it/s]
306
  0%| | 3/4880 [00:01<40:04, 2.03it/s]
307
  0%| | 4/4880 [00:01<32:00, 2.54it/s]
308
  0%| | 5/4880 [00:02<27:14, 2.98it/s]
309
  0%| | 6/4880 [00:02<23:04, 3.52it/s]
310
  0%| | 7/4880 [00:02<20:44, 3.92it/s]
311
  0%| | 8/4880 [00:02<19:50, 4.09it/s]
312
  0%| | 9/4880 [00:02<18:14, 4.45it/s]
313
  0%| | 10/4880 [00:03<18:16, 4.44it/s]
314
  0%| | 11/4880 [00:03<18:21, 4.42it/s]
315
  0%| | 12/4880 [00:03<18:13, 4.45it/s]
316
  0%| | 13/4880 [00:03<20:48, 3.90it/s]
317
  0%| | 14/4880 [00:04<19:12, 4.22it/s]
318
  0%| | 15/4880 [00:04<18:57, 4.28it/s]
319
  0%| | 16/4880 [00:04<20:26, 3.97it/s]
320
  0%| | 17/4880 [00:04<18:54, 4.29it/s]
321
  0%| | 18/4880 [00:05<18:43, 4.33it/s]
322
  0%| | 19/4880 [00:05<17:40, 4.58it/s]
323
  0%| | 20/4880 [00:05<17:42, 4.58it/s]
324
  0%| | 21/4880 [00:05<19:40, 4.12it/s]
325
  0%| | 22/4880 [00:06<21:06, 3.83it/s]
326
  0%| | 23/4880 [00:06<20:44, 3.90it/s]
327
  0%| | 24/4880 [00:06<19:05, 4.24it/s]
328
  1%| | 25/4880 [00:06<19:15, 4.20it/s]
329
  1%| | 26/4880 [00:07<32:43, 2.47it/s]
330
  1%| | 27/4880 [00:07<29:28, 2.74it/s]
331
  1%| | 28/4880 [00:08<25:53, 3.12it/s]
332
  1%| | 29/4880 [00:08<25:25, 3.18it/s]
333
  1%| | 30/4880 [00:08<24:29, 3.30it/s]
334
  1%| | 31/4880 [00:08<22:37, 3.57it/s]
335
  1%| | 32/4880 [00:09<22:12, 3.64it/s]
336
  1%| | 33/4880 [00:09<23:20, 3.46it/s]
337
  1%| | 34/4880 [00:09<20:17, 3.98it/s]
338
  1%| | 35/4880 [00:09<22:23, 3.61it/s]
339
  1%| | 36/4880 [00:10<20:55, 3.86it/s]
340
  1%| | 37/4880 [00:10<19:06, 4.22it/s]
341
  1%| | 38/4880 [00:10<19:05, 4.23it/s]
342
  1%| | 39/4880 [00:10<18:39, 4.33it/s]
343
  1%| | 40/4880 [00:11<17:34, 4.59it/s]
344
  1%| | 41/4880 [00:11<17:43, 4.55it/s]
345
  1%| | 42/4880 [00:11<18:14, 4.42it/s]
346
  1%| | 43/4880 [00:11<20:42, 3.89it/s]
347
  1%| | 44/4880 [00:12<20:32, 3.92it/s]
348
  1%| | 45/4880 [00:12<19:46, 4.07it/s]
349
  1%| | 46/4880 [00:12<23:54, 3.37it/s]
350
  1%| | 47/4880 [00:13<24:10, 3.33it/s]
351
  1%| | 48/4880 [00:13<21:41, 3.71it/s]
352
  1%| | 49/4880 [00:13<20:20, 3.96it/s]
353
  1%| | 50/4880 [00:13<22:35, 3.56it/s]
354
  1%| | 51/4880 [00:13<20:26, 3.94it/s]
355
  1%| | 52/4880 [00:14<23:08, 3.48it/s]
356
  1%| | 53/4880 [00:14<21:48, 3.69it/s]
357
  1%| | 54/4880 [00:14<20:26, 3.93it/s]
358
  1%| | 55/4880 [00:14<19:01, 4.23it/s]
359
  1%| | 56/4880 [00:15<19:21, 4.15it/s]
360
  1%| | 57/4880 [00:15<18:40, 4.30it/s]
361
  1%| | 58/4880 [00:15<18:21, 4.38it/s]
362
  1%| | 59/4880 [00:15<21:15, 3.78it/s]
363
  1%| | 60/4880 [00:16<19:39, 4.09it/s]
364
  1%|▏ | 61/4880 [00:16<18:42, 4.29it/s]
365
  1%|▏ | 62/4880 [00:16<21:29, 3.74it/s]
366
  1%|▏ | 63/4880 [00:16<19:12, 4.18it/s]
367
  1%|▏ | 64/4880 [00:17<20:40, 3.88it/s]
368
  1%|▏ | 65/4880 [00:17<21:24, 3.75it/s]
369
  1%|▏ | 66/4880 [00:17<20:20, 3.94it/s]
370
  1%|▏ | 67/4880 [00:18<21:13, 3.78it/s]
371
  1%|▏ | 68/4880 [00:18<22:13, 3.61it/s]
372
  1%|▏ | 69/4880 [00:18<27:02, 2.97it/s]
373
  1%|▏ | 70/4880 [00:19<24:24, 3.28it/s]
374
  1%|▏ | 71/4880 [00:19<23:54, 3.35it/s]
375
  1%|▏ | 72/4880 [00:19<22:06, 3.62it/s]
376
  1%|▏ | 73/4880 [00:19<20:21, 3.93it/s]
377
  2%|▏ | 74/4880 [00:19<20:15, 3.95it/s]
378
  2%|▏ | 75/4880 [00:20<18:29, 4.33it/s]
379
  2%|▏ | 76/4880 [00:20<19:05, 4.19it/s]
380
  2%|▏ | 77/4880 [00:20<18:28, 4.33it/s]
381
  2%|▏ | 78/4880 [00:21<22:00, 3.64it/s]
382
  2%|▏ | 79/4880 [00:21<20:54, 3.83it/s]
383
  2%|▏ | 80/4880 [00:21<21:07, 3.79it/s]
384
  2%|▏ | 81/4880 [00:21<19:31, 4.10it/s]
385
  2%|▏ | 82/4880 [00:21<18:51, 4.24it/s]
386
  2%|▏ | 83/4880 [00:22<17:55, 4.46it/s]
387
  2%|▏ | 84/4880 [00:22<18:01, 4.44it/s]
388
  2%|▏ | 85/4880 [00:22<16:52, 4.74it/s]
389
  2%|▏ | 86/4880 [00:22<20:18, 3.94it/s]
390
  2%|▏ | 87/4880 [00:23<18:12, 4.39it/s]
391
  2%|▏ | 88/4880 [00:23<18:41, 4.27it/s]
392
  2%|▏ | 89/4880 [00:23<20:06, 3.97it/s]
393
  2%|▏ | 90/4880 [00:23<18:53, 4.23it/s]
394
  2%|▏ | 91/4880 [00:24<20:59, 3.80it/s]
395
  2%|▏ | 92/4880 [00:24<21:49, 3.66it/s]
396
  2%|▏ | 93/4880 [00:24<20:38, 3.86it/s]
397
  2%|▏ | 94/4880 [00:24<20:24, 3.91it/s]
398
  2%|▏ | 95/4880 [00:25<19:17, 4.13it/s]
399
  2%|▏ | 96/4880 [00:25<18:43, 4.26it/s]
400
  2%|▏ | 97/4880 [00:25<17:33, 4.54it/s]
401
  2%|▏ | 98/4880 [00:26<26:49, 2.97it/s]
402
  2%|▏ | 99/4880 [00:26<24:45, 3.22it/s]
403
  2%|▏ | 100/4880 [00:26<23:12, 3.43it/s]
404
  2%|▏ | 101/4880 [00:26<21:27, 3.71it/s]
405
  2%|▏ | 102/4880 [00:27<19:15, 4.14it/s]
406
  2%|▏ | 103/4880 [00:27<20:09, 3.95it/s]
407
  2%|▏ | 104/4880 [00:27<18:53, 4.21it/s]
408
  2%|▏ | 105/4880 [00:27<18:41, 4.26it/s]
409
  2%|▏ | 106/4880 [00:28<22:02, 3.61it/s]
410
  2%|▏ | 107/4880 [00:28<21:52, 3.64it/s]
411
  2%|▏ | 108/4880 [00:28<20:29, 3.88it/s]
412
  2%|▏ | 109/4880 [00:28<22:58, 3.46it/s]
413
  2%|▏ | 110/4880 [00:29<20:57, 3.79it/s]
414
  2%|▏ | 111/4880 [00:29<20:23, 3.90it/s]
415
  2%|▏ | 112/4880 [00:29<19:20, 4.11it/s]
416
  2%|▏ | 113/4880 [00:29<18:24, 4.32it/s]
417
  2%|▏ | 114/4880 [00:30<20:43, 3.83it/s]
418
  2%|▏ | 115/4880 [00:30<19:47, 4.01it/s]
419
  2%|▏ | 116/4880 [00:30<19:29, 4.07it/s]
420
  2%|▏ | 117/4880 [00:31<23:37, 3.36it/s]
421
  2%|▏ | 118/4880 [00:31<21:15, 3.73it/s]
422
  2%|▏ | 119/4880 [00:31<19:30, 4.07it/s]
423
  2%|▏ | 120/4880 [00:31<17:52, 4.44it/s]
424
  2%|▏ | 121/4880 [00:31<18:00, 4.40it/s]
425
  2%|▎ | 122/4880 [00:32<19:07, 4.15it/s]
426
  3%|▎ | 123/4880 [00:32<20:05, 3.95it/s]
427
  3%|▎ | 124/4880 [00:32<20:37, 3.84it/s]
428
  3%|▎ | 125/4880 [00:32<21:36, 3.67it/s]
429
  3%|▎ | 126/4880 [00:33<20:03, 3.95it/s]
430
  3%|▎ | 127/4880 [00:33<19:36, 4.04it/s]
431
  3%|▎ | 128/4880 [00:33<18:48, 4.21it/s]
432
  3%|▎ | 129/4880 [00:33<18:09, 4.36it/s]
433
  3%|▎ | 130/4880 [00:34<18:15, 4.34it/s]
434
  3%|▎ | 131/4880 [00:34<18:29, 4.28it/s]
435
  3%|▎ | 132/4880 [00:34<17:20, 4.56it/s]
436
  3%|▎ | 133/4880 [00:34<15:50, 4.99it/s]
437
  3%|▎ | 134/4880 [00:34<15:53, 4.98it/s]
438
  3%|▎ | 135/4880 [00:35<18:29, 4.28it/s]
439
  3%|▎ | 136/4880 [00:35<20:17, 3.90it/s]
440
  3%|▎ | 137/4880 [00:35<18:54, 4.18it/s]
441
  3%|▎ | 138/4880 [00:35<19:28, 4.06it/s]
442
  3%|▎ | 139/4880 [00:36<18:04, 4.37it/s]
443
  3%|▎ | 140/4880 [00:36<17:41, 4.46it/s]
444
  3%|▎ | 141/4880 [00:36<20:00, 3.95it/s]
445
  3%|▎ | 142/4880 [00:36<18:07, 4.36it/s]
446
  3%|▎ | 143/4880 [00:37<17:16, 4.57it/s]
447
  3%|▎ | 144/4880 [00:37<17:35, 4.49it/s]
448
  3%|▎ | 145/4880 [00:37<17:54, 4.41it/s]
449
  3%|▎ | 146/4880 [00:37<21:07, 3.74it/s]
450
  3%|▎ | 147/4880 [00:38<19:57, 3.95it/s]
451
  3%|▎ | 148/4880 [00:38<23:03, 3.42it/s]
452
  3%|▎ | 149/4880 [00:38<22:06, 3.57it/s]
453
  3%|▎ | 150/4880 [00:38<21:17, 3.70it/s]
454
  3%|▎ | 151/4880 [00:39<23:05, 3.41it/s]
455
  3%|▎ | 152/4880 [00:39<20:47, 3.79it/s]
456
  3%|▎ | 153/4880 [00:39<19:52, 3.97it/s]
457
  3%|▎ | 154/4880 [00:39<19:24, 4.06it/s]
458
  3%|▎ | 155/4880 [00:40<23:42, 3.32it/s]
459
  3%|▎ | 156/4880 [00:40<21:24, 3.68it/s]
460
  3%|▎ | 157/4880 [00:40<22:00, 3.58it/s]
461
  3%|▎ | 158/4880 [00:41<23:59, 3.28it/s]
462
  3%|▎ | 159/4880 [00:41<23:10, 3.39it/s]
463
  3%|▎ | 160/4880 [00:41<20:35, 3.82it/s]
464
  3%|▎ | 161/4880 [00:41<19:23, 4.05it/s]
465
  3%|▎ | 162/4880 [00:42<21:14, 3.70it/s]
466
  3%|▎ | 163/4880 [00:42<21:41, 3.63it/s]
467
  3%|▎ | 164/4880 [00:42<20:54, 3.76it/s]
468
  3%|▎ | 165/4880 [00:43<26:29, 2.97it/s]
469
  3%|▎ | 166/4880 [00:43<23:33, 3.34it/s]
470
  3%|▎ | 167/4880 [00:43<23:51, 3.29it/s]
471
  3%|▎ | 168/4880 [00:44<22:20, 3.51it/s]
472
  3%|▎ | 169/4880 [00:44<22:18, 3.52it/s]
473
  3%|▎ | 170/4880 [00:44<21:28, 3.65it/s]
474
  4%|▎ | 171/4880 [00:44<20:39, 3.80it/s]
475
  4%|▎ | 172/4880 [00:45<19:56, 3.93it/s]
476
  4%|▎ | 173/4880 [00:45<18:21, 4.27it/s]
477
  4%|▎ | 174/4880 [00:45<18:18, 4.28it/s]
478
  4%|▎ | 175/4880 [00:45<17:23, 4.51it/s]
479
  4%|▎ | 176/4880 [00:45<16:41, 4.70it/s]
480
  4%|▎ | 177/4880 [00:46<16:14, 4.82it/s]
481
  4%|▎ | 178/4880 [00:46<16:21, 4.79it/s]
482
  4%|▎ | 179/4880 [00:46<17:10, 4.56it/s]
483
  4%|▎ | 180/4880 [00:46<17:32, 4.47it/s]
484
  4%|▎ | 181/4880 [00:46<18:11, 4.30it/s]
485
  4%|▎ | 182/4880 [00:47<21:09, 3.70it/s]
486
  4%|▍ | 183/4880 [00:47<20:04, 3.90it/s]
487
  4%|▍ | 184/4880 [00:47<20:54, 3.74it/s]
488
  4%|▍ | 185/4880 [00:48<20:14, 3.87it/s]
489
  4%|▍ | 186/4880 [00:48<19:08, 4.09it/s]
490
  4%|▍ | 187/4880 [00:48<17:28, 4.48it/s]
491
  4%|▍ | 188/4880 [00:48<19:06, 4.09it/s]
492
  4%|▍ | 189/4880 [00:49<18:58, 4.12it/s]
493
  4%|▍ | 190/4880 [00:49<18:33, 4.21it/s]
494
  4%|▍ | 191/4880 [00:49<19:33, 4.00it/s]
495
  4%|▍ | 192/4880 [00:49<18:21, 4.25it/s]
496
  4%|▍ | 193/4880 [00:50<21:23, 3.65it/s]
497
  4%|▍ | 194/4880 [00:50<20:18, 3.85it/s]
498
  4%|▍ | 195/4880 [00:50<18:47, 4.15it/s]
499
  4%|▍ | 196/4880 [00:50<18:15, 4.28it/s]
500
  4%|▍ | 197/4880 [00:51<29:10, 2.68it/s]
501
  4%|▍ | 198/4880 [00:51<25:33, 3.05it/s]
502
  4%|▍ | 199/4880 [00:51<23:17, 3.35it/s]
503
  4%|▍ | 200/4880 [00:52<21:36, 3.61it/s]
504
  4%|▍ | 201/4880 [00:52<19:17, 4.04it/s]
505
  4%|▍ | 202/4880 [00:52<22:08, 3.52it/s]
506
  4%|▍ | 203/4880 [00:52<20:03, 3.89it/s]
507
  4%|▍ | 204/4880 [00:53<17:55, 4.35it/s]
508
  4%|▍ | 205/4880 [00:53<17:16, 4.51it/s]
509
  4%|▍ | 206/4880 [00:53<17:24, 4.47it/s]
510
  4%|▍ | 207/4880 [00:53<18:48, 4.14it/s]
511
  4%|▍ | 208/4880 [00:53<18:10, 4.28it/s]
512
  4%|▍ | 209/4880 [00:54<19:10, 4.06it/s]
513
  4%|▍ | 210/4880 [00:54<17:59, 4.32it/s]
514
  4%|▍ | 211/4880 [00:54<17:59, 4.32it/s]
515
  4%|▍ | 212/4880 [00:54<17:19, 4.49it/s]
516
  4%|▍ | 213/4880 [00:55<16:57, 4.59it/s]
517
  4%|▍ | 214/4880 [00:55<19:35, 3.97it/s]
518
  4%|▍ | 215/4880 [00:55<18:48, 4.13it/s]
519
  4%|▍ | 216/4880 [00:55<18:20, 4.24it/s]
520
  4%|▍ | 217/4880 [00:56<17:47, 4.37it/s]
521
  4%|▍ | 218/4880 [00:56<19:04, 4.07it/s]
522
  4%|▍ | 219/4880 [00:56<18:38, 4.17it/s]
523
  5%|▍ | 220/4880 [00:56<19:40, 3.95it/s]
524
  5%|▍ | 221/4880 [00:57<20:54, 3.71it/s]
525
  5%|▍ | 222/4880 [00:57<19:41, 3.94it/s]
526
  5%|▍ | 223/4880 [00:57<21:12, 3.66it/s]
527
  5%|▍ | 224/4880 [00:57<20:18, 3.82it/s]
528
  5%|▍ | 225/4880 [00:58<20:56, 3.70it/s]
529
  5%|▍ | 226/4880 [00:58<18:45, 4.14it/s]
530
  5%|▍ | 227/4880 [00:58<18:32, 4.18it/s]
531
  5%|▍ | 228/4880 [00:58<20:35, 3.76it/s]
532
  5%|▍ | 229/4880 [00:59<29:58, 2.59it/s]
533
  5%|▍ | 230/4880 [00:59<27:43, 2.80it/s]
534
  5%|▍ | 231/4880 [01:00<24:54, 3.11it/s]
535
  5%|▍ | 232/4880 [01:00<25:56, 2.99it/s]
536
  5%|▍ | 233/4880 [01:00<26:18, 2.94it/s]
537
  5%|▍ | 234/4880 [01:01<25:14, 3.07it/s]
538
  5%|▍ | 235/4880 [01:01<22:07, 3.50it/s]
539
  5%|▍ | 236/4880 [01:01<20:46, 3.72it/s]
540
  5%|▍ | 237/4880 [01:01<19:57, 3.88it/s]
541
  5%|▍ | 238/4880 [01:01<18:35, 4.16it/s]
542
  5%|▍ | 239/4880 [01:02<20:47, 3.72it/s]
543
  5%|▍ | 240/4880 [01:02<20:05, 3.85it/s]
544
  5%|▍ | 241/4880 [01:03<30:01, 2.57it/s]
545
  5%|▍ | 242/4880 [01:03<28:00, 2.76it/s]
546
  5%|▍ | 243/4880 [01:04<36:16, 2.13it/s]
547
  5%|▌ | 244/4880 [01:04<32:19, 2.39it/s]
548
  5%|▌ | 245/4880 [01:04<27:58, 2.76it/s]
549
  5%|▌ | 246/4880 [01:05<25:08, 3.07it/s]
550
  5%|▌ | 247/4880 [01:05<22:57, 3.36it/s]
551
  5%|▌ | 248/4880 [01:05<20:15, 3.81it/s]
552
  5%|▌ | 249/4880 [01:05<19:44, 3.91it/s]
553
  5%|▌ | 250/4880 [01:06<21:45, 3.55it/s]
554
  5%|▌ | 251/4880 [01:06<21:55, 3.52it/s]
555
  5%|▌ | 252/4880 [01:06<22:48, 3.38it/s]
556
  5%|▌ | 253/4880 [01:06<21:55, 3.52it/s]
557
  5%|▌ | 254/4880 [01:07<20:59, 3.67it/s]
558
  5%|▌ | 255/4880 [01:07<19:14, 4.01it/s]
559
  5%|▌ | 256/4880 [01:07<19:15, 4.00it/s]
560
  5%|▌ | 257/4880 [01:07<18:57, 4.07it/s]
561
  5%|▌ | 258/4880 [01:08<20:10, 3.82it/s]
562
  5%|▌ | 259/4880 [01:08<22:10, 3.47it/s]
563
  5%|▌ | 260/4880 [01:08<20:45, 3.71it/s]
564
  5%|▌ | 261/4880 [01:09<22:42, 3.39it/s]
565
  5%|▌ | 262/4880 [01:09<22:25, 3.43it/s]
566
  5%|▌ | 263/4880 [01:09<22:13, 3.46it/s]
567
  5%|▌ | 264/4880 [01:09<20:42, 3.72it/s]
568
  5%|▌ | 265/4880 [01:10<19:39, 3.91it/s]
569
  5%|▌ | 266/4880 [01:10<18:21, 4.19it/s]
570
  5%|▌ | 267/4880 [01:10<29:19, 2.62it/s]
571
  5%|▌ | 268/4880 [01:11<25:09, 3.06it/s]
572
  6%|▌ | 269/4880 [01:11<21:44, 3.53it/s]
573
  6%|▌ | 270/4880 [01:11<20:29, 3.75it/s]
574
  6%|▌ | 271/4880 [01:11<19:14, 3.99it/s]
575
  6%|▌ | 272/4880 [01:11<17:20, 4.43it/s]
576
  6%|▌ | 273/4880 [01:12<17:19, 4.43it/s]
577
  6%|▌ | 274/4880 [01:12<18:06, 4.24it/s]
578
  6%|▌ | 275/4880 [01:12<18:07, 4.24it/s]
579
  6%|▌ | 276/4880 [01:12<17:05, 4.49it/s]
580
  6%|▌ | 277/4880 [01:13<17:08, 4.48it/s]
581
  6%|▌ | 278/4880 [01:13<18:37, 4.12it/s]
582
  6%|▌ | 279/4880 [01:13<17:25, 4.40it/s]
583
  6%|▌ | 280/4880 [01:13<16:56, 4.52it/s]
584
  6%|▌ | 281/4880 [01:14<18:06, 4.23it/s]
585
  6%|▌ | 282/4880 [01:14<19:03, 4.02it/s]
586
  6%|▌ | 283/4880 [01:14<18:20, 4.18it/s]
587
  6%|▌ | 284/4880 [01:14<20:47, 3.69it/s]
588
  6%|▌ | 285/4880 [01:15<27:14, 2.81it/s]
589
  6%|▌ | 286/4880 [01:15<24:54, 3.07it/s]
590
  6%|▌ | 287/4880 [01:15<21:53, 3.50it/s]
591
  6%|▌ | 288/4880 [01:16<21:35, 3.54it/s]
592
  6%|▌ | 289/4880 [01:16<20:00, 3.82it/s]
593
  6%|▌ | 290/4880 [01:16<18:43, 4.09it/s]
594
  6%|▌ | 291/4880 [01:16<18:31, 4.13it/s]
595
  6%|▌ | 292/4880 [01:17<19:01, 4.02it/s]
596
  6%|▌ | 293/4880 [01:17<19:44, 3.87it/s]
597
  6%|▌ | 294/4880 [01:17<18:35, 4.11it/s]
598
  6%|▌ | 295/4880 [01:18<22:10, 3.45it/s]
599
  6%|▌ | 296/4880 [01:18<22:03, 3.46it/s]
600
  6%|▌ | 297/4880 [01:18<21:03, 3.63it/s]
601
  6%|▌ | 298/4880 [01:18<20:06, 3.80it/s]
602
  6%|▌ | 299/4880 [01:18<18:38, 4.09it/s]
603
  6%|▌ | 300/4880 [01:19<20:05, 3.80it/s]
604
  6%|▌ | 301/4880 [01:19<19:06, 3.99it/s]
605
  6%|▌ | 302/4880 [01:19<18:59, 4.02it/s]
606
  6%|▌ | 303/4880 [01:20<19:47, 3.85it/s]
607
  6%|▌ | 304/4880 [01:20<18:31, 4.12it/s]
608
  6%|▋ | 305/4880 [01:20<19:39, 3.88it/s]
609
  6%|▋ | 306/4880 [01:20<19:49, 3.85it/s]
610
  6%|▋ | 307/4880 [01:21<21:08, 3.61it/s]
611
  6%|▋ | 308/4880 [01:21<24:27, 3.12it/s]
612
  6%|▋ | 309/4880 [01:21<23:29, 3.24it/s]
613
  6%|▋ | 310/4880 [01:22<21:31, 3.54it/s]
614
  6%|▋ | 311/4880 [01:22<22:59, 3.31it/s]
615
  6%|▋ | 312/4880 [01:22<21:31, 3.54it/s]
616
  6%|▋ | 313/4880 [01:22<19:46, 3.85it/s]
617
  6%|▋ | 314/4880 [01:23<20:07, 3.78it/s]
618
  6%|▋ | 315/4880 [01:23<18:53, 4.03it/s]
619
  6%|▋ | 316/4880 [01:23<17:05, 4.45it/s]
620
  6%|▋ | 317/4880 [01:23<17:06, 4.45it/s]
621
  7%|▋ | 318/4880 [01:23<17:40, 4.30it/s]
622
  7%|▋ | 319/4880 [01:24<17:50, 4.26it/s]
623
  7%|▋ | 320/4880 [01:24<17:07, 4.44it/s]
624
  7%|▋ | 321/4880 [01:24<16:20, 4.65it/s]
625
  7%|▋ | 322/4880 [01:24<15:45, 4.82it/s]
626
  7%|▋ | 323/4880 [01:25<18:53, 4.02it/s]
627
  7%|▋ | 324/4880 [01:25<20:46, 3.66it/s]
628
  7%|▋ | 325/4880 [01:25<19:36, 3.87it/s]
629
  7%|▋ | 326/4880 [01:25<17:54, 4.24it/s]
630
  7%|▋ | 327/4880 [01:26<17:58, 4.22it/s]
631
  7%|▋ | 328/4880 [01:26<20:19, 3.73it/s]
632
  7%|▋ | 329/4880 [01:26<19:48, 3.83it/s]
633
  7%|▋ | 330/4880 [01:26<19:04, 3.98it/s]
634
  7%|▋ | 331/4880 [01:27<17:18, 4.38it/s]
635
  7%|▋ | 332/4880 [01:27<16:50, 4.50it/s]
636
  7%|▋ | 333/4880 [01:27<17:46, 4.26it/s]
637
  7%|▋ | 334/4880 [01:27<20:28, 3.70it/s]
638
  7%|▋ | 335/4880 [01:28<21:43, 3.49it/s]
639
  7%|▋ | 336/4880 [01:28<20:54, 3.62it/s]
640
  7%|▋ | 337/4880 [01:28<20:25, 3.71it/s]
641
  7%|▋ | 338/4880 [01:29<20:40, 3.66it/s]
642
  7%|▋ | 339/4880 [01:29<20:11, 3.75it/s]
643
  7%|▋ | 340/4880 [01:29<20:01, 3.78it/s]
644
  7%|▋ | 341/4880 [01:29<19:43, 3.83it/s]
645
  7%|▋ | 342/4880 [01:30<19:45, 3.83it/s]
646
  7%|▋ | 343/4880 [01:30<18:33, 4.08it/s]
647
  7%|▋ | 344/4880 [01:30<17:39, 4.28it/s]
648
  7%|▋ | 345/4880 [01:30<17:27, 4.33it/s]
649
  7%|▋ | 346/4880 [01:30<18:11, 4.15it/s]
650
  7%|▋ | 347/4880 [01:31<17:37, 4.29it/s]
651
  7%|▋ | 348/4880 [01:31<16:00, 4.72it/s]
652
  7%|▋ | 349/4880 [01:31<16:36, 4.55it/s]
653
  7%|▋ | 350/4880 [01:31<17:36, 4.29it/s]
654
  7%|▋ | 351/4880 [01:32<17:30, 4.31it/s]
655
  7%|▋ | 352/4880 [01:32<17:19, 4.35it/s]
656
  7%|▋ | 353/4880 [01:32<18:27, 4.09it/s]
657
  7%|▋ | 354/4880 [01:32<18:16, 4.13it/s]
658
  7%|▋ | 355/4880 [01:33<19:37, 3.84it/s]
659
  7%|▋ | 356/4880 [01:33<18:40, 4.04it/s]
660
  7%|▋ | 357/4880 [01:33<17:29, 4.31it/s]
661
  7%|▋ | 358/4880 [01:33<16:25, 4.59it/s]
662
  7%|▋ | 359/4880 [01:33<17:48, 4.23it/s]
663
  7%|▋ | 360/4880 [01:34<20:25, 3.69it/s]
664
  7%|▋ | 361/4880 [01:34<19:07, 3.94it/s]
665
  7%|▋ | 362/4880 [01:34<18:07, 4.15it/s]
666
  7%|▋ | 363/4880 [01:35<18:28, 4.08it/s]
667
  7%|▋ | 364/4880 [01:35<17:45, 4.24it/s]
668
  7%|▋ | 365/4880 [01:35<17:06, 4.40it/s]
669
  8%|▊ | 366/4880 [01:35<17:25, 4.32it/s]
670
  8%|▊ | 367/4880 [01:35<16:40, 4.51it/s]
671
  8%|▊ | 368/4880 [01:36<17:05, 4.40it/s]
672
  8%|▊ | 369/4880 [01:36<18:25, 4.08it/s]
673
  8%|▊ | 370/4880 [01:36<17:22, 4.33it/s]
674
  8%|▊ | 371/4880 [01:36<16:00, 4.69it/s]
675
  8%|▊ | 372/4880 [01:37<17:24, 4.32it/s]
676
  8%|▊ | 373/4880 [01:37<17:22, 4.32it/s]
677
  8%|▊ | 374/4880 [01:37<17:59, 4.17it/s]
678
  8%|▊ | 375/4880 [01:37<18:57, 3.96it/s]
679
  8%|▊ | 376/4880 [01:37<17:13, 4.36it/s]
680
  8%|▊ | 377/4880 [01:38<18:29, 4.06it/s]
681
  8%|▊ | 378/4880 [01:38<20:46, 3.61it/s]
682
  8%|▊ | 379/4880 [01:38<19:21, 3.88it/s]
683
  8%|▊ | 380/4880 [01:39<18:44, 4.00it/s]
684
  8%|▊ | 381/4880 [01:39<19:06, 3.93it/s]
685
  8%|▊ | 382/4880 [01:39<17:53, 4.19it/s]
686
  8%|▊ | 383/4880 [01:39<17:10, 4.36it/s]
687
  8%|▊ | 384/4880 [01:40<18:17, 4.10it/s]
688
  8%|▊ | 385/4880 [01:40<17:22, 4.31it/s]
689
  8%|▊ | 386/4880 [01:40<17:48, 4.21it/s]
690
  8%|▊ | 387/4880 [01:40<18:39, 4.01it/s]
691
  8%|▊ | 388/4880 [01:40<17:23, 4.31it/s]
692
  8%|▊ | 389/4880 [01:41<17:41, 4.23it/s]
693
  8%|▊ | 390/4880 [01:41<16:44, 4.47it/s]
694
  8%|▊ | 391/4880 [01:41<15:36, 4.79it/s]
695
  8%|▊ | 392/4880 [01:41<15:45, 4.75it/s]
696
  8%|▊ | 393/4880 [01:42<16:28, 4.54it/s]
697
  8%|▊ | 394/4880 [01:42<15:57, 4.69it/s]
698
  8%|▊ | 395/4880 [01:42<15:47, 4.73it/s]
699
  8%|▊ | 396/4880 [01:42<14:58, 4.99it/s]
700
  8%|▊ | 397/4880 [01:42<14:27, 5.17it/s]
701
  8%|▊ | 398/4880 [01:43<15:28, 4.83it/s]
702
  8%|▊ | 399/4880 [01:43<17:24, 4.29it/s]
703
  8%|▊ | 400/4880 [01:43<19:01, 3.92it/s]
704
  8%|▊ | 401/4880 [01:43<19:28, 3.83it/s]
705
  8%|▊ | 402/4880 [01:44<18:12, 4.10it/s]
706
  8%|▊ | 403/4880 [01:44<18:03, 4.13it/s]
707
  8%|▊ | 404/4880 [01:44<20:43, 3.60it/s]
708
  8%|▊ | 405/4880 [01:44<20:33, 3.63it/s]
709
  8%|▊ | 406/4880 [01:45<20:00, 3.73it/s]
710
  8%|▊ | 407/4880 [01:45<18:32, 4.02it/s]
711
  8%|▊ | 408/4880 [01:45<17:42, 4.21it/s]
712
  8%|▊ | 409/4880 [01:45<17:36, 4.23it/s]
713
  8%|▊ | 410/4880 [01:46<17:49, 4.18it/s]
714
  8%|▊ | 411/4880 [01:46<23:07, 3.22it/s]
715
  8%|▊ | 412/4880 [01:46<20:55, 3.56it/s]
716
  8%|▊ | 413/4880 [01:46<19:01, 3.91it/s]
717
  8%|▊ | 414/4880 [01:47<19:54, 3.74it/s]
718
  9%|▊ | 415/4880 [01:47<19:32, 3.81it/s]
719
  9%|▊ | 416/4880 [01:47<18:28, 4.03it/s]
720
  9%|▊ | 417/4880 [01:47<17:32, 4.24it/s]
721
  9%|▊ | 418/4880 [01:48<18:10, 4.09it/s]
722
  9%|▊ | 419/4880 [01:48<17:53, 4.15it/s]
723
  9%|▊ | 420/4880 [01:48<16:12, 4.59it/s]
724
  9%|▊ | 421/4880 [01:48<15:53, 4.68it/s]
725
  9%|▊ | 422/4880 [01:49<18:30, 4.02it/s]
726
  9%|▊ | 423/4880 [01:49<18:39, 3.98it/s]
727
  9%|▊ | 424/4880 [01:49<19:06, 3.89it/s]
728
  9%|▊ | 425/4880 [01:49<17:52, 4.15it/s]
729
  9%|▊ | 426/4880 [01:50<19:16, 3.85it/s]
730
  9%|▉ | 427/4880 [01:50<18:09, 4.09it/s]
731
  9%|▉ | 428/4880 [01:50<17:46, 4.18it/s]
732
  9%|▉ | 429/4880 [01:51<20:36, 3.60it/s]
733
  9%|▉ | 430/4880 [01:51<19:26, 3.81it/s]
734
  9%|▉ | 431/4880 [01:51<19:11, 3.86it/s]
735
  9%|▉ | 432/4880 [01:51<18:48, 3.94it/s]
736
  9%|▉ | 433/4880 [01:51<18:50, 3.93it/s]
737
  9%|▉ | 434/4880 [01:52<19:43, 3.76it/s]
738
  9%|▉ | 435/4880 [01:52<17:27, 4.24it/s]
739
  9%|▉ | 436/4880 [01:52<16:47, 4.41it/s]
740
  9%|▉ | 437/4880 [01:52<16:02, 4.62it/s]
741
  9%|▉ | 438/4880 [01:53<16:47, 4.41it/s]
742
  9%|▉ | 439/4880 [01:53<18:35, 3.98it/s]
743
  9%|▉ | 440/4880 [01:53<17:37, 4.20it/s]
744
  9%|▉ | 441/4880 [01:53<18:43, 3.95it/s]
745
  9%|▉ | 442/4880 [01:54<18:25, 4.01it/s]
746
  9%|▉ | 443/4880 [01:54<17:47, 4.16it/s]
747
  9%|▉ | 444/4880 [01:54<18:59, 3.89it/s]
748
  9%|▉ | 445/4880 [01:54<17:10, 4.30it/s]
749
  9%|▉ | 446/4880 [01:55<16:48, 4.40it/s]
750
  9%|▉ | 447/4880 [01:55<15:28, 4.77it/s]
751
  9%|▉ | 448/4880 [01:55<15:04, 4.90it/s]
752
  9%|▉ | 449/4880 [01:55<15:11, 4.86it/s]
753
  9%|▉ | 450/4880 [01:55<14:54, 4.95it/s]
754
  9%|▉ | 451/4880 [01:56<15:07, 4.88it/s]
755
  9%|▉ | 452/4880 [01:56<15:59, 4.61it/s]
756
  9%|▉ | 453/4880 [01:56<17:40, 4.17it/s]
757
  9%|▉ | 454/4880 [01:56<16:52, 4.37it/s]
758
  9%|▉ | 455/4880 [01:57<17:33, 4.20it/s]
759
  9%|▉ | 456/4880 [01:57<17:25, 4.23it/s]
760
  9%|▉ | 457/4880 [01:57<16:26, 4.48it/s]
761
  9%|▉ | 458/4880 [01:57<15:19, 4.81it/s]
762
  9%|▉ | 459/4880 [01:57<14:45, 4.99it/s]
763
  9%|▉ | 460/4880 [01:58<15:33, 4.73it/s]
764
  9%|▉ | 461/4880 [01:58<16:51, 4.37it/s]
765
  9%|▉ | 462/4880 [01:58<16:24, 4.49it/s]
766
  9%|▉ | 463/4880 [01:58<16:46, 4.39it/s]
767
  10%|▉ | 464/4880 [01:58<17:21, 4.24it/s]
768
  10%|▉ | 465/4880 [01:59<21:30, 3.42it/s]
769
  10%|▉ | 466/4880 [01:59<22:22, 3.29it/s]
770
  10%|▉ | 467/4880 [02:00<21:53, 3.36it/s]
771
  10%|▉ | 468/4880 [02:00<24:02, 3.06it/s]
772
  10%|▉ | 469/4880 [02:00<24:19, 3.02it/s]
773
  10%|▉ | 470/4880 [02:01<22:17, 3.30it/s]
774
  10%|▉ | 471/4880 [02:01<21:14, 3.46it/s]
775
  10%|▉ | 472/4880 [02:01<19:40, 3.73it/s]
776
  10%|▉ | 473/4880 [02:01<18:23, 3.99it/s]
777
  10%|▉ | 474/4880 [02:01<16:40, 4.40it/s]
778
  10%|▉ | 475/4880 [02:02<15:14, 4.82it/s]
779
  10%|▉ | 476/4880 [02:02<15:35, 4.71it/s]
780
  10%|▉ | 477/4880 [02:02<19:30, 3.76it/s]
781
  10%|▉ | 478/4880 [02:02<18:43, 3.92it/s]
782
  10%|▉ | 479/4880 [02:03<19:32, 3.76it/s]
783
  10%|▉ | 480/4880 [02:03<18:19, 4.00it/s]
784
  10%|▉ | 481/4880 [02:03<16:35, 4.42it/s]
785
  10%|▉ | 482/4880 [02:03<16:39, 4.40it/s]
786
  10%|▉ | 483/4880 [02:04<18:17, 4.00it/s]
787
  10%|▉ | 484/4880 [02:04<17:41, 4.14it/s]
788
  10%|▉ | 485/4880 [02:04<19:41, 3.72it/s]
789
  10%|▉ | 486/4880 [02:04<17:24, 4.21it/s]
790
  10%|▉ | 487/4880 [02:05<17:49, 4.11it/s]
791
  10%|█ | 488/4880 [02:05<17:13, 4.25it/s][INFO|trainer.py:811] 2024-09-09 20:34:17,645 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, tokens, id. If ner_tags, tokens, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
792
+ [INFO|trainer.py:3819] 2024-09-09 20:34:17,647 >>
793
+ ***** Running Evaluation *****
794
+ [INFO|trainer.py:3821] 2024-09-09 20:34:17,647 >> Num examples = 6810
795
+ [INFO|trainer.py:3824] 2024-09-09 20:34:17,647 >> Batch size = 8
796
+
797
+
798
  0%| | 0/852 [00:00<?, ?it/s]
799
+
800
  1%| | 10/852 [00:00<00:08, 95.08it/s]
801
+
802
  2%|▏ | 20/852 [00:00<00:09, 84.15it/s]
803
+
804
  3%|▎ | 29/852 [00:00<00:09, 82.37it/s]
805
+
806
  4%|▍ | 38/852 [00:00<00:09, 81.48it/s]
807
+
808
  6%|▌ | 47/852 [00:00<00:09, 81.77it/s]
809
+
810
  7%|▋ | 56/852 [00:00<00:09, 82.90it/s]
811
+
812
  8%|▊ | 65/852 [00:00<00:09, 81.44it/s]
813
+
814
  9%|▊ | 74/852 [00:00<00:09, 78.40it/s]
815
+
816
  10%|▉ | 82/852 [00:01<00:09, 77.16it/s]
817
+
818
  11%|█ | 91/852 [00:01<00:09, 78.96it/s]
819
+
820
  12%|█▏ | 100/852 [00:01<00:09, 79.19it/s]
821
+
822
  13%|█▎ | 109/852 [00:01<00:09, 79.85it/s]
823
+
824
  14%|█▍ | 118/852 [00:01<00:09, 81.27it/s]
825
+
826
  15%|█▍ | 127/852 [00:01<00:09, 78.40it/s]
827
+
828
  16%|█▌ | 136/852 [00:01<00:08, 79.81it/s]
829
+
830
  17%|█▋ | 145/852 [00:01<00:08, 79.57it/s]
831
+
832
  18%|█▊ | 154/852 [00:01<00:08, 79.99it/s]
833
+
834
  19%|█▉ | 163/852 [00:02<00:08, 81.18it/s]
835
+
836
  20%|██ | 172/852 [00:02<00:08, 82.07it/s]
837
+
838
  21%|██ | 181/852 [00:02<00:08, 81.93it/s]
839
+
840
  22%|██▏ | 190/852 [00:02<00:07, 82.93it/s]
841
+
842
  23%|██▎ | 199/852 [00:02<00:07, 82.66it/s]
843
+
844
  24%|██▍ | 208/852 [00:02<00:07, 81.16it/s]
845
+
846
  25%|██▌ | 217/852 [00:02<00:07, 81.34it/s]
847
+
848
  27%|██▋ | 226/852 [00:02<00:07, 81.72it/s]
849
+
850
  28%|██▊ | 235/852 [00:02<00:07, 80.54it/s]
851
+
852
  29%|██▊ | 244/852 [00:03<00:07, 77.84it/s]
853
+
854
  30%|██▉ | 253/852 [00:03<00:07, 80.37it/s]
855
+
856
  31%|███ | 262/852 [00:03<00:07, 82.06it/s]
857
+
858
  32%|███▏ | 271/852 [00:03<00:07, 81.57it/s]
859
+
860
  33%|███▎ | 280/852 [00:03<00:06, 83.40it/s]
861
+
862
  34%|███▍ | 289/852 [00:03<00:06, 82.65it/s]
863
+
864
  35%|███▍ | 298/852 [00:03<00:06, 83.45it/s]
865
+
866
  36%|███▌ | 307/852 [00:03<00:06, 84.22it/s]
867
+
868
  37%|███▋ | 316/852 [00:03<00:06, 82.13it/s]
869
+
870
  38%|███▊ | 325/852 [00:03<00:06, 82.32it/s]
871
+
872
  39%|███▉ | 334/852 [00:04<00:06, 82.25it/s]
873
+
874
  40%|████ | 343/852 [00:04<00:06, 83.35it/s]
875
+
876
  41%|████▏ | 352/852 [00:04<00:06, 83.19it/s]
877
+
878
  42%|████▏ | 361/852 [00:04<00:06, 80.97it/s]
879
+
880
  43%|████▎ | 370/852 [00:04<00:05, 81.66it/s]
881
+
882
  44%|████▍ | 379/852 [00:04<00:05, 81.74it/s]
883
+
884
  46%|████▌ | 388/852 [00:04<00:05, 81.25it/s]
885
+
886
  47%|████▋ | 397/852 [00:04<00:05, 81.47it/s]
887
+
888
  48%|████▊ | 406/852 [00:05<00:05, 78.66it/s]
889
+
890
  49%|████▊ | 415/852 [00:05<00:05, 79.89it/s]
891
+
892
  50%|████▉ | 424/852 [00:05<00:05, 80.80it/s]
893
+
894
  51%|█████ | 433/852 [00:05<00:05, 80.84it/s]
895
+
896
  52%|█████▏ | 442/852 [00:05<00:04, 82.40it/s]
897
+
898
  53%|█████▎ | 451/852 [00:05<00:04, 82.75it/s]
899
+
900
  54%|█████▍ | 460/852 [00:05<00:04, 82.33it/s]
901
+
902
  55%|█████▌ | 469/852 [00:05<00:04, 80.45it/s]
903
+
904
  56%|█████▌ | 478/852 [00:05<00:04, 77.02it/s]
905
+
906
  57%|█████▋ | 486/852 [00:05<00:04, 77.70it/s]
907
+
908
  58%|█████▊ | 495/852 [00:06<00:04, 79.98it/s]
909
+
910
  59%|█████▉ | 504/852 [00:06<00:04, 81.79it/s]
911
+
912
  60%|██████ | 513/852 [00:06<00:04, 82.10it/s]
913
+
914
  61%|██████▏ | 522/852 [00:06<00:04, 81.21it/s]
915
+
916
  62%|██████▏ | 531/852 [00:06<00:03, 81.14it/s]
917
+
918
  63%|██████▎ | 540/852 [00:06<00:03, 82.49it/s]
919
+
920
  64%|██████▍ | 549/852 [00:06<00:03, 80.76it/s]
921
+
922
  65%|██████▌ | 558/852 [00:06<00:03, 81.05it/s]
923
+
924
  67%|██████▋ | 567/852 [00:06<00:03, 81.88it/s]
925
+
926
  68%|██████▊ | 576/852 [00:07<00:03, 82.38it/s]
927
+
928
  69%|██████▊ | 585/852 [00:07<00:03, 80.85it/s]
929
+
930
  70%|██████▉ | 594/852 [00:07<00:03, 81.90it/s]
931
+
932
  71%|███████ | 603/852 [00:07<00:03, 81.87it/s]
933
+
934
  72%|███████▏ | 612/852 [00:07<00:02, 80.25it/s]
935
+
936
  73%|███████▎ | 621/852 [00:07<00:02, 80.24it/s]
937
+
938
  74%|███████▍ | 630/852 [00:07<00:02, 78.83it/s]
939
+
940
  75%|███████▌ | 639/852 [00:07<00:02, 79.78it/s]
941
+
942
  76%|███████▌ | 647/852 [00:07<00:02, 77.63it/s]
943
+
944
  77%|███████▋ | 656/852 [00:08<00:02, 79.59it/s]
945
+
946
  78%|███████▊ | 665/852 [00:08<00:02, 80.43it/s]
947
+
948
  79%|███████▉ | 674/852 [00:08<00:02, 80.09it/s]
949
+
950
  80%|████████ | 683/852 [00:08<00:02, 81.05it/s]
951
+
952
  81%|████████ | 692/852 [00:08<00:01, 82.71it/s]
953
+
954
  82%|████████▏ | 701/852 [00:08<00:01, 83.34it/s]
955
+
956
  83%|████████▎ | 710/852 [00:08<00:01, 84.26it/s]
957
+
958
  84%|████████▍ | 719/852 [00:08<00:01, 83.19it/s]
959
+
960
  85%|████████▌ | 728/852 [00:08<00:01, 83.95it/s]
961
+
962
  87%|████████▋ | 737/852 [00:09<00:01, 83.62it/s]
963
+
964
  88%|████████▊ | 746/852 [00:09<00:01, 84.17it/s]
965
+
966
  89%|████████▊ | 755/852 [00:09<00:01, 84.42it/s]
967
+
968
  90%|████████▉ | 764/852 [00:09<00:01, 84.99it/s]
969
+
970
  91%|█████████ | 773/852 [00:09<00:00, 83.65it/s]
971
+
972
  92%|█████████▏| 782/852 [00:09<00:00, 81.82it/s]
973
+
974
  93%|█████████▎| 791/852 [00:09<00:00, 82.51it/s]
975
+
976
  94%|█████████▍| 800/852 [00:09<00:00, 82.35it/s]
977
+
978
  95%|█████████▍| 809/852 [00:09<00:00, 83.95it/s]
979
+
980
  96%|█████████▌| 818/852 [00:10<00:00, 82.34it/s]
981
+
982
  97%|█████████▋| 827/852 [00:10<00:00, 84.00it/s]
983
+
984
  98%|█████████▊| 836/852 [00:10<00:00, 84.05it/s]
985
+
986
  99%|█████████▉| 845/852 [00:10<00:00, 82.65it/s]
987
 
988
+
989
 
990
  10%|█ | 488/4880 [02:19<17:13, 4.25it/s]
991
+
992
+
993
  [INFO|trainer.py:3503] 2024-09-09 20:34:31,586 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-488
994
+ [INFO|configuration_utils.py:472] 2024-09-09 20:34:31,588 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-488/config.json
995
+ [INFO|modeling_utils.py:2799] 2024-09-09 20:34:32,614 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-488/model.safetensors
996
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 20:34:32,615 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-488/tokenizer_config.json
997
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 20:34:32,615 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-488/special_tokens_map.json
998
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 20:34:37,941 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
999
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 20:34:37,941 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1000
+
1001
  10%|█ | 489/4880 [02:26<7:47:21, 6.39s/it]
1002
  10%|█ | 490/4880 [02:26<5:36:26, 4.60s/it]
1003
  10%|█ | 491/4880 [02:26<4:03:41, 3.33s/it]
1004
  10%|█ | 492/4880 [02:27<2:55:16, 2.40s/it]
1005
  10%|█ | 493/4880 [02:27<2:08:23, 1.76s/it]
1006
  10%|█ | 494/4880 [02:27<1:34:36, 1.29s/it]
1007
  10%|█ | 495/4880 [02:27<1:10:33, 1.04it/s]
1008
  10%|█ | 496/4880 [02:28<1:00:59, 1.20it/s]
1009
  10%|█ | 497/4880 [02:28<47:22, 1.54it/s]
1010
  10%|█ | 498/4880 [02:28<38:06, 1.92it/s]
1011
  10%|█ | 499/4880 [02:28<32:59, 2.21it/s]
1012
  10%|█ | 500/4880 [02:29<29:11, 2.50it/s]
1013
 
1014
  10%|█ | 500/4880 [02:29<29:11, 2.50it/s]
1015
  10%|█ | 501/4880 [02:29<28:38, 2.55it/s]
1016
  10%|█ | 502/4880 [02:29<24:03, 3.03it/s]
1017
  10%|█ | 503/4880 [02:30<22:13, 3.28it/s]
1018
  10%|█ | 504/4880 [02:30<21:04, 3.46it/s]
1019
  10%|█ | 505/4880 [02:30<19:33, 3.73it/s]
1020
  10%|█ | 506/4880 [02:30<19:55, 3.66it/s]
1021
  10%|█ | 507/4880 [02:30<17:58, 4.06it/s]
1022
  10%|█ | 508/4880 [02:31<17:15, 4.22it/s]
1023
  10%|█ | 509/4880 [02:31<16:30, 4.41it/s]
1024
  10%|█ | 510/4880 [02:31<16:42, 4.36it/s]
1025
  10%|█ | 511/4880 [02:31<17:07, 4.25it/s]
1026
  10%|█ | 512/4880 [02:32<16:53, 4.31it/s]
1027
  11%|█ | 513/4880 [02:32<17:01, 4.28it/s]
1028
  11%|█ | 514/4880 [02:32<16:01, 4.54it/s]
1029
  11%|█ | 515/4880 [02:32<17:45, 4.10it/s]
1030
  11%|█ | 516/4880 [02:33<17:49, 4.08it/s]
1031
  11%|█ | 517/4880 [02:33<17:33, 4.14it/s]
1032
  11%|█ | 518/4880 [02:33<16:13, 4.48it/s]
1033
  11%|█ | 519/4880 [02:33<16:38, 4.37it/s]
1034
  11%|█ | 520/4880 [02:33<16:44, 4.34it/s]
1035
  11%|█ | 521/4880 [02:34<16:44, 4.34it/s]
1036
  11%|█ | 522/4880 [02:34<16:13, 4.48it/s]
1037
  11%|█ | 523/4880 [02:34<15:30, 4.68it/s]
1038
  11%|█ | 524/4880 [02:34<14:40, 4.95it/s]
1039
  11%|█ | 525/4880 [02:35<19:15, 3.77it/s]
1040
  11%|█ | 526/4880 [02:35<20:08, 3.60it/s]
1041
  11%|█ | 527/4880 [02:35<19:06, 3.80it/s]
1042
  11%|█ | 528/4880 [02:35<17:44, 4.09it/s]
1043
  11%|█ | 529/4880 [02:36<16:12, 4.48it/s]
1044
  11%|█ | 530/4880 [02:36<17:48, 4.07it/s]
1045
  11%|█ | 531/4880 [02:36<16:58, 4.27it/s]
1046
  11%|█ | 532/4880 [02:36<17:30, 4.14it/s]
1047
  11%|█ | 533/4880 [02:37<16:54, 4.29it/s]
1048
  11%|█ | 534/4880 [02:37<16:35, 4.37it/s]
1049
  11%|█ | 535/4880 [02:37<16:47, 4.31it/s]
1050
  11%|█ | 536/4880 [02:37<16:16, 4.45it/s]
1051
  11%|█ | 537/4880 [02:37<16:33, 4.37it/s]
1052
  11%|█ | 538/4880 [02:38<19:00, 3.81it/s]
1053
  11%|█ | 539/4880 [02:38<17:58, 4.02it/s]
1054
  11%|█ | 540/4880 [02:38<16:09, 4.48it/s]
1055
  11%|█ | 541/4880 [02:39<17:51, 4.05it/s]
1056
  11%|█ | 542/4880 [02:39<17:42, 4.08it/s]
1057
  11%|█ | 543/4880 [02:39<17:00, 4.25it/s]
1058
  11%|█ | 544/4880 [02:39<20:08, 3.59it/s]
1059
  11%|█ | 545/4880 [02:40<20:14, 3.57it/s]
1060
  11%|█ | 546/4880 [02:40<20:19, 3.55it/s]
1061
  11%|█ | 547/4880 [02:40<19:18, 3.74it/s]
1062
  11%|█ | 548/4880 [02:40<18:11, 3.97it/s]
1063
  11%|█▏ | 549/4880 [02:41<17:21, 4.16it/s]
1064
  11%|█▏ | 550/4880 [02:41<16:37, 4.34it/s]
1065
  11%|█▏ | 551/4880 [02:41<16:13, 4.44it/s]
1066
  11%|█▏ | 552/4880 [02:41<14:50, 4.86it/s]
1067
  11%|█▏ | 553/4880 [02:41<15:00, 4.81it/s]
1068
  11%|█▏ | 554/4880 [02:42<16:26, 4.38it/s]
1069
  11%|█▏ | 555/4880 [02:42<16:19, 4.41it/s]
1070
  11%|█▏ | 556/4880 [02:42<15:54, 4.53it/s]
1071
  11%|█▏ | 557/4880 [02:42<16:46, 4.29it/s]
1072
  11%|█▏ | 558/4880 [02:43<17:45, 4.05it/s]
1073
  11%|█▏ | 559/4880 [02:43<16:21, 4.40it/s]
1074
  11%|█▏ | 560/4880 [02:43<15:21, 4.69it/s]
1075
  11%|█▏ | 561/4880 [02:43<14:52, 4.84it/s]
1076
  12%|█▏ | 562/4880 [02:43<15:23, 4.67it/s]
1077
  12%|█▏ | 563/4880 [02:44<14:32, 4.95it/s]
1078
  12%|█▏ | 564/4880 [02:44<14:45, 4.87it/s]
1079
  12%|█▏ | 565/4880 [02:44<15:10, 4.74it/s]
1080
  12%|█▏ | 566/4880 [02:44<16:14, 4.43it/s]
1081
  12%|█▏ | 567/4880 [02:45<16:32, 4.35it/s]
1082
  12%|█▏ | 568/4880 [02:45<17:01, 4.22it/s]
1083
  12%|█▏ | 569/4880 [02:45<16:14, 4.42it/s]
1084
  12%|█▏ | 570/4880 [02:45<16:17, 4.41it/s]
1085
  12%|█▏ | 571/4880 [02:45<16:50, 4.27it/s]
1086
  12%|█▏ | 572/4880 [02:46<17:16, 4.15it/s]
1087
  12%|█▏ | 573/4880 [02:46<18:22, 3.91it/s]
1088
  12%|█▏ | 574/4880 [02:46<19:40, 3.65it/s]
1089
  12%|█▏ | 575/4880 [02:47<20:31, 3.50it/s]
1090
  12%|█▏ | 576/4880 [02:47<27:07, 2.65it/s]
1091
  12%|█▏ | 577/4880 [02:47<23:46, 3.02it/s]
1092
  12%|█▏ | 578/4880 [02:48<20:54, 3.43it/s]
1093
  12%|█▏ | 579/4880 [02:48<18:55, 3.79it/s]
1094
  12%|█▏ | 580/4880 [02:48<16:38, 4.31it/s]
1095
  12%|█▏ | 581/4880 [02:48<16:51, 4.25it/s]
1096
  12%|█▏ | 582/4880 [02:49<17:48, 4.02it/s]
1097
  12%|█▏ | 583/4880 [02:49<16:15, 4.41it/s]
1098
  12%|█▏ | 584/4880 [02:49<15:56, 4.49it/s]
1099
  12%|█▏ | 585/4880 [02:49<14:34, 4.91it/s]
1100
  12%|█▏ | 586/4880 [02:49<15:24, 4.65it/s]
1101
  12%|█▏ | 587/4880 [02:49<14:50, 4.82it/s]
1102
  12%|█▏ | 588/4880 [02:50<15:37, 4.58it/s]
1103
  12%|█▏ | 589/4880 [02:50<17:36, 4.06it/s]
1104
  12%|█▏ | 590/4880 [02:50<20:27, 3.50it/s]
1105
  12%|█▏ | 591/4880 [02:51<19:07, 3.74it/s]
1106
  12%|█▏ | 592/4880 [02:51<19:00, 3.76it/s]
1107
  12%|█▏ | 593/4880 [02:51<17:40, 4.04it/s]
1108
  12%|█▏ | 594/4880 [02:51<16:42, 4.28it/s]
1109
  12%|█▏ | 595/4880 [02:52<16:38, 4.29it/s]
1110
  12%|█▏ | 596/4880 [02:52<17:36, 4.05it/s]
1111
  12%|█▏ | 597/4880 [02:52<16:15, 4.39it/s]
1112
  12%|█▏ | 598/4880 [02:52<20:08, 3.54it/s]
1113
  12%|█▏ | 599/4880 [02:53<18:32, 3.85it/s]
1114
  12%|█▏ | 600/4880 [02:53<20:22, 3.50it/s]
1115
  12%|█▏ | 601/4880 [02:54<25:31, 2.79it/s]
1116
  12%|█▏ | 602/4880 [02:54<22:15, 3.20it/s]
1117
  12%|█▏ | 603/4880 [02:54<23:11, 3.07it/s]
1118
  12%|█▏ | 604/4880 [02:54<21:13, 3.36it/s]
1119
  12%|█▏ | 605/4880 [02:54<18:30, 3.85it/s]
1120
  12%|█▏ | 606/4880 [02:55<16:50, 4.23it/s]
1121
  12%|█▏ | 607/4880 [02:55<15:30, 4.59it/s]
1122
  12%|█▏ | 608/4880 [02:55<15:26, 4.61it/s]
1123
  12%|█▏ | 609/4880 [02:55<15:21, 4.63it/s]
1124
  12%|█▎ | 610/4880 [02:56<16:03, 4.43it/s]
1125
  13%|█▎ | 611/4880 [02:56<16:35, 4.29it/s]
1126
  13%|█▎ | 612/4880 [02:56<15:54, 4.47it/s]
1127
  13%|█▎ | 613/4880 [02:56<15:12, 4.68it/s]
1128
  13%|█▎ | 614/4880 [02:56<15:18, 4.64it/s]
1129
  13%|█▎ | 615/4880 [02:57<17:12, 4.13it/s]
1130
  13%|█▎ | 616/4880 [02:57<17:14, 4.12it/s]
1131
  13%|█▎ | 617/4880 [02:57<19:42, 3.61it/s]
1132
  13%|█▎ | 618/4880 [02:57<18:16, 3.89it/s]
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.99288256227758,
3
+ "total_flos": 2.130317416831723e+16,
4
+ "train_loss": 0.017706579814779112,
5
+ "train_runtime": 1901.5665,
6
+ "train_samples": 44938,
7
+ "train_samples_per_second": 236.321,
8
+ "train_steps_per_second": 3.692
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.8053395240858967,
3
+ "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-7020",
4
+ "epoch": 9.99288256227758,
5
+ "eval_steps": 500,
6
+ "global_step": 7020,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.7117437722419929,
13
+ "grad_norm": 0.739061713218689,
14
+ "learning_rate": 4.643874643874644e-05,
15
+ "loss": 0.1165,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.999288256227758,
20
+ "eval_accuracy": 0.9735468988149999,
21
+ "eval_f1": 0.7736125182933693,
22
+ "eval_loss": 0.08085697889328003,
23
+ "eval_precision": 0.7454979388153613,
24
+ "eval_recall": 0.8039307440336921,
25
+ "eval_runtime": 14.5471,
26
+ "eval_samples_per_second": 468.136,
27
+ "eval_steps_per_second": 58.569,
28
+ "step": 702
29
+ },
30
+ {
31
+ "epoch": 1.4234875444839858,
32
+ "grad_norm": 0.5600239038467407,
33
+ "learning_rate": 4.287749287749288e-05,
34
+ "loss": 0.0461,
35
+ "step": 1000
36
+ },
37
+ {
38
+ "epoch": 2.0,
39
+ "eval_accuracy": 0.9746797204333557,
40
+ "eval_f1": 0.7832803271240344,
41
+ "eval_loss": 0.09561743587255478,
42
+ "eval_precision": 0.7611479028697572,
43
+ "eval_recall": 0.8067384183434722,
44
+ "eval_runtime": 14.2524,
45
+ "eval_samples_per_second": 477.815,
46
+ "eval_steps_per_second": 59.779,
47
+ "step": 1405
48
+ },
49
+ {
50
+ "epoch": 2.135231316725979,
51
+ "grad_norm": 0.4771190881729126,
52
+ "learning_rate": 3.931623931623932e-05,
53
+ "loss": 0.0273,
54
+ "step": 1500
55
+ },
56
+ {
57
+ "epoch": 2.8469750889679717,
58
+ "grad_norm": 0.29212868213653564,
59
+ "learning_rate": 3.575498575498576e-05,
60
+ "loss": 0.0165,
61
+ "step": 2000
62
+ },
63
+ {
64
+ "epoch": 2.999288256227758,
65
+ "eval_accuracy": 0.974439424938553,
66
+ "eval_f1": 0.7853282741175118,
67
+ "eval_loss": 0.10571284592151642,
68
+ "eval_precision": 0.7721003843545106,
69
+ "eval_recall": 0.7990173139915769,
70
+ "eval_runtime": 14.2529,
71
+ "eval_samples_per_second": 477.797,
72
+ "eval_steps_per_second": 59.777,
73
+ "step": 2107
74
+ },
75
+ {
76
+ "epoch": 3.5587188612099645,
77
+ "grad_norm": 0.08157803863286972,
78
+ "learning_rate": 3.2193732193732194e-05,
79
+ "loss": 0.011,
80
+ "step": 2500
81
+ },
82
+ {
83
+ "epoch": 4.0,
84
+ "eval_accuracy": 0.9750504620539086,
85
+ "eval_f1": 0.7971327796108773,
86
+ "eval_loss": 0.12744221091270447,
87
+ "eval_precision": 0.775858250276855,
88
+ "eval_recall": 0.8196069255966308,
89
+ "eval_runtime": 14.6113,
90
+ "eval_samples_per_second": 466.079,
91
+ "eval_steps_per_second": 58.311,
92
+ "step": 2810
93
+ },
94
+ {
95
+ "epoch": 4.270462633451958,
96
+ "grad_norm": 0.45329615473747253,
97
+ "learning_rate": 2.863247863247863e-05,
98
+ "loss": 0.0079,
99
+ "step": 3000
100
+ },
101
+ {
102
+ "epoch": 4.98220640569395,
103
+ "grad_norm": 0.4696062207221985,
104
+ "learning_rate": 2.5071225071225073e-05,
105
+ "loss": 0.006,
106
+ "step": 3500
107
+ },
108
+ {
109
+ "epoch": 4.999288256227758,
110
+ "eval_accuracy": 0.9744943496230793,
111
+ "eval_f1": 0.7975886853698122,
112
+ "eval_loss": 0.13583102822303772,
113
+ "eval_precision": 0.7904411764705882,
114
+ "eval_recall": 0.8048666354702855,
115
+ "eval_runtime": 14.3515,
116
+ "eval_samples_per_second": 474.516,
117
+ "eval_steps_per_second": 59.367,
118
+ "step": 3512
119
+ },
120
+ {
121
+ "epoch": 5.693950177935943,
122
+ "grad_norm": 0.6243860721588135,
123
+ "learning_rate": 2.150997150997151e-05,
124
+ "loss": 0.0045,
125
+ "step": 4000
126
+ },
127
+ {
128
+ "epoch": 6.0,
129
+ "eval_accuracy": 0.9746179301632636,
130
+ "eval_f1": 0.7948299953423382,
131
+ "eval_loss": 0.14197705686092377,
132
+ "eval_precision": 0.7911451089476125,
133
+ "eval_recall": 0.7985493682732803,
134
+ "eval_runtime": 14.3392,
135
+ "eval_samples_per_second": 474.921,
136
+ "eval_steps_per_second": 59.417,
137
+ "step": 4215
138
+ },
139
+ {
140
+ "epoch": 6.405693950177936,
141
+ "grad_norm": 0.2963380813598633,
142
+ "learning_rate": 1.794871794871795e-05,
143
+ "loss": 0.0037,
144
+ "step": 4500
145
+ },
146
+ {
147
+ "epoch": 6.999288256227758,
148
+ "eval_accuracy": 0.9748925535858953,
149
+ "eval_f1": 0.796227293898463,
150
+ "eval_loss": 0.160146102309227,
151
+ "eval_precision": 0.7925359295317571,
152
+ "eval_recall": 0.7999532054281703,
153
+ "eval_runtime": 14.175,
154
+ "eval_samples_per_second": 480.423,
155
+ "eval_steps_per_second": 60.106,
156
+ "step": 4917
157
+ },
158
+ {
159
+ "epoch": 7.117437722419929,
160
+ "grad_norm": 0.4029097557067871,
161
+ "learning_rate": 1.4387464387464389e-05,
162
+ "loss": 0.0028,
163
+ "step": 5000
164
+ },
165
+ {
166
+ "epoch": 7.829181494661921,
167
+ "grad_norm": 0.04551521688699722,
168
+ "learning_rate": 1.0826210826210826e-05,
169
+ "loss": 0.0022,
170
+ "step": 5500
171
+ },
172
+ {
173
+ "epoch": 8.0,
174
+ "eval_accuracy": 0.9758331388084089,
175
+ "eval_f1": 0.8050679995350458,
176
+ "eval_loss": 0.1620824635028839,
177
+ "eval_precision": 0.7999537999538,
178
+ "eval_recall": 0.8102480112306972,
179
+ "eval_runtime": 14.4773,
180
+ "eval_samples_per_second": 470.391,
181
+ "eval_steps_per_second": 58.851,
182
+ "step": 5620
183
+ },
184
+ {
185
+ "epoch": 8.540925266903916,
186
+ "grad_norm": 0.3445014953613281,
187
+ "learning_rate": 7.264957264957266e-06,
188
+ "loss": 0.0016,
189
+ "step": 6000
190
+ },
191
+ {
192
+ "epoch": 8.999288256227757,
193
+ "eval_accuracy": 0.9757713485383168,
194
+ "eval_f1": 0.8028807062376583,
195
+ "eval_loss": 0.16807720065116882,
196
+ "eval_precision": 0.7972318339100346,
197
+ "eval_recall": 0.8086102012166588,
198
+ "eval_runtime": 14.1973,
199
+ "eval_samples_per_second": 479.67,
200
+ "eval_steps_per_second": 60.012,
201
+ "step": 6322
202
+ },
203
+ {
204
+ "epoch": 9.252669039145907,
205
+ "grad_norm": 0.12732785940170288,
206
+ "learning_rate": 3.7037037037037037e-06,
207
+ "loss": 0.0013,
208
+ "step": 6500
209
+ },
210
+ {
211
+ "epoch": 9.9644128113879,
212
+ "grad_norm": 0.05971187725663185,
213
+ "learning_rate": 1.4245014245014247e-07,
214
+ "loss": 0.0013,
215
+ "step": 7000
216
+ },
217
+ {
218
+ "epoch": 9.99288256227758,
219
+ "eval_accuracy": 0.9758743323218038,
220
+ "eval_f1": 0.8053395240858967,
221
+ "eval_loss": 0.17113561928272247,
222
+ "eval_precision": 0.7991246256622898,
223
+ "eval_recall": 0.8116518483855872,
224
+ "eval_runtime": 14.5918,
225
+ "eval_samples_per_second": 466.7,
226
+ "eval_steps_per_second": 58.389,
227
+ "step": 7020
228
+ },
229
+ {
230
+ "epoch": 9.99288256227758,
231
+ "step": 7020,
232
+ "total_flos": 2.130317416831723e+16,
233
+ "train_loss": 0.017706579814779112,
234
+ "train_runtime": 1901.5665,
235
+ "train_samples_per_second": 236.321,
236
+ "train_steps_per_second": 3.692
237
+ }
238
+ ],
239
+ "logging_steps": 500,
240
+ "max_steps": 7020,
241
+ "num_input_tokens_seen": 0,
242
+ "num_train_epochs": 10,
243
+ "save_steps": 500,
244
+ "stateful_callbacks": {
245
+ "TrainerControl": {
246
+ "args": {
247
+ "should_epoch_stop": false,
248
+ "should_evaluate": false,
249
+ "should_log": false,
250
+ "should_save": true,
251
+ "should_training_stop": true
252
+ },
253
+ "attributes": {}
254
+ }
255
+ },
256
+ "total_flos": 2.130317416831723e+16,
257
+ "train_batch_size": 32,
258
+ "trial_name": null,
259
+ "trial_params": null
260
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13556e6c97b2f39e25d5830ab0bc61ce81f807bcf643d150d23dd97c2f606c57
3
+ size 5240
vocab.json ADDED
The diff for this file is too large to render. See raw diff