End of training
Browse files- README.md +13 -12
- all_results.json +23 -23
- eval_results.json +9 -9
- predict_results.json +8 -8
- predictions.txt +0 -0
- tb/events.out.tfevents.1725915390.0ada7e7d1d89.13010.1 +3 -0
- train.log +48 -0
- train_results.json +7 -7
- trainer_state.json +162 -197
README.md
CHANGED
@@ -3,9 +3,10 @@ library_name: transformers
|
|
3 |
license: apache-2.0
|
4 |
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
|
5 |
tags:
|
|
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
-
- drugtemist-fasttext-75-ner
|
9 |
metrics:
|
10 |
- precision
|
11 |
- recall
|
@@ -18,24 +19,24 @@ model-index:
|
|
18 |
name: Token Classification
|
19 |
type: token-classification
|
20 |
dataset:
|
21 |
-
name: drugtemist-fasttext-75-ner
|
22 |
-
type: drugtemist-fasttext-75-ner
|
23 |
config: DrugTEMIST NER
|
24 |
split: validation
|
25 |
args: DrugTEMIST NER
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,12 +44,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
# output
|
45 |
|
46 |
-
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the drugtemist-fasttext-75-ner dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
- Accuracy: 0.9991
|
53 |
|
54 |
## Model description
|
|
|
3 |
license: apache-2.0
|
4 |
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
|
5 |
tags:
|
6 |
+
- token-classification
|
7 |
- generated_from_trainer
|
8 |
datasets:
|
9 |
+
- Rodrigo1771/drugtemist-fasttext-75-ner
|
10 |
metrics:
|
11 |
- precision
|
12 |
- recall
|
|
|
19 |
name: Token Classification
|
20 |
type: token-classification
|
21 |
dataset:
|
22 |
+
name: Rodrigo1771/drugtemist-fasttext-75-ner
|
23 |
+
type: Rodrigo1771/drugtemist-fasttext-75-ner
|
24 |
config: DrugTEMIST NER
|
25 |
split: validation
|
26 |
args: DrugTEMIST NER
|
27 |
metrics:
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
+
value: 0.9447963800904977
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
+
value: 0.9595588235294118
|
34 |
- name: F1
|
35 |
type: f1
|
36 |
+
value: 0.9521203830369357
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
+
value: 0.9991418018042759
|
40 |
---
|
41 |
|
42 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
# output
|
46 |
|
47 |
+
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/drugtemist-fasttext-75-ner dataset.
|
48 |
It achieves the following results on the evaluation set:
|
49 |
+
- Loss: 0.0044
|
50 |
+
- Precision: 0.9448
|
51 |
+
- Recall: 0.9596
|
52 |
+
- F1: 0.9521
|
53 |
- Accuracy: 0.9991
|
54 |
|
55 |
## Model description
|
all_results.json
CHANGED
@@ -1,26 +1,26 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime": 14.
|
9 |
"eval_samples": 6810,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second": 60.
|
12 |
-
"predict_accuracy": 0.
|
13 |
-
"predict_f1": 0.
|
14 |
-
"predict_loss": 0.
|
15 |
-
"predict_precision": 0.
|
16 |
-
"predict_recall": 0.
|
17 |
-
"predict_runtime":
|
18 |
-
"predict_samples_per_second":
|
19 |
-
"predict_steps_per_second":
|
20 |
-
"total_flos":
|
21 |
-
"train_loss": 0.
|
22 |
-
"train_runtime":
|
23 |
-
"train_samples":
|
24 |
-
"train_samples_per_second":
|
25 |
-
"train_steps_per_second": 3.
|
26 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_accuracy": 0.9991418018042759,
|
4 |
+
"eval_f1": 0.9521203830369357,
|
5 |
+
"eval_loss": 0.004440780263394117,
|
6 |
+
"eval_precision": 0.9447963800904977,
|
7 |
+
"eval_recall": 0.9595588235294118,
|
8 |
+
"eval_runtime": 14.1123,
|
9 |
"eval_samples": 6810,
|
10 |
+
"eval_samples_per_second": 482.558,
|
11 |
+
"eval_steps_per_second": 60.373,
|
12 |
+
"predict_accuracy": 0.9987636326290384,
|
13 |
+
"predict_f1": 0.9231204070096098,
|
14 |
+
"predict_loss": 0.006668921560049057,
|
15 |
+
"predict_precision": 0.8967600219659527,
|
16 |
+
"predict_recall": 0.9510774606872452,
|
17 |
+
"predict_runtime": 28.5821,
|
18 |
+
"predict_samples_per_second": 511.3,
|
19 |
+
"predict_steps_per_second": 63.921,
|
20 |
+
"total_flos": 1.5694885147146138e+16,
|
21 |
+
"train_loss": 0.002533856062142209,
|
22 |
+
"train_runtime": 1422.7831,
|
23 |
+
"train_samples": 31229,
|
24 |
+
"train_samples_per_second": 219.492,
|
25 |
+
"train_steps_per_second": 3.43
|
26 |
}
|
eval_results.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime": 14.
|
9 |
"eval_samples": 6810,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second": 60.
|
12 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_accuracy": 0.9991418018042759,
|
4 |
+
"eval_f1": 0.9521203830369357,
|
5 |
+
"eval_loss": 0.004440780263394117,
|
6 |
+
"eval_precision": 0.9447963800904977,
|
7 |
+
"eval_recall": 0.9595588235294118,
|
8 |
+
"eval_runtime": 14.1123,
|
9 |
"eval_samples": 6810,
|
10 |
+
"eval_samples_per_second": 482.558,
|
11 |
+
"eval_steps_per_second": 60.373
|
12 |
}
|
predict_results.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
-
"predict_accuracy": 0.
|
3 |
-
"predict_f1": 0.
|
4 |
-
"predict_loss": 0.
|
5 |
-
"predict_precision": 0.
|
6 |
-
"predict_recall": 0.
|
7 |
-
"predict_runtime":
|
8 |
-
"predict_samples_per_second":
|
9 |
-
"predict_steps_per_second":
|
10 |
}
|
|
|
1 |
{
|
2 |
+
"predict_accuracy": 0.9987636326290384,
|
3 |
+
"predict_f1": 0.9231204070096098,
|
4 |
+
"predict_loss": 0.006668921560049057,
|
5 |
+
"predict_precision": 0.8967600219659527,
|
6 |
+
"predict_recall": 0.9510774606872452,
|
7 |
+
"predict_runtime": 28.5821,
|
8 |
+
"predict_samples_per_second": 511.3,
|
9 |
+
"predict_steps_per_second": 63.921
|
10 |
}
|
predictions.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tb/events.out.tfevents.1725915390.0ada7e7d1d89.13010.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03d8cb7f565d31640d583d92b327a96be3b79169b4e94e4f8f1d5458aa42d308
|
3 |
+
size 560
|
train.log
CHANGED
@@ -1463,3 +1463,51 @@ Training completed. Do not forget to share your model on huggingface.co/models =
|
|
1463 |
{'eval_loss': 0.005196314305067062, 'eval_precision': 0.9416590701914311, 'eval_recall': 0.9494485294117647, 'eval_f1': 0.945537757437071, 'eval_accuracy': 0.9990525491919205, 'eval_runtime': 14.6459, 'eval_samples_per_second': 464.976, 'eval_steps_per_second': 58.173, 'epoch': 10.0}
|
1464 |
{'train_runtime': 1422.7831, 'train_samples_per_second': 219.492, 'train_steps_per_second': 3.43, 'train_loss': 0.002533856062142209, 'epoch': 10.0}
|
1465 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1466 |
0%| | 0/852 [00:00<?, ?it/s]
|
1467 |
1%| | 10/852 [00:00<00:08, 93.57it/s]
|
1468 |
2%|▏ | 20/852 [00:00<00:10, 80.55it/s]
|
1469 |
3%|▎ | 29/852 [00:00<00:10, 80.58it/s]
|
1470 |
4%|▍ | 38/852 [00:00<00:10, 81.11it/s]
|
1471 |
6%|▌ | 47/852 [00:00<00:09, 81.65it/s]
|
1472 |
7%|▋ | 56/852 [00:00<00:09, 83.14it/s]
|
1473 |
8%|▊ | 65/852 [00:00<00:10, 78.65it/s]
|
1474 |
9%|▊ | 73/852 [00:00<00:10, 77.04it/s]
|
1475 |
10%|▉ | 81/852 [00:01<00:09, 77.70it/s]
|
1476 |
11%|█ | 90/852 [00:01<00:09, 79.30it/s]
|
1477 |
12%|█▏ | 98/852 [00:01<00:09, 79.14it/s]
|
1478 |
13%|█▎ | 107/852 [00:01<00:09, 79.14it/s]
|
1479 |
14%|█▎ | 116/852 [00:01<00:09, 80.00it/s]
|
1480 |
15%|█▍ | 125/852 [00:01<00:08, 81.72it/s]
|
1481 |
16%|█▌ | 134/852 [00:01<00:09, 76.77it/s]
|
1482 |
17%|█▋ | 142/852 [00:01<00:09, 74.23it/s]
|
1483 |
18%|█▊ | 150/852 [00:01<00:09, 75.01it/s]
|
1484 |
19%|█▊ | 159/852 [00:02<00:08, 78.54it/s]
|
1485 |
20%|█▉ | 168/852 [00:02<00:08, 79.78it/s]
|
1486 |
21%|██ | 177/852 [00:02<00:08, 80.22it/s]
|
1487 |
22%|██▏ | 186/852 [00:02<00:08, 81.84it/s]
|
1488 |
23%|██▎ | 195/852 [00:02<00:08, 81.79it/s]
|
1489 |
24%|██▍ | 204/852 [00:02<00:07, 82.81it/s]
|
1490 |
25%|██▌ | 213/852 [00:02<00:07, 81.58it/s]
|
1491 |
26%|██▌ | 222/852 [00:02<00:07, 81.05it/s]
|
1492 |
27%|██▋ | 231/852 [00:02<00:07, 82.05it/s]
|
1493 |
28%|██▊ | 240/852 [00:02<00:07, 81.07it/s]
|
1494 |
29%|██▉ | 249/852 [00:03<00:07, 80.20it/s]
|
1495 |
30%|███ | 258/852 [00:03<00:07, 81.36it/s]
|
1496 |
31%|███▏ | 267/852 [00:03<00:07, 81.25it/s]
|
1497 |
32%|███▏ | 276/852 [00:03<00:07, 81.52it/s]
|
1498 |
33%|███▎ | 285/852 [00:03<00:06, 81.87it/s]
|
1499 |
35%|███▍ | 294/852 [00:03<00:06, 80.80it/s]
|
1500 |
36%|███▌ | 303/852 [00:03<00:07, 78.20it/s]
|
1501 |
37%|███▋ | 312/852 [00:03<00:06, 77.55it/s]
|
1502 |
38%|███▊ | 321/852 [00:04<00:06, 79.73it/s]
|
1503 |
39%|███▊ | 330/852 [00:04<00:06, 79.60it/s]
|
1504 |
40%|███▉ | 338/852 [00:04<00:06, 79.58it/s]
|
1505 |
41%|████ | 347/852 [00:04<00:06, 79.98it/s]
|
1506 |
42%|████▏ | 356/852 [00:04<00:06, 79.10it/s]
|
1507 |
43%|████▎ | 365/852 [00:04<00:06, 79.97it/s]
|
1508 |
44%|████▍ | 374/852 [00:04<00:05, 79.68it/s]
|
1509 |
45%|████▍ | 382/852 [00:04<00:05, 78.69it/s]
|
1510 |
46%|████▌ | 391/852 [00:04<00:05, 79.19it/s]
|
1511 |
47%|████▋ | 399/852 [00:04<00:05, 78.98it/s]
|
1512 |
48%|████▊ | 407/852 [00:05<00:05, 77.08it/s]
|
1513 |
49%|████▉ | 416/852 [00:05<00:05, 78.27it/s]
|
1514 |
50%|████▉ | 424/852 [00:05<00:05, 78.61it/s]
|
1515 |
51%|█████ | 432/852 [00:05<00:05, 78.46it/s]
|
1516 |
52%|█████▏ | 441/852 [00:05<00:05, 80.76it/s]
|
1517 |
53%|█████▎ | 450/852 [00:05<00:04, 81.55it/s]
|
1518 |
54%|█████▍ | 459/852 [00:05<00:04, 82.07it/s]
|
1519 |
55%|█████▍ | 468/852 [00:05<00:04, 79.16it/s]
|
1520 |
56%|█████▌ | 476/852 [00:05<00:04, 76.30it/s]
|
1521 |
57%|█████▋ | 484/852 [00:06<00:04, 76.49it/s]
|
1522 |
58%|█████▊ | 493/852 [00:06<00:04, 78.76it/s]
|
1523 |
59%|█████▉ | 502/852 [00:06<00:04, 80.51it/s]
|
1524 |
60%|█████▉ | 511/852 [00:06<00:04, 80.85it/s]
|
1525 |
61%|██████ | 520/852 [00:06<00:04, 82.11it/s]
|
1526 |
62%|██████▏ | 529/852 [00:06<00:04, 79.93it/s]
|
1527 |
63%|██████▎ | 538/852 [00:06<00:03, 81.28it/s]
|
1528 |
64%|██████▍ | 547/852 [00:06<00:03, 81.59it/s]
|
1529 |
65%|██████▌ | 556/852 [00:06<00:03, 78.91it/s]
|
1530 |
66%|██████▋ | 565/852 [00:07<00:03, 81.03it/s]
|
1531 |
67%|██████▋ | 574/852 [00:07<00:03, 81.36it/s]
|
1532 |
68%|██████▊ | 583/852 [00:07<00:03, 80.74it/s]
|
1533 |
69%|██████▉ | 592/852 [00:07<00:03, 80.30it/s]
|
1534 |
71%|███████ | 601/852 [00:07<00:03, 80.88it/s]
|
1535 |
72%|███████▏ | 610/852 [00:07<00:02, 81.38it/s]
|
1536 |
73%|███████▎ | 619/852 [00:07<00:02, 79.27it/s]
|
1537 |
74%|███████▎ | 627/852 [00:07<00:02, 79.27it/s]
|
1538 |
75%|███████▍ | 635/852 [00:07<00:02, 75.84it/s]
|
1539 |
75%|███████▌ | 643/852 [00:08<00:02, 75.01it/s]
|
1540 |
77%|███████▋ | 652/852 [00:08<00:02, 78.03it/s]
|
1541 |
78%|███████▊ | 661/852 [00:08<00:02, 79.05it/s]
|
1542 |
79%|███████▊ | 670/852 [00:08<00:02, 79.91it/s]
|
1543 |
80%|███████▉ | 679/852 [00:08<00:02, 80.51it/s]
|
1544 |
81%|████████ | 688/852 [00:08<00:02, 81.73it/s]
|
1545 |
82%|████████▏ | 697/852 [00:08<00:01, 80.82it/s]
|
1546 |
83%|████████▎ | 706/852 [00:08<00:01, 82.01it/s]
|
1547 |
84%|████████▍ | 715/852 [00:08<00:01, 81.67it/s]
|
1548 |
85%|████████▍ | 724/852 [00:09<00:01, 81.05it/s]
|
1549 |
86%|████████▌ | 733/852 [00:09<00:01, 81.95it/s]
|
1550 |
87%|████████▋ | 742/852 [00:09<00:01, 82.90it/s]
|
1551 |
88%|████████▊ | 751/852 [00:09<00:01, 82.87it/s]
|
1552 |
89%|████████▉ | 760/852 [00:09<00:01, 84.18it/s]
|
1553 |
90%|█████████ | 769/852 [00:09<00:01, 82.73it/s]
|
1554 |
91%|█████████▏| 778/852 [00:09<00:00, 82.09it/s]
|
1555 |
92%|█████████▏| 787/852 [00:09<00:00, 80.10it/s]
|
1556 |
93%|█████████▎| 796/852 [00:09<00:00, 79.31it/s]
|
1557 |
94%|█████████▍| 805/852 [00:10<00:00, 80.66it/s]
|
1558 |
96%|█████████▌| 814/852 [00:10<00:00, 79.72it/s]
|
1559 |
97%|█████████▋| 823/852 [00:10<00:00, 81.12it/s]
|
1560 |
98%|█████████▊| 832/852 [00:10<00:00, 81.37it/s]
|
1561 |
99%|█████████▊| 841/852 [00:10<00:00, 81.30it/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1562 |
0%| | 0/1827 [00:00<?, ?it/s]
|
1563 |
0%| | 9/1827 [00:00<00:22, 81.47it/s]
|
1564 |
1%| | 18/1827 [00:00<00:24, 73.10it/s]
|
1565 |
1%|▏ | 27/1827 [00:00<00:23, 77.38it/s]
|
1566 |
2%|▏ | 35/1827 [00:00<00:22, 78.12it/s]
|
1567 |
2%|▏ | 44/1827 [00:00<00:22, 79.84it/s]
|
1568 |
3%|▎ | 53/1827 [00:00<00:22, 79.92it/s]
|
1569 |
3%|▎ | 62/1827 [00:00<00:22, 78.68it/s]
|
1570 |
4%|▍ | 71/1827 [00:00<00:22, 79.81it/s]
|
1571 |
4%|▍ | 80/1827 [00:01<00:21, 82.54it/s]
|
1572 |
5%|▍ | 89/1827 [00:01<00:21, 81.34it/s]
|
1573 |
5%|▌ | 98/1827 [00:01<00:21, 82.29it/s]
|
1574 |
6%|▌ | 107/1827 [00:01<00:20, 84.00it/s]
|
1575 |
6%|▋ | 116/1827 [00:01<00:20, 82.38it/s]
|
1576 |
7%|▋ | 125/1827 [00:01<00:20, 82.00it/s]
|
1577 |
7%|▋ | 134/1827 [00:01<00:20, 83.17it/s]
|
1578 |
8%|▊ | 143/1827 [00:01<00:20, 83.98it/s]
|
1579 |
8%|▊ | 152/1827 [00:01<00:20, 83.56it/s]
|
1580 |
9%|▉ | 161/1827 [00:01<00:20, 79.98it/s]
|
1581 |
9%|▉ | 170/1827 [00:02<00:20, 80.90it/s]
|
1582 |
10%|▉ | 179/1827 [00:02<00:20, 82.04it/s]
|
1583 |
10%|█ | 188/1827 [00:02<00:19, 82.53it/s]
|
1584 |
11%|█ | 197/1827 [00:02<00:19, 82.41it/s]
|
1585 |
11%|█▏ | 206/1827 [00:02<00:20, 81.02it/s]
|
1586 |
12%|█▏ | 215/1827 [00:02<00:20, 79.98it/s]
|
1587 |
12%|█▏ | 224/1827 [00:02<00:19, 81.33it/s]
|
1588 |
13%|█▎ | 233/1827 [00:02<00:19, 79.96it/s]
|
1589 |
13%|█▎ | 242/1827 [00:02<00:20, 79.19it/s]
|
1590 |
14%|█▎ | 250/1827 [00:03<00:19, 79.35it/s]
|
1591 |
14%|█▍ | 259/1827 [00:03<00:19, 79.72it/s]
|
1592 |
15%|█▍ | 268/1827 [00:03<00:19, 80.61it/s]
|
1593 |
15%|█▌ | 277/1827 [00:03<00:18, 82.50it/s]
|
1594 |
16%|█▌ | 286/1827 [00:03<00:18, 83.69it/s]
|
1595 |
16%|█▌ | 295/1827 [00:03<00:18, 83.07it/s]
|
1596 |
17%|█▋ | 304/1827 [00:03<00:18, 81.73it/s]
|
1597 |
17%|█▋ | 313/1827 [00:03<00:18, 82.33it/s]
|
1598 |
18%|█▊ | 322/1827 [00:03<00:18, 82.60it/s]
|
1599 |
18%|█▊ | 331/1827 [00:04<00:18, 82.65it/s]
|
1600 |
19%|█▊ | 340/1827 [00:04<00:17, 83.95it/s]
|
1601 |
19%|█▉ | 349/1827 [00:04<00:18, 79.59it/s]
|
1602 |
20%|█▉ | 358/1827 [00:04<00:18, 81.31it/s]
|
1603 |
20%|██ | 367/1827 [00:04<00:17, 82.07it/s]
|
1604 |
21%|██ | 376/1827 [00:04<00:17, 81.81it/s]
|
1605 |
21%|██ | 385/1827 [00:04<00:17, 81.80it/s]
|
1606 |
22%|██▏ | 394/1827 [00:04<00:17, 80.82it/s]
|
1607 |
22%|██▏ | 403/1827 [00:04<00:17, 82.60it/s]
|
1608 |
23%|██▎ | 412/1827 [00:05<00:17, 83.11it/s]
|
1609 |
23%|██▎ | 421/1827 [00:05<00:17, 80.56it/s]
|
1610 |
24%|██▎ | 430/1827 [00:05<00:17, 79.87it/s]
|
1611 |
24%|██▍ | 439/1827 [00:05<00:17, 79.77it/s]
|
1612 |
24%|██▍ | 447/1827 [00:05<00:17, 79.67it/s]
|
1613 |
25%|██▍ | 456/1827 [00:05<00:16, 80.72it/s]
|
1614 |
25%|██▌ | 465/1827 [00:05<00:16, 82.42it/s]
|
1615 |
26%|██▌ | 474/1827 [00:05<00:16, 80.58it/s]
|
1616 |
26%|██▋ | 483/1827 [00:05<00:16, 79.48it/s]
|
1617 |
27%|██▋ | 491/1827 [00:06<00:17, 78.12it/s]
|
1618 |
27%|██▋ | 500/1827 [00:06<00:16, 78.98it/s]
|
1619 |
28%|██▊ | 509/1827 [00:06<00:16, 79.79it/s]
|
1620 |
28%|██▊ | 518/1827 [00:06<00:16, 80.70it/s]
|
1621 |
29%|██▉ | 527/1827 [00:06<00:15, 81.95it/s]
|
1622 |
29%|██▉ | 536/1827 [00:06<00:15, 81.48it/s]
|
1623 |
30%|██▉ | 545/1827 [00:06<00:15, 81.56it/s]
|
1624 |
30%|███ | 554/1827 [00:06<00:15, 80.14it/s]
|
1625 |
31%|███ | 563/1827 [00:06<00:15, 80.95it/s]
|
1626 |
31%|███▏ | 572/1827 [00:07<00:15, 82.12it/s]
|
1627 |
32%|███▏ | 581/1827 [00:07<00:15, 81.74it/s]
|
1628 |
32%|███▏ | 590/1827 [00:07<00:15, 81.57it/s]
|
1629 |
33%|███▎ | 599/1827 [00:07<00:15, 81.15it/s]
|
1630 |
33%|███▎ | 608/1827 [00:07<00:14, 81.57it/s]
|
1631 |
34%|███▍ | 617/1827 [00:07<00:15, 80.16it/s]
|
1632 |
34%|███▍ | 626/1827 [00:07<00:14, 82.03it/s]
|
1633 |
35%|███▍ | 635/1827 [00:07<00:14, 82.57it/s]
|
1634 |
35%|███▌ | 644/1827 [00:07<00:14, 83.46it/s]
|
1635 |
36%|███▌ | 653/1827 [00:08<00:15, 77.96it/s]
|
1636 |
36%|███▌ | 662/1827 [00:08<00:14, 79.18it/s]
|
1637 |
37%|███▋ | 671/1827 [00:08<00:14, 79.75it/s]
|
1638 |
37%|███▋ | 680/1827 [00:08<00:14, 80.75it/s]
|
1639 |
38%|███▊ | 689/1827 [00:08<00:13, 82.05it/s]
|
1640 |
38%|███▊ | 698/1827 [00:08<00:13, 83.26it/s]
|
1641 |
39%|███▊ | 707/1827 [00:08<00:13, 82.35it/s]
|
1642 |
39%|███▉ | 716/1827 [00:08<00:13, 83.46it/s]
|
1643 |
40%|███▉ | 725/1827 [00:08<00:13, 84.47it/s]
|
1644 |
40%|████ | 734/1827 [00:09<00:12, 84.78it/s]
|
1645 |
41%|████ | 743/1827 [00:09<00:12, 84.36it/s]
|
1646 |
41%|████ | 752/1827 [00:09<00:12, 84.90it/s]
|
1647 |
42%|████▏ | 761/1827 [00:09<00:12, 84.81it/s]
|
1648 |
42%|████▏ | 770/1827 [00:09<00:12, 85.40it/s]
|
1649 |
43%|████▎ | 779/1827 [00:09<00:12, 82.72it/s]
|
1650 |
43%|████▎ | 788/1827 [00:09<00:12, 82.68it/s]
|
1651 |
44%|████▎ | 797/1827 [00:09<00:13, 78.45it/s]
|
1652 |
44%|████▍ | 806/1827 [00:09<00:12, 80.13it/s]
|
1653 |
45%|████▍ | 815/1827 [00:10<00:12, 81.93it/s]
|
1654 |
45%|████▌ | 824/1827 [00:10<00:12, 81.92it/s]
|
1655 |
46%|████▌ | 833/1827 [00:10<00:12, 80.09it/s]
|
1656 |
46%|████▌ | 842/1827 [00:10<00:12, 80.84it/s]
|
1657 |
47%|████▋ | 851/1827 [00:10<00:11, 82.26it/s]
|
1658 |
47%|████▋ | 860/1827 [00:10<00:11, 82.48it/s]
|
1659 |
48%|████▊ | 869/1827 [00:10<00:11, 80.82it/s]
|
1660 |
48%|████▊ | 878/1827 [00:10<00:11, 79.77it/s]
|
1661 |
48%|████▊ | 886/1827 [00:10<00:11, 79.80it/s]
|
1662 |
49%|████▉ | 895/1827 [00:11<00:11, 80.41it/s]
|
1663 |
49%|████▉ | 904/1827 [00:11<00:11, 82.22it/s]
|
1664 |
50%|████▉ | 913/1827 [00:11<00:10, 83.47it/s]
|
1665 |
50%|█████ | 922/1827 [00:11<00:10, 83.69it/s]
|
1666 |
51%|█████ | 931/1827 [00:11<00:11, 81.45it/s]
|
1667 |
51%|█████▏ | 940/1827 [00:11<00:10, 82.66it/s]
|
1668 |
52%|█████▏ | 949/1827 [00:11<00:10, 80.89it/s]
|
1669 |
52%|█████▏ | 958/1827 [00:11<00:10, 81.33it/s]
|
1670 |
53%|█████▎ | 967/1827 [00:11<00:10, 82.58it/s]
|
1671 |
53%|█████▎ | 976/1827 [00:11<00:10, 81.82it/s]
|
1672 |
54%|█████▍ | 985/1827 [00:12<00:10, 82.23it/s]
|
1673 |
54%|█████▍ | 994/1827 [00:12<00:10, 83.02it/s]
|
1674 |
55%|█████▍ | 1003/1827 [00:12<00:09, 83.11it/s]
|
1675 |
55%|█████▌ | 1012/1827 [00:12<00:09, 83.22it/s]
|
1676 |
56%|█████▌ | 1021/1827 [00:12<00:09, 84.03it/s]
|
1677 |
56%|█████▋ | 1030/1827 [00:12<00:09, 85.02it/s]
|
1678 |
57%|█████▋ | 1039/1827 [00:12<00:09, 82.97it/s]
|
1679 |
57%|█████▋ | 1048/1827 [00:12<00:09, 83.08it/s]
|
1680 |
58%|█████▊ | 1057/1827 [00:12<00:09, 83.42it/s]
|
1681 |
58%|█████▊ | 1066/1827 [00:13<00:09, 83.10it/s]
|
1682 |
59%|█████▉ | 1075/1827 [00:13<00:08, 84.02it/s]
|
1683 |
59%|█████▉ | 1084/1827 [00:13<00:08, 84.75it/s]
|
1684 |
60%|█████▉ | 1093/1827 [00:13<00:08, 85.02it/s]
|
1685 |
60%|██████ | 1102/1827 [00:13<00:08, 84.64it/s]
|
1686 |
61%|██████ | 1111/1827 [00:13<00:08, 84.52it/s]
|
1687 |
61%|██████▏ | 1120/1827 [00:13<00:08, 83.58it/s]
|
1688 |
62%|██████▏ | 1129/1827 [00:13<00:08, 83.47it/s]
|
1689 |
62%|██████▏ | 1138/1827 [00:13<00:08, 83.97it/s]
|
1690 |
63%|██████▎ | 1147/1827 [00:14<00:08, 84.60it/s]
|
1691 |
63%|██████▎ | 1156/1827 [00:14<00:07, 84.68it/s]
|
1692 |
64%|██████▍ | 1165/1827 [00:14<00:08, 81.69it/s]
|
1693 |
64%|██████▍ | 1174/1827 [00:14<00:07, 83.04it/s]
|
1694 |
65%|██████▍ | 1183/1827 [00:14<00:07, 81.23it/s]
|
1695 |
65%|██████▌ | 1192/1827 [00:14<00:07, 82.81it/s]
|
1696 |
66%|██████▌ | 1201/1827 [00:14<00:07, 83.12it/s]
|
1697 |
66%|██████▌ | 1210/1827 [00:14<00:07, 82.78it/s]
|
1698 |
67%|██████▋ | 1219/1827 [00:14<00:07, 81.18it/s]
|
1699 |
67%|██████▋ | 1228/1827 [00:15<00:07, 83.02it/s]
|
1700 |
68%|██████▊ | 1237/1827 [00:15<00:07, 83.76it/s]
|
1701 |
68%|██████▊ | 1246/1827 [00:15<00:06, 84.24it/s]
|
1702 |
69%|██████▊ | 1255/1827 [00:15<00:07, 81.04it/s]
|
1703 |
69%|██████▉ | 1264/1827 [00:15<00:06, 81.41it/s]
|
1704 |
70%|██████▉ | 1273/1827 [00:15<00:06, 81.98it/s]
|
1705 |
70%|███████ | 1282/1827 [00:15<00:06, 83.21it/s]
|
1706 |
71%|███████ | 1291/1827 [00:15<00:06, 83.31it/s]
|
1707 |
71%|███████ | 1300/1827 [00:15<00:06, 83.92it/s]
|
1708 |
72%|███████▏ | 1309/1827 [00:15<00:06, 84.33it/s]
|
1709 |
72%|███████▏ | 1318/1827 [00:16<00:05, 84.99it/s]
|
1710 |
73%|███████▎ | 1327/1827 [00:16<00:05, 84.67it/s]
|
1711 |
73%|███████▎ | 1336/1827 [00:16<00:05, 85.18it/s]
|
1712 |
74%|███████▎ | 1345/1827 [00:16<00:05, 84.30it/s]
|
1713 |
74%|███████▍ | 1354/1827 [00:16<00:05, 84.28it/s]
|
1714 |
75%|███████▍ | 1363/1827 [00:16<00:05, 84.42it/s]
|
1715 |
75%|███████▌ | 1372/1827 [00:16<00:05, 83.96it/s]
|
1716 |
76%|███████▌ | 1381/1827 [00:16<00:05, 84.35it/s]
|
1717 |
76%|███████▌ | 1390/1827 [00:16<00:05, 83.32it/s]
|
1718 |
77%|███████▋ | 1399/1827 [00:17<00:05, 81.72it/s]
|
1719 |
77%|███████▋ | 1408/1827 [00:17<00:05, 82.44it/s]
|
1720 |
78%|███████▊ | 1417/1827 [00:17<00:04, 83.25it/s]
|
1721 |
78%|███████▊ | 1426/1827 [00:17<00:04, 81.63it/s]
|
1722 |
79%|███████▊ | 1435/1827 [00:17<00:04, 81.84it/s]
|
1723 |
79%|███████▉ | 1444/1827 [00:17<00:04, 79.43it/s]
|
1724 |
79%|███████▉ | 1452/1827 [00:17<00:04, 78.88it/s]
|
1725 |
80%|███████▉ | 1460/1827 [00:17<00:04, 79.00it/s]
|
1726 |
80%|████████ | 1469/1827 [00:17<00:04, 77.76it/s]
|
1727 |
81%|████████ | 1478/1827 [00:18<00:04, 78.91it/s]
|
1728 |
81%|████████▏ | 1487/1827 [00:18<00:04, 79.81it/s]
|
1729 |
82%|████████▏ | 1495/1827 [00:18<00:04, 77.98it/s]
|
1730 |
82%|████████▏ | 1503/1827 [00:18<00:04, 78.22it/s]
|
1731 |
83%|████████▎ | 1512/1827 [00:18<00:03, 79.84it/s]
|
1732 |
83%|████████▎ | 1520/1827 [00:18<00:03, 79.72it/s]
|
1733 |
84%|████████▎ | 1528/1827 [00:18<00:03, 78.62it/s]
|
1734 |
84%|████████▍ | 1536/1827 [00:18<00:03, 77.91it/s]
|
1735 |
85%|████████▍ | 1545/1827 [00:18<00:03, 78.92it/s]
|
1736 |
85%|████████▌ | 1554/1827 [00:19<00:03, 79.49it/s]
|
1737 |
85%|████████▌ | 1562/1827 [00:19<00:03, 79.02it/s]
|
1738 |
86%|████████▌ | 1570/1827 [00:19<00:03, 78.77it/s]
|
1739 |
86%|████████▋ | 1579/1827 [00:19<00:03, 80.51it/s]
|
1740 |
87%|████████▋ | 1588/1827 [00:19<00:03, 79.62it/s]
|
1741 |
87%|████████▋ | 1597/1827 [00:19<00:02, 79.98it/s]
|
1742 |
88%|████████▊ | 1606/1827 [00:19<00:02, 81.13it/s]
|
1743 |
88%|████████▊ | 1615/1827 [00:19<00:02, 80.28it/s]
|
1744 |
89%|████████▉ | 1624/1827 [00:19<00:02, 74.42it/s]
|
1745 |
89%|████████▉ | 1632/1827 [00:20<00:02, 74.97it/s]
|
1746 |
90%|████████▉ | 1641/1827 [00:20<00:02, 76.63it/s]
|
1747 |
90%|█████████ | 1650/1827 [00:20<00:02, 78.43it/s]
|
1748 |
91%|█████████ | 1659/1827 [00:20<00:02, 79.16it/s]
|
1749 |
91%|█████████ | 1667/1827 [00:20<00:02, 78.81it/s]
|
1750 |
92%|█████████▏| 1676/1827 [00:20<00:01, 80.04it/s]
|
1751 |
92%|█████████▏| 1685/1827 [00:20<00:01, 81.58it/s]
|
1752 |
93%|█████████▎| 1694/1827 [00:20<00:01, 79.80it/s]
|
1753 |
93%|█████████▎| 1703/1827 [00:20<00:01, 80.70it/s]
|
1754 |
94%|█████████▎| 1712/1827 [00:20<00:01, 82.14it/s]
|
1755 |
94%|█████████▍| 1721/1827 [00:21<00:01, 79.30it/s]
|
1756 |
95%|█████████▍| 1730/1827 [00:21<00:01, 81.07it/s]
|
1757 |
95%|█████████▌| 1739/1827 [00:21<00:01, 82.15it/s]
|
1758 |
96%|█████████▌| 1748/1827 [00:21<00:00, 83.61it/s]
|
1759 |
96%|█████████▌| 1757/1827 [00:21<00:00, 83.43it/s]
|
1760 |
97%|█████████▋| 1766/1827 [00:21<00:00, 83.99it/s]
|
1761 |
97%|█████████▋| 1775/1827 [00:21<00:00, 84.37it/s]
|
1762 |
98%|█████████▊| 1784/1827 [00:21<00:00, 85.02it/s]
|
1763 |
98%|█████████▊| 1793/1827 [00:21<00:00, 82.53it/s]
|
1764 |
99%|█████████▊| 1802/1827 [00:22<00:00, 82.32it/s]
|
1765 |
99%|█████████▉| 1811/1827 [00:22<00:00, 81.76it/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1463 |
{'eval_loss': 0.005196314305067062, 'eval_precision': 0.9416590701914311, 'eval_recall': 0.9494485294117647, 'eval_f1': 0.945537757437071, 'eval_accuracy': 0.9990525491919205, 'eval_runtime': 14.6459, 'eval_samples_per_second': 464.976, 'eval_steps_per_second': 58.173, 'epoch': 10.0}
|
1464 |
{'train_runtime': 1422.7831, 'train_samples_per_second': 219.492, 'train_steps_per_second': 3.43, 'train_loss': 0.002533856062142209, 'epoch': 10.0}
|
1465 |
|
1466 |
+
***** train metrics *****
|
1467 |
+
epoch = 10.0
|
1468 |
+
total_flos = 14617000GF
|
1469 |
+
train_loss = 0.0025
|
1470 |
+
train_runtime = 0:23:42.78
|
1471 |
+
train_samples = 31229
|
1472 |
+
train_samples_per_second = 219.492
|
1473 |
+
train_steps_per_second = 3.43
|
1474 |
+
09/09/2024 20:56:16 - INFO - __main__ - *** Evaluate ***
|
1475 |
+
[INFO|trainer.py:811] 2024-09-09 20:56:16,801 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, tokens, id. If ner_tags, tokens, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
|
1476 |
+
[INFO|trainer.py:3819] 2024-09-09 20:56:16,803 >>
|
1477 |
+
***** Running Evaluation *****
|
1478 |
+
[INFO|trainer.py:3821] 2024-09-09 20:56:16,803 >> Num examples = 6810
|
1479 |
+
[INFO|trainer.py:3824] 2024-09-09 20:56:16,803 >> Batch size = 8
|
1480 |
+
|
1481 |
0%| | 0/852 [00:00<?, ?it/s]
|
1482 |
1%| | 10/852 [00:00<00:08, 93.57it/s]
|
1483 |
2%|▏ | 20/852 [00:00<00:10, 80.55it/s]
|
1484 |
3%|▎ | 29/852 [00:00<00:10, 80.58it/s]
|
1485 |
4%|▍ | 38/852 [00:00<00:10, 81.11it/s]
|
1486 |
6%|▌ | 47/852 [00:00<00:09, 81.65it/s]
|
1487 |
7%|▋ | 56/852 [00:00<00:09, 83.14it/s]
|
1488 |
8%|▊ | 65/852 [00:00<00:10, 78.65it/s]
|
1489 |
9%|▊ | 73/852 [00:00<00:10, 77.04it/s]
|
1490 |
10%|▉ | 81/852 [00:01<00:09, 77.70it/s]
|
1491 |
11%|█ | 90/852 [00:01<00:09, 79.30it/s]
|
1492 |
12%|█▏ | 98/852 [00:01<00:09, 79.14it/s]
|
1493 |
13%|█▎ | 107/852 [00:01<00:09, 79.14it/s]
|
1494 |
14%|█▎ | 116/852 [00:01<00:09, 80.00it/s]
|
1495 |
15%|█▍ | 125/852 [00:01<00:08, 81.72it/s]
|
1496 |
16%|█▌ | 134/852 [00:01<00:09, 76.77it/s]
|
1497 |
17%|█▋ | 142/852 [00:01<00:09, 74.23it/s]
|
1498 |
18%|█▊ | 150/852 [00:01<00:09, 75.01it/s]
|
1499 |
19%|█▊ | 159/852 [00:02<00:08, 78.54it/s]
|
1500 |
20%|█▉ | 168/852 [00:02<00:08, 79.78it/s]
|
1501 |
21%|██ | 177/852 [00:02<00:08, 80.22it/s]
|
1502 |
22%|██▏ | 186/852 [00:02<00:08, 81.84it/s]
|
1503 |
23%|██▎ | 195/852 [00:02<00:08, 81.79it/s]
|
1504 |
24%|██▍ | 204/852 [00:02<00:07, 82.81it/s]
|
1505 |
25%|██▌ | 213/852 [00:02<00:07, 81.58it/s]
|
1506 |
26%|██▌ | 222/852 [00:02<00:07, 81.05it/s]
|
1507 |
27%|██▋ | 231/852 [00:02<00:07, 82.05it/s]
|
1508 |
28%|██▊ | 240/852 [00:02<00:07, 81.07it/s]
|
1509 |
29%|██▉ | 249/852 [00:03<00:07, 80.20it/s]
|
1510 |
30%|███ | 258/852 [00:03<00:07, 81.36it/s]
|
1511 |
31%|███▏ | 267/852 [00:03<00:07, 81.25it/s]
|
1512 |
32%|███▏ | 276/852 [00:03<00:07, 81.52it/s]
|
1513 |
33%|███▎ | 285/852 [00:03<00:06, 81.87it/s]
|
1514 |
35%|███▍ | 294/852 [00:03<00:06, 80.80it/s]
|
1515 |
36%|███▌ | 303/852 [00:03<00:07, 78.20it/s]
|
1516 |
37%|███▋ | 312/852 [00:03<00:06, 77.55it/s]
|
1517 |
38%|███▊ | 321/852 [00:04<00:06, 79.73it/s]
|
1518 |
39%|███▊ | 330/852 [00:04<00:06, 79.60it/s]
|
1519 |
40%|███▉ | 338/852 [00:04<00:06, 79.58it/s]
|
1520 |
41%|████ | 347/852 [00:04<00:06, 79.98it/s]
|
1521 |
42%|████▏ | 356/852 [00:04<00:06, 79.10it/s]
|
1522 |
43%|████▎ | 365/852 [00:04<00:06, 79.97it/s]
|
1523 |
44%|████▍ | 374/852 [00:04<00:05, 79.68it/s]
|
1524 |
45%|████▍ | 382/852 [00:04<00:05, 78.69it/s]
|
1525 |
46%|████▌ | 391/852 [00:04<00:05, 79.19it/s]
|
1526 |
47%|████▋ | 399/852 [00:04<00:05, 78.98it/s]
|
1527 |
48%|████▊ | 407/852 [00:05<00:05, 77.08it/s]
|
1528 |
49%|████▉ | 416/852 [00:05<00:05, 78.27it/s]
|
1529 |
50%|████▉ | 424/852 [00:05<00:05, 78.61it/s]
|
1530 |
51%|█████ | 432/852 [00:05<00:05, 78.46it/s]
|
1531 |
52%|█████▏ | 441/852 [00:05<00:05, 80.76it/s]
|
1532 |
53%|█████▎ | 450/852 [00:05<00:04, 81.55it/s]
|
1533 |
54%|█████▍ | 459/852 [00:05<00:04, 82.07it/s]
|
1534 |
55%|█████▍ | 468/852 [00:05<00:04, 79.16it/s]
|
1535 |
56%|█████▌ | 476/852 [00:05<00:04, 76.30it/s]
|
1536 |
57%|█████▋ | 484/852 [00:06<00:04, 76.49it/s]
|
1537 |
58%|█████▊ | 493/852 [00:06<00:04, 78.76it/s]
|
1538 |
59%|█████▉ | 502/852 [00:06<00:04, 80.51it/s]
|
1539 |
60%|█████▉ | 511/852 [00:06<00:04, 80.85it/s]
|
1540 |
61%|██████ | 520/852 [00:06<00:04, 82.11it/s]
|
1541 |
62%|██████▏ | 529/852 [00:06<00:04, 79.93it/s]
|
1542 |
63%|██████▎ | 538/852 [00:06<00:03, 81.28it/s]
|
1543 |
64%|██████▍ | 547/852 [00:06<00:03, 81.59it/s]
|
1544 |
65%|██████▌ | 556/852 [00:06<00:03, 78.91it/s]
|
1545 |
66%|██████▋ | 565/852 [00:07<00:03, 81.03it/s]
|
1546 |
67%|██████▋ | 574/852 [00:07<00:03, 81.36it/s]
|
1547 |
68%|██████▊ | 583/852 [00:07<00:03, 80.74it/s]
|
1548 |
69%|██████▉ | 592/852 [00:07<00:03, 80.30it/s]
|
1549 |
71%|███████ | 601/852 [00:07<00:03, 80.88it/s]
|
1550 |
72%|███████▏ | 610/852 [00:07<00:02, 81.38it/s]
|
1551 |
73%|███████▎ | 619/852 [00:07<00:02, 79.27it/s]
|
1552 |
74%|███████▎ | 627/852 [00:07<00:02, 79.27it/s]
|
1553 |
75%|███████▍ | 635/852 [00:07<00:02, 75.84it/s]
|
1554 |
75%|███████▌ | 643/852 [00:08<00:02, 75.01it/s]
|
1555 |
77%|███████▋ | 652/852 [00:08<00:02, 78.03it/s]
|
1556 |
78%|███████▊ | 661/852 [00:08<00:02, 79.05it/s]
|
1557 |
79%|███████▊ | 670/852 [00:08<00:02, 79.91it/s]
|
1558 |
80%|███████▉ | 679/852 [00:08<00:02, 80.51it/s]
|
1559 |
81%|████████ | 688/852 [00:08<00:02, 81.73it/s]
|
1560 |
82%|████████▏ | 697/852 [00:08<00:01, 80.82it/s]
|
1561 |
83%|████████▎ | 706/852 [00:08<00:01, 82.01it/s]
|
1562 |
84%|████████▍ | 715/852 [00:08<00:01, 81.67it/s]
|
1563 |
85%|████████▍ | 724/852 [00:09<00:01, 81.05it/s]
|
1564 |
86%|████████▌ | 733/852 [00:09<00:01, 81.95it/s]
|
1565 |
87%|████████▋ | 742/852 [00:09<00:01, 82.90it/s]
|
1566 |
88%|████████▊ | 751/852 [00:09<00:01, 82.87it/s]
|
1567 |
89%|████████▉ | 760/852 [00:09<00:01, 84.18it/s]
|
1568 |
90%|█████████ | 769/852 [00:09<00:01, 82.73it/s]
|
1569 |
91%|█████████▏| 778/852 [00:09<00:00, 82.09it/s]
|
1570 |
92%|█████████▏| 787/852 [00:09<00:00, 80.10it/s]
|
1571 |
93%|█████████▎| 796/852 [00:09<00:00, 79.31it/s]
|
1572 |
94%|█████████▍| 805/852 [00:10<00:00, 80.66it/s]
|
1573 |
96%|█████████▌| 814/852 [00:10<00:00, 79.72it/s]
|
1574 |
97%|█████████▋| 823/852 [00:10<00:00, 81.12it/s]
|
1575 |
98%|█████████▊| 832/852 [00:10<00:00, 81.37it/s]
|
1576 |
99%|█████████▊| 841/852 [00:10<00:00, 81.30it/s]
|
1577 |
+
***** eval metrics *****
|
1578 |
+
epoch = 10.0
|
1579 |
+
eval_accuracy = 0.9991
|
1580 |
+
eval_f1 = 0.9521
|
1581 |
+
eval_loss = 0.0044
|
1582 |
+
eval_precision = 0.9448
|
1583 |
+
eval_recall = 0.9596
|
1584 |
+
eval_runtime = 0:00:14.11
|
1585 |
+
eval_samples = 6810
|
1586 |
+
eval_samples_per_second = 482.558
|
1587 |
+
eval_steps_per_second = 60.373
|
1588 |
+
09/09/2024 20:56:30 - INFO - __main__ - *** Predict ***
|
1589 |
+
[INFO|trainer.py:811] 2024-09-09 20:56:30,918 >> The following columns in the test set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, tokens, id. If ner_tags, tokens, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
|
1590 |
+
[INFO|trainer.py:3819] 2024-09-09 20:56:30,920 >>
|
1591 |
+
***** Running Prediction *****
|
1592 |
+
[INFO|trainer.py:3821] 2024-09-09 20:56:30,920 >> Num examples = 14614
|
1593 |
+
[INFO|trainer.py:3824] 2024-09-09 20:56:30,920 >> Batch size = 8
|
1594 |
+
|
1595 |
0%| | 0/1827 [00:00<?, ?it/s]
|
1596 |
0%| | 9/1827 [00:00<00:22, 81.47it/s]
|
1597 |
1%| | 18/1827 [00:00<00:24, 73.10it/s]
|
1598 |
1%|▏ | 27/1827 [00:00<00:23, 77.38it/s]
|
1599 |
2%|▏ | 35/1827 [00:00<00:22, 78.12it/s]
|
1600 |
2%|▏ | 44/1827 [00:00<00:22, 79.84it/s]
|
1601 |
3%|▎ | 53/1827 [00:00<00:22, 79.92it/s]
|
1602 |
3%|▎ | 62/1827 [00:00<00:22, 78.68it/s]
|
1603 |
4%|▍ | 71/1827 [00:00<00:22, 79.81it/s]
|
1604 |
4%|▍ | 80/1827 [00:01<00:21, 82.54it/s]
|
1605 |
5%|▍ | 89/1827 [00:01<00:21, 81.34it/s]
|
1606 |
5%|▌ | 98/1827 [00:01<00:21, 82.29it/s]
|
1607 |
6%|▌ | 107/1827 [00:01<00:20, 84.00it/s]
|
1608 |
6%|▋ | 116/1827 [00:01<00:20, 82.38it/s]
|
1609 |
7%|▋ | 125/1827 [00:01<00:20, 82.00it/s]
|
1610 |
7%|▋ | 134/1827 [00:01<00:20, 83.17it/s]
|
1611 |
8%|▊ | 143/1827 [00:01<00:20, 83.98it/s]
|
1612 |
8%|▊ | 152/1827 [00:01<00:20, 83.56it/s]
|
1613 |
9%|▉ | 161/1827 [00:01<00:20, 79.98it/s]
|
1614 |
9%|▉ | 170/1827 [00:02<00:20, 80.90it/s]
|
1615 |
10%|▉ | 179/1827 [00:02<00:20, 82.04it/s]
|
1616 |
10%|█ | 188/1827 [00:02<00:19, 82.53it/s]
|
1617 |
11%|█ | 197/1827 [00:02<00:19, 82.41it/s]
|
1618 |
11%|█▏ | 206/1827 [00:02<00:20, 81.02it/s]
|
1619 |
12%|█▏ | 215/1827 [00:02<00:20, 79.98it/s]
|
1620 |
12%|█▏ | 224/1827 [00:02<00:19, 81.33it/s]
|
1621 |
13%|█▎ | 233/1827 [00:02<00:19, 79.96it/s]
|
1622 |
13%|█▎ | 242/1827 [00:02<00:20, 79.19it/s]
|
1623 |
14%|█▎ | 250/1827 [00:03<00:19, 79.35it/s]
|
1624 |
14%|█▍ | 259/1827 [00:03<00:19, 79.72it/s]
|
1625 |
15%|█▍ | 268/1827 [00:03<00:19, 80.61it/s]
|
1626 |
15%|█▌ | 277/1827 [00:03<00:18, 82.50it/s]
|
1627 |
16%|█▌ | 286/1827 [00:03<00:18, 83.69it/s]
|
1628 |
16%|█▌ | 295/1827 [00:03<00:18, 83.07it/s]
|
1629 |
17%|█▋ | 304/1827 [00:03<00:18, 81.73it/s]
|
1630 |
17%|█▋ | 313/1827 [00:03<00:18, 82.33it/s]
|
1631 |
18%|█▊ | 322/1827 [00:03<00:18, 82.60it/s]
|
1632 |
18%|█▊ | 331/1827 [00:04<00:18, 82.65it/s]
|
1633 |
19%|█▊ | 340/1827 [00:04<00:17, 83.95it/s]
|
1634 |
19%|█▉ | 349/1827 [00:04<00:18, 79.59it/s]
|
1635 |
20%|█▉ | 358/1827 [00:04<00:18, 81.31it/s]
|
1636 |
20%|██ | 367/1827 [00:04<00:17, 82.07it/s]
|
1637 |
21%|██ | 376/1827 [00:04<00:17, 81.81it/s]
|
1638 |
21%|██ | 385/1827 [00:04<00:17, 81.80it/s]
|
1639 |
22%|██▏ | 394/1827 [00:04<00:17, 80.82it/s]
|
1640 |
22%|██▏ | 403/1827 [00:04<00:17, 82.60it/s]
|
1641 |
23%|██▎ | 412/1827 [00:05<00:17, 83.11it/s]
|
1642 |
23%|██▎ | 421/1827 [00:05<00:17, 80.56it/s]
|
1643 |
24%|██▎ | 430/1827 [00:05<00:17, 79.87it/s]
|
1644 |
24%|██▍ | 439/1827 [00:05<00:17, 79.77it/s]
|
1645 |
24%|██▍ | 447/1827 [00:05<00:17, 79.67it/s]
|
1646 |
25%|██▍ | 456/1827 [00:05<00:16, 80.72it/s]
|
1647 |
25%|██▌ | 465/1827 [00:05<00:16, 82.42it/s]
|
1648 |
26%|██▌ | 474/1827 [00:05<00:16, 80.58it/s]
|
1649 |
26%|██▋ | 483/1827 [00:05<00:16, 79.48it/s]
|
1650 |
27%|██▋ | 491/1827 [00:06<00:17, 78.12it/s]
|
1651 |
27%|██▋ | 500/1827 [00:06<00:16, 78.98it/s]
|
1652 |
28%|██▊ | 509/1827 [00:06<00:16, 79.79it/s]
|
1653 |
28%|██▊ | 518/1827 [00:06<00:16, 80.70it/s]
|
1654 |
29%|██▉ | 527/1827 [00:06<00:15, 81.95it/s]
|
1655 |
29%|██▉ | 536/1827 [00:06<00:15, 81.48it/s]
|
1656 |
30%|██▉ | 545/1827 [00:06<00:15, 81.56it/s]
|
1657 |
30%|███ | 554/1827 [00:06<00:15, 80.14it/s]
|
1658 |
31%|███ | 563/1827 [00:06<00:15, 80.95it/s]
|
1659 |
31%|███▏ | 572/1827 [00:07<00:15, 82.12it/s]
|
1660 |
32%|███▏ | 581/1827 [00:07<00:15, 81.74it/s]
|
1661 |
32%|███▏ | 590/1827 [00:07<00:15, 81.57it/s]
|
1662 |
33%|███▎ | 599/1827 [00:07<00:15, 81.15it/s]
|
1663 |
33%|███▎ | 608/1827 [00:07<00:14, 81.57it/s]
|
1664 |
34%|███▍ | 617/1827 [00:07<00:15, 80.16it/s]
|
1665 |
34%|███▍ | 626/1827 [00:07<00:14, 82.03it/s]
|
1666 |
35%|███▍ | 635/1827 [00:07<00:14, 82.57it/s]
|
1667 |
35%|███▌ | 644/1827 [00:07<00:14, 83.46it/s]
|
1668 |
36%|███▌ | 653/1827 [00:08<00:15, 77.96it/s]
|
1669 |
36%|███▌ | 662/1827 [00:08<00:14, 79.18it/s]
|
1670 |
37%|███▋ | 671/1827 [00:08<00:14, 79.75it/s]
|
1671 |
37%|███▋ | 680/1827 [00:08<00:14, 80.75it/s]
|
1672 |
38%|███▊ | 689/1827 [00:08<00:13, 82.05it/s]
|
1673 |
38%|███▊ | 698/1827 [00:08<00:13, 83.26it/s]
|
1674 |
39%|███▊ | 707/1827 [00:08<00:13, 82.35it/s]
|
1675 |
39%|███▉ | 716/1827 [00:08<00:13, 83.46it/s]
|
1676 |
40%|███▉ | 725/1827 [00:08<00:13, 84.47it/s]
|
1677 |
40%|████ | 734/1827 [00:09<00:12, 84.78it/s]
|
1678 |
41%|████ | 743/1827 [00:09<00:12, 84.36it/s]
|
1679 |
41%|████ | 752/1827 [00:09<00:12, 84.90it/s]
|
1680 |
42%|████▏ | 761/1827 [00:09<00:12, 84.81it/s]
|
1681 |
42%|████▏ | 770/1827 [00:09<00:12, 85.40it/s]
|
1682 |
43%|████▎ | 779/1827 [00:09<00:12, 82.72it/s]
|
1683 |
43%|████▎ | 788/1827 [00:09<00:12, 82.68it/s]
|
1684 |
44%|████▎ | 797/1827 [00:09<00:13, 78.45it/s]
|
1685 |
44%|████▍ | 806/1827 [00:09<00:12, 80.13it/s]
|
1686 |
45%|████▍ | 815/1827 [00:10<00:12, 81.93it/s]
|
1687 |
45%|████▌ | 824/1827 [00:10<00:12, 81.92it/s]
|
1688 |
46%|████▌ | 833/1827 [00:10<00:12, 80.09it/s]
|
1689 |
46%|████▌ | 842/1827 [00:10<00:12, 80.84it/s]
|
1690 |
47%|████▋ | 851/1827 [00:10<00:11, 82.26it/s]
|
1691 |
47%|████▋ | 860/1827 [00:10<00:11, 82.48it/s]
|
1692 |
48%|████▊ | 869/1827 [00:10<00:11, 80.82it/s]
|
1693 |
48%|████▊ | 878/1827 [00:10<00:11, 79.77it/s]
|
1694 |
48%|████▊ | 886/1827 [00:10<00:11, 79.80it/s]
|
1695 |
49%|████▉ | 895/1827 [00:11<00:11, 80.41it/s]
|
1696 |
49%|████▉ | 904/1827 [00:11<00:11, 82.22it/s]
|
1697 |
50%|████▉ | 913/1827 [00:11<00:10, 83.47it/s]
|
1698 |
50%|█████ | 922/1827 [00:11<00:10, 83.69it/s]
|
1699 |
51%|█████ | 931/1827 [00:11<00:11, 81.45it/s]
|
1700 |
51%|█████▏ | 940/1827 [00:11<00:10, 82.66it/s]
|
1701 |
52%|█████▏ | 949/1827 [00:11<00:10, 80.89it/s]
|
1702 |
52%|█████▏ | 958/1827 [00:11<00:10, 81.33it/s]
|
1703 |
53%|█████▎ | 967/1827 [00:11<00:10, 82.58it/s]
|
1704 |
53%|█████▎ | 976/1827 [00:11<00:10, 81.82it/s]
|
1705 |
54%|█████▍ | 985/1827 [00:12<00:10, 82.23it/s]
|
1706 |
54%|█████▍ | 994/1827 [00:12<00:10, 83.02it/s]
|
1707 |
55%|█████▍ | 1003/1827 [00:12<00:09, 83.11it/s]
|
1708 |
55%|█████▌ | 1012/1827 [00:12<00:09, 83.22it/s]
|
1709 |
56%|█████▌ | 1021/1827 [00:12<00:09, 84.03it/s]
|
1710 |
56%|█████▋ | 1030/1827 [00:12<00:09, 85.02it/s]
|
1711 |
57%|█████▋ | 1039/1827 [00:12<00:09, 82.97it/s]
|
1712 |
57%|█████▋ | 1048/1827 [00:12<00:09, 83.08it/s]
|
1713 |
58%|█████▊ | 1057/1827 [00:12<00:09, 83.42it/s]
|
1714 |
58%|█████▊ | 1066/1827 [00:13<00:09, 83.10it/s]
|
1715 |
59%|█████▉ | 1075/1827 [00:13<00:08, 84.02it/s]
|
1716 |
59%|█████▉ | 1084/1827 [00:13<00:08, 84.75it/s]
|
1717 |
60%|█████▉ | 1093/1827 [00:13<00:08, 85.02it/s]
|
1718 |
60%|██████ | 1102/1827 [00:13<00:08, 84.64it/s]
|
1719 |
61%|██████ | 1111/1827 [00:13<00:08, 84.52it/s]
|
1720 |
61%|██████▏ | 1120/1827 [00:13<00:08, 83.58it/s]
|
1721 |
62%|██████▏ | 1129/1827 [00:13<00:08, 83.47it/s]
|
1722 |
62%|██████▏ | 1138/1827 [00:13<00:08, 83.97it/s]
|
1723 |
63%|██████▎ | 1147/1827 [00:14<00:08, 84.60it/s]
|
1724 |
63%|██████▎ | 1156/1827 [00:14<00:07, 84.68it/s]
|
1725 |
64%|██████▍ | 1165/1827 [00:14<00:08, 81.69it/s]
|
1726 |
64%|██████▍ | 1174/1827 [00:14<00:07, 83.04it/s]
|
1727 |
65%|██████▍ | 1183/1827 [00:14<00:07, 81.23it/s]
|
1728 |
65%|██████▌ | 1192/1827 [00:14<00:07, 82.81it/s]
|
1729 |
66%|██████▌ | 1201/1827 [00:14<00:07, 83.12it/s]
|
1730 |
66%|██████▌ | 1210/1827 [00:14<00:07, 82.78it/s]
|
1731 |
67%|██████▋ | 1219/1827 [00:14<00:07, 81.18it/s]
|
1732 |
67%|██████▋ | 1228/1827 [00:15<00:07, 83.02it/s]
|
1733 |
68%|██████▊ | 1237/1827 [00:15<00:07, 83.76it/s]
|
1734 |
68%|██████▊ | 1246/1827 [00:15<00:06, 84.24it/s]
|
1735 |
69%|██████▊ | 1255/1827 [00:15<00:07, 81.04it/s]
|
1736 |
69%|██████▉ | 1264/1827 [00:15<00:06, 81.41it/s]
|
1737 |
70%|██████▉ | 1273/1827 [00:15<00:06, 81.98it/s]
|
1738 |
70%|███████ | 1282/1827 [00:15<00:06, 83.21it/s]
|
1739 |
71%|███████ | 1291/1827 [00:15<00:06, 83.31it/s]
|
1740 |
71%|███████ | 1300/1827 [00:15<00:06, 83.92it/s]
|
1741 |
72%|███████▏ | 1309/1827 [00:15<00:06, 84.33it/s]
|
1742 |
72%|███████▏ | 1318/1827 [00:16<00:05, 84.99it/s]
|
1743 |
73%|███████▎ | 1327/1827 [00:16<00:05, 84.67it/s]
|
1744 |
73%|███████▎ | 1336/1827 [00:16<00:05, 85.18it/s]
|
1745 |
74%|███████▎ | 1345/1827 [00:16<00:05, 84.30it/s]
|
1746 |
74%|███████▍ | 1354/1827 [00:16<00:05, 84.28it/s]
|
1747 |
75%|███████▍ | 1363/1827 [00:16<00:05, 84.42it/s]
|
1748 |
75%|███████▌ | 1372/1827 [00:16<00:05, 83.96it/s]
|
1749 |
76%|███████▌ | 1381/1827 [00:16<00:05, 84.35it/s]
|
1750 |
76%|███████▌ | 1390/1827 [00:16<00:05, 83.32it/s]
|
1751 |
77%|███████▋ | 1399/1827 [00:17<00:05, 81.72it/s]
|
1752 |
77%|███████▋ | 1408/1827 [00:17<00:05, 82.44it/s]
|
1753 |
78%|███████▊ | 1417/1827 [00:17<00:04, 83.25it/s]
|
1754 |
78%|███████▊ | 1426/1827 [00:17<00:04, 81.63it/s]
|
1755 |
79%|███████▊ | 1435/1827 [00:17<00:04, 81.84it/s]
|
1756 |
79%|███████▉ | 1444/1827 [00:17<00:04, 79.43it/s]
|
1757 |
79%|███████▉ | 1452/1827 [00:17<00:04, 78.88it/s]
|
1758 |
80%|███████▉ | 1460/1827 [00:17<00:04, 79.00it/s]
|
1759 |
80%|████████ | 1469/1827 [00:17<00:04, 77.76it/s]
|
1760 |
81%|████████ | 1478/1827 [00:18<00:04, 78.91it/s]
|
1761 |
81%|████████▏ | 1487/1827 [00:18<00:04, 79.81it/s]
|
1762 |
82%|████████▏ | 1495/1827 [00:18<00:04, 77.98it/s]
|
1763 |
82%|████████▏ | 1503/1827 [00:18<00:04, 78.22it/s]
|
1764 |
83%|████████▎ | 1512/1827 [00:18<00:03, 79.84it/s]
|
1765 |
83%|████████▎ | 1520/1827 [00:18<00:03, 79.72it/s]
|
1766 |
84%|████████▎ | 1528/1827 [00:18<00:03, 78.62it/s]
|
1767 |
84%|████████▍ | 1536/1827 [00:18<00:03, 77.91it/s]
|
1768 |
85%|████████▍ | 1545/1827 [00:18<00:03, 78.92it/s]
|
1769 |
85%|████████▌ | 1554/1827 [00:19<00:03, 79.49it/s]
|
1770 |
85%|████████▌ | 1562/1827 [00:19<00:03, 79.02it/s]
|
1771 |
86%|████████▌ | 1570/1827 [00:19<00:03, 78.77it/s]
|
1772 |
86%|████████▋ | 1579/1827 [00:19<00:03, 80.51it/s]
|
1773 |
87%|████████▋ | 1588/1827 [00:19<00:03, 79.62it/s]
|
1774 |
87%|████████▋ | 1597/1827 [00:19<00:02, 79.98it/s]
|
1775 |
88%|████████▊ | 1606/1827 [00:19<00:02, 81.13it/s]
|
1776 |
88%|████████▊ | 1615/1827 [00:19<00:02, 80.28it/s]
|
1777 |
89%|████████▉ | 1624/1827 [00:19<00:02, 74.42it/s]
|
1778 |
89%|████████▉ | 1632/1827 [00:20<00:02, 74.97it/s]
|
1779 |
90%|████████▉ | 1641/1827 [00:20<00:02, 76.63it/s]
|
1780 |
90%|█████████ | 1650/1827 [00:20<00:02, 78.43it/s]
|
1781 |
91%|█████████ | 1659/1827 [00:20<00:02, 79.16it/s]
|
1782 |
91%|█████████ | 1667/1827 [00:20<00:02, 78.81it/s]
|
1783 |
92%|█████████▏| 1676/1827 [00:20<00:01, 80.04it/s]
|
1784 |
92%|█████████▏| 1685/1827 [00:20<00:01, 81.58it/s]
|
1785 |
93%|█████████▎| 1694/1827 [00:20<00:01, 79.80it/s]
|
1786 |
93%|█████████▎| 1703/1827 [00:20<00:01, 80.70it/s]
|
1787 |
94%|█████████▎| 1712/1827 [00:20<00:01, 82.14it/s]
|
1788 |
94%|█████████▍| 1721/1827 [00:21<00:01, 79.30it/s]
|
1789 |
95%|█████████▍| 1730/1827 [00:21<00:01, 81.07it/s]
|
1790 |
95%|█████████▌| 1739/1827 [00:21<00:01, 82.15it/s]
|
1791 |
96%|█████████▌| 1748/1827 [00:21<00:00, 83.61it/s]
|
1792 |
96%|█████████▌| 1757/1827 [00:21<00:00, 83.43it/s]
|
1793 |
97%|█████████▋| 1766/1827 [00:21<00:00, 83.99it/s]
|
1794 |
97%|█████████▋| 1775/1827 [00:21<00:00, 84.37it/s]
|
1795 |
98%|█████████▊| 1784/1827 [00:21<00:00, 85.02it/s]
|
1796 |
98%|█████████▊| 1793/1827 [00:21<00:00, 82.53it/s]
|
1797 |
99%|█████████▊| 1802/1827 [00:22<00:00, 82.32it/s]
|
1798 |
99%|█████████▉| 1811/1827 [00:22<00:00, 81.76it/s]
|
1799 |
+
[INFO|trainer.py:3503] 2024-09-09 20:57:00,376 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
|
1800 |
+
[INFO|configuration_utils.py:472] 2024-09-09 20:57:00,377 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
|
1801 |
+
[INFO|modeling_utils.py:2799] 2024-09-09 20:57:01,738 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
|
1802 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-09 20:57:01,739 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
1803 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-09 20:57:01,739 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
1804 |
+
***** predict metrics *****
|
1805 |
+
predict_accuracy = 0.9988
|
1806 |
+
predict_f1 = 0.9231
|
1807 |
+
predict_loss = 0.0067
|
1808 |
+
predict_precision = 0.8968
|
1809 |
+
predict_recall = 0.9511
|
1810 |
+
predict_runtime = 0:00:28.58
|
1811 |
+
predict_samples_per_second = 511.3
|
1812 |
+
predict_steps_per_second = 63.921
|
1813 |
+
|
train_results.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"total_flos":
|
4 |
-
"train_loss": 0.
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples":
|
7 |
-
"train_samples_per_second":
|
8 |
-
"train_steps_per_second": 3.
|
9 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"total_flos": 1.5694885147146138e+16,
|
4 |
+
"train_loss": 0.002533856062142209,
|
5 |
+
"train_runtime": 1422.7831,
|
6 |
+
"train_samples": 31229,
|
7 |
+
"train_samples_per_second": 219.492,
|
8 |
+
"train_steps_per_second": 3.43
|
9 |
}
|
trainer_state.json
CHANGED
@@ -1,243 +1,208 @@
|
|
1 |
{
|
2 |
-
"best_metric": 0.
|
3 |
-
"best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-
|
4 |
-
"epoch":
|
5 |
"eval_steps": 500,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
-
"epoch": 0
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
"step": 500
|
17 |
},
|
18 |
{
|
19 |
-
"epoch": 0
|
20 |
-
"eval_accuracy": 0.
|
21 |
-
"eval_f1": 0.
|
22 |
-
"eval_loss": 0.
|
23 |
-
"eval_precision": 0.
|
24 |
-
"eval_recall": 0.
|
25 |
-
"eval_runtime": 14.
|
26 |
-
"eval_samples_per_second":
|
27 |
-
"eval_steps_per_second":
|
28 |
-
"step":
|
29 |
-
},
|
30 |
-
{
|
31 |
-
"epoch":
|
32 |
-
"grad_norm": 0.
|
33 |
-
"learning_rate":
|
34 |
-
"loss": 0.
|
35 |
"step": 1000
|
36 |
},
|
37 |
{
|
38 |
-
"epoch":
|
39 |
-
"eval_accuracy": 0.
|
40 |
-
"eval_f1": 0.
|
41 |
-
"eval_loss": 0.
|
42 |
-
"eval_precision": 0.
|
43 |
-
"eval_recall": 0.
|
44 |
-
"eval_runtime": 14.
|
45 |
-
"eval_samples_per_second":
|
46 |
-
"eval_steps_per_second":
|
47 |
-
"step":
|
48 |
},
|
49 |
{
|
50 |
-
"epoch":
|
51 |
-
"grad_norm": 0.
|
52 |
-
"learning_rate": 3.
|
53 |
-
"loss": 0.
|
54 |
"step": 1500
|
55 |
},
|
56 |
{
|
57 |
-
"epoch":
|
58 |
-
"
|
59 |
-
"
|
60 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
"step": 2000
|
62 |
},
|
63 |
{
|
64 |
-
"epoch":
|
65 |
-
"eval_accuracy": 0.
|
66 |
-
"eval_f1": 0.
|
67 |
-
"eval_loss": 0.
|
68 |
-
"eval_precision": 0.
|
69 |
-
"eval_recall": 0.
|
70 |
-
"eval_runtime": 14.
|
71 |
-
"eval_samples_per_second":
|
72 |
-
"eval_steps_per_second":
|
73 |
-
"step":
|
74 |
},
|
75 |
{
|
76 |
-
"epoch":
|
77 |
-
"grad_norm": 0.
|
78 |
-
"learning_rate":
|
79 |
-
"loss": 0.
|
80 |
"step": 2500
|
81 |
},
|
82 |
{
|
83 |
-
"epoch":
|
84 |
-
"eval_accuracy": 0.
|
85 |
-
"eval_f1": 0.
|
86 |
-
"eval_loss": 0.
|
87 |
-
"eval_precision": 0.
|
88 |
-
"eval_recall": 0.
|
89 |
-
"eval_runtime": 14.
|
90 |
-
"eval_samples_per_second":
|
91 |
-
"eval_steps_per_second":
|
92 |
-
"step":
|
93 |
-
},
|
94 |
-
{
|
95 |
-
"epoch":
|
96 |
-
"grad_norm": 0.
|
97 |
-
"learning_rate":
|
98 |
-
"loss": 0.
|
99 |
"step": 3000
|
100 |
},
|
101 |
{
|
102 |
-
"epoch":
|
103 |
-
"
|
104 |
-
"
|
105 |
-
"
|
106 |
-
"
|
|
|
|
|
|
|
|
|
|
|
107 |
},
|
108 |
{
|
109 |
-
"epoch":
|
110 |
-
"
|
111 |
-
"
|
112 |
-
"
|
113 |
-
"
|
114 |
-
"eval_recall": 0.8048666354702855,
|
115 |
-
"eval_runtime": 14.3515,
|
116 |
-
"eval_samples_per_second": 474.516,
|
117 |
-
"eval_steps_per_second": 59.367,
|
118 |
-
"step": 3512
|
119 |
},
|
120 |
{
|
121 |
-
"epoch":
|
122 |
-
"
|
123 |
-
"
|
124 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
"step": 4000
|
126 |
},
|
127 |
{
|
128 |
-
"epoch":
|
129 |
-
"eval_accuracy": 0.
|
130 |
-
"eval_f1": 0.
|
131 |
-
"eval_loss": 0.
|
132 |
-
"eval_precision": 0.
|
133 |
-
"eval_recall": 0.
|
134 |
-
"eval_runtime": 14.
|
135 |
-
"eval_samples_per_second":
|
136 |
-
"eval_steps_per_second": 59.
|
137 |
-
"step":
|
138 |
},
|
139 |
{
|
140 |
-
"epoch":
|
141 |
-
"grad_norm": 0.
|
142 |
-
"learning_rate":
|
143 |
-
"loss": 0.
|
144 |
"step": 4500
|
145 |
},
|
146 |
{
|
147 |
-
"epoch":
|
148 |
-
"eval_accuracy": 0.
|
149 |
-
"eval_f1": 0.
|
150 |
-
"eval_loss": 0.
|
151 |
-
"eval_precision": 0.
|
152 |
-
"eval_recall": 0.
|
153 |
-
"eval_runtime": 14.
|
154 |
-
"eval_samples_per_second":
|
155 |
-
"eval_steps_per_second":
|
156 |
-
"step":
|
157 |
-
},
|
158 |
-
{
|
159 |
-
"epoch":
|
160 |
-
"
|
161 |
-
"
|
162 |
-
"
|
163 |
-
"
|
164 |
-
|
165 |
-
|
166 |
-
"epoch": 7.829181494661921,
|
167 |
-
"grad_norm": 0.04551521688699722,
|
168 |
-
"learning_rate": 1.0826210826210826e-05,
|
169 |
-
"loss": 0.0022,
|
170 |
-
"step": 5500
|
171 |
-
},
|
172 |
-
{
|
173 |
-
"epoch": 8.0,
|
174 |
-
"eval_accuracy": 0.9758331388084089,
|
175 |
-
"eval_f1": 0.8050679995350458,
|
176 |
-
"eval_loss": 0.1620824635028839,
|
177 |
-
"eval_precision": 0.7999537999538,
|
178 |
-
"eval_recall": 0.8102480112306972,
|
179 |
-
"eval_runtime": 14.4773,
|
180 |
-
"eval_samples_per_second": 470.391,
|
181 |
-
"eval_steps_per_second": 58.851,
|
182 |
-
"step": 5620
|
183 |
-
},
|
184 |
-
{
|
185 |
-
"epoch": 8.540925266903916,
|
186 |
-
"grad_norm": 0.3445014953613281,
|
187 |
-
"learning_rate": 7.264957264957266e-06,
|
188 |
-
"loss": 0.0016,
|
189 |
-
"step": 6000
|
190 |
-
},
|
191 |
-
{
|
192 |
-
"epoch": 8.999288256227757,
|
193 |
-
"eval_accuracy": 0.9757713485383168,
|
194 |
-
"eval_f1": 0.8028807062376583,
|
195 |
-
"eval_loss": 0.16807720065116882,
|
196 |
-
"eval_precision": 0.7972318339100346,
|
197 |
-
"eval_recall": 0.8086102012166588,
|
198 |
-
"eval_runtime": 14.1973,
|
199 |
-
"eval_samples_per_second": 479.67,
|
200 |
-
"eval_steps_per_second": 60.012,
|
201 |
-
"step": 6322
|
202 |
-
},
|
203 |
-
{
|
204 |
-
"epoch": 9.252669039145907,
|
205 |
-
"grad_norm": 0.12732785940170288,
|
206 |
-
"learning_rate": 3.7037037037037037e-06,
|
207 |
-
"loss": 0.0013,
|
208 |
-
"step": 6500
|
209 |
-
},
|
210 |
-
{
|
211 |
-
"epoch": 9.9644128113879,
|
212 |
-
"grad_norm": 0.05971187725663185,
|
213 |
-
"learning_rate": 1.4245014245014247e-07,
|
214 |
-
"loss": 0.0013,
|
215 |
-
"step": 7000
|
216 |
-
},
|
217 |
-
{
|
218 |
-
"epoch": 9.99288256227758,
|
219 |
-
"eval_accuracy": 0.9758743323218038,
|
220 |
-
"eval_f1": 0.8053395240858967,
|
221 |
-
"eval_loss": 0.17113561928272247,
|
222 |
-
"eval_precision": 0.7991246256622898,
|
223 |
-
"eval_recall": 0.8116518483855872,
|
224 |
-
"eval_runtime": 14.5918,
|
225 |
-
"eval_samples_per_second": 466.7,
|
226 |
-
"eval_steps_per_second": 58.389,
|
227 |
-
"step": 7020
|
228 |
-
},
|
229 |
-
{
|
230 |
-
"epoch": 9.99288256227758,
|
231 |
-
"step": 7020,
|
232 |
-
"total_flos": 2.130317416831723e+16,
|
233 |
-
"train_loss": 0.017706579814779112,
|
234 |
-
"train_runtime": 1901.5665,
|
235 |
-
"train_samples_per_second": 236.321,
|
236 |
-
"train_steps_per_second": 3.692
|
237 |
}
|
238 |
],
|
239 |
"logging_steps": 500,
|
240 |
-
"max_steps":
|
241 |
"num_input_tokens_seen": 0,
|
242 |
"num_train_epochs": 10,
|
243 |
"save_steps": 500,
|
@@ -253,7 +218,7 @@
|
|
253 |
"attributes": {}
|
254 |
}
|
255 |
},
|
256 |
-
"total_flos":
|
257 |
"train_batch_size": 32,
|
258 |
"trial_name": null,
|
259 |
"trial_params": null
|
|
|
1 |
{
|
2 |
+
"best_metric": 0.9521203830369357,
|
3 |
+
"best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-2440",
|
4 |
+
"epoch": 10.0,
|
5 |
"eval_steps": 500,
|
6 |
+
"global_step": 4880,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"eval_accuracy": 0.9987641945981572,
|
14 |
+
"eval_f1": 0.9355123674911661,
|
15 |
+
"eval_loss": 0.003916793502867222,
|
16 |
+
"eval_precision": 0.9005102040816326,
|
17 |
+
"eval_recall": 0.9733455882352942,
|
18 |
+
"eval_runtime": 13.936,
|
19 |
+
"eval_samples_per_second": 488.661,
|
20 |
+
"eval_steps_per_second": 61.136,
|
21 |
+
"step": 488
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 1.0245901639344261,
|
25 |
+
"grad_norm": 0.24995087087154388,
|
26 |
+
"learning_rate": 4.487704918032787e-05,
|
27 |
+
"loss": 0.0189,
|
28 |
"step": 500
|
29 |
},
|
30 |
{
|
31 |
+
"epoch": 2.0,
|
32 |
+
"eval_accuracy": 0.9989495654084337,
|
33 |
+
"eval_f1": 0.9413886384129847,
|
34 |
+
"eval_loss": 0.0032420416828244925,
|
35 |
+
"eval_precision": 0.9238938053097345,
|
36 |
+
"eval_recall": 0.9595588235294118,
|
37 |
+
"eval_runtime": 14.0058,
|
38 |
+
"eval_samples_per_second": 486.228,
|
39 |
+
"eval_steps_per_second": 60.832,
|
40 |
+
"step": 976
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"epoch": 2.0491803278688523,
|
44 |
+
"grad_norm": 0.04940846189856529,
|
45 |
+
"learning_rate": 3.975409836065574e-05,
|
46 |
+
"loss": 0.0027,
|
47 |
"step": 1000
|
48 |
},
|
49 |
{
|
50 |
+
"epoch": 3.0,
|
51 |
+
"eval_accuracy": 0.9989358342373021,
|
52 |
+
"eval_f1": 0.9402784014369105,
|
53 |
+
"eval_loss": 0.0043699671514332294,
|
54 |
+
"eval_precision": 0.9192273924495171,
|
55 |
+
"eval_recall": 0.9623161764705882,
|
56 |
+
"eval_runtime": 14.0607,
|
57 |
+
"eval_samples_per_second": 484.329,
|
58 |
+
"eval_steps_per_second": 60.594,
|
59 |
+
"step": 1464
|
60 |
},
|
61 |
{
|
62 |
+
"epoch": 3.0737704918032787,
|
63 |
+
"grad_norm": 0.01636342518031597,
|
64 |
+
"learning_rate": 3.463114754098361e-05,
|
65 |
+
"loss": 0.0015,
|
66 |
"step": 1500
|
67 |
},
|
68 |
{
|
69 |
+
"epoch": 4.0,
|
70 |
+
"eval_accuracy": 0.9990594147774864,
|
71 |
+
"eval_f1": 0.9445208619899129,
|
72 |
+
"eval_loss": 0.0036185304634273052,
|
73 |
+
"eval_precision": 0.9423604757548033,
|
74 |
+
"eval_recall": 0.9466911764705882,
|
75 |
+
"eval_runtime": 14.26,
|
76 |
+
"eval_samples_per_second": 477.56,
|
77 |
+
"eval_steps_per_second": 59.748,
|
78 |
+
"step": 1952
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 4.098360655737705,
|
82 |
+
"grad_norm": 0.006754329428076744,
|
83 |
+
"learning_rate": 2.9508196721311478e-05,
|
84 |
+
"loss": 0.0007,
|
85 |
"step": 2000
|
86 |
},
|
87 |
{
|
88 |
+
"epoch": 5.0,
|
89 |
+
"eval_accuracy": 0.9991418018042759,
|
90 |
+
"eval_f1": 0.9521203830369357,
|
91 |
+
"eval_loss": 0.004440780263394117,
|
92 |
+
"eval_precision": 0.9447963800904977,
|
93 |
+
"eval_recall": 0.9595588235294118,
|
94 |
+
"eval_runtime": 14.0071,
|
95 |
+
"eval_samples_per_second": 486.182,
|
96 |
+
"eval_steps_per_second": 60.826,
|
97 |
+
"step": 2440
|
98 |
},
|
99 |
{
|
100 |
+
"epoch": 5.122950819672131,
|
101 |
+
"grad_norm": 0.0005009469459764659,
|
102 |
+
"learning_rate": 2.4385245901639343e-05,
|
103 |
+
"loss": 0.0004,
|
104 |
"step": 2500
|
105 |
},
|
106 |
{
|
107 |
+
"epoch": 6.0,
|
108 |
+
"eval_accuracy": 0.9990456836063548,
|
109 |
+
"eval_f1": 0.9464368886818817,
|
110 |
+
"eval_loss": 0.005531433038413525,
|
111 |
+
"eval_precision": 0.959395656279509,
|
112 |
+
"eval_recall": 0.9338235294117647,
|
113 |
+
"eval_runtime": 14.0724,
|
114 |
+
"eval_samples_per_second": 483.926,
|
115 |
+
"eval_steps_per_second": 60.544,
|
116 |
+
"step": 2928
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 6.147540983606557,
|
120 |
+
"grad_norm": 0.7484572529792786,
|
121 |
+
"learning_rate": 1.9262295081967212e-05,
|
122 |
+
"loss": 0.0002,
|
123 |
"step": 3000
|
124 |
},
|
125 |
{
|
126 |
+
"epoch": 7.0,
|
127 |
+
"eval_accuracy": 0.9989907589218284,
|
128 |
+
"eval_f1": 0.9427393495190106,
|
129 |
+
"eval_loss": 0.004938796162605286,
|
130 |
+
"eval_precision": 0.9397260273972603,
|
131 |
+
"eval_recall": 0.9457720588235294,
|
132 |
+
"eval_runtime": 13.9575,
|
133 |
+
"eval_samples_per_second": 487.909,
|
134 |
+
"eval_steps_per_second": 61.042,
|
135 |
+
"step": 3416
|
136 |
},
|
137 |
{
|
138 |
+
"epoch": 7.172131147540983,
|
139 |
+
"grad_norm": 0.00041869020787999034,
|
140 |
+
"learning_rate": 1.4139344262295081e-05,
|
141 |
+
"loss": 0.0002,
|
142 |
+
"step": 3500
|
|
|
|
|
|
|
|
|
|
|
143 |
},
|
144 |
{
|
145 |
+
"epoch": 8.0,
|
146 |
+
"eval_accuracy": 0.999073145948618,
|
147 |
+
"eval_f1": 0.9468864468864469,
|
148 |
+
"eval_loss": 0.005282656755298376,
|
149 |
+
"eval_precision": 0.9434306569343066,
|
150 |
+
"eval_recall": 0.9503676470588235,
|
151 |
+
"eval_runtime": 14.1087,
|
152 |
+
"eval_samples_per_second": 482.68,
|
153 |
+
"eval_steps_per_second": 60.388,
|
154 |
+
"step": 3904
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 8.19672131147541,
|
158 |
+
"grad_norm": 0.004756764974445105,
|
159 |
+
"learning_rate": 9.016393442622952e-06,
|
160 |
+
"loss": 0.0001,
|
161 |
"step": 4000
|
162 |
},
|
163 |
{
|
164 |
+
"epoch": 9.0,
|
165 |
+
"eval_accuracy": 0.9990525491919205,
|
166 |
+
"eval_f1": 0.946404031149794,
|
167 |
+
"eval_loss": 0.0050343358889222145,
|
168 |
+
"eval_precision": 0.94337899543379,
|
169 |
+
"eval_recall": 0.9494485294117647,
|
170 |
+
"eval_runtime": 14.373,
|
171 |
+
"eval_samples_per_second": 473.804,
|
172 |
+
"eval_steps_per_second": 59.278,
|
173 |
+
"step": 4392
|
174 |
},
|
175 |
{
|
176 |
+
"epoch": 9.221311475409836,
|
177 |
+
"grad_norm": 0.00033881032140925527,
|
178 |
+
"learning_rate": 3.89344262295082e-06,
|
179 |
+
"loss": 0.0001,
|
180 |
"step": 4500
|
181 |
},
|
182 |
{
|
183 |
+
"epoch": 10.0,
|
184 |
+
"eval_accuracy": 0.9990525491919205,
|
185 |
+
"eval_f1": 0.945537757437071,
|
186 |
+
"eval_loss": 0.005196314305067062,
|
187 |
+
"eval_precision": 0.9416590701914311,
|
188 |
+
"eval_recall": 0.9494485294117647,
|
189 |
+
"eval_runtime": 14.6459,
|
190 |
+
"eval_samples_per_second": 464.976,
|
191 |
+
"eval_steps_per_second": 58.173,
|
192 |
+
"step": 4880
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 10.0,
|
196 |
+
"step": 4880,
|
197 |
+
"total_flos": 1.5694885147146138e+16,
|
198 |
+
"train_loss": 0.002533856062142209,
|
199 |
+
"train_runtime": 1422.7831,
|
200 |
+
"train_samples_per_second": 219.492,
|
201 |
+
"train_steps_per_second": 3.43
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
}
|
203 |
],
|
204 |
"logging_steps": 500,
|
205 |
+
"max_steps": 4880,
|
206 |
"num_input_tokens_seen": 0,
|
207 |
"num_train_epochs": 10,
|
208 |
"save_steps": 500,
|
|
|
218 |
"attributes": {}
|
219 |
}
|
220 |
},
|
221 |
+
"total_flos": 1.5694885147146138e+16,
|
222 |
"train_batch_size": 32,
|
223 |
"trial_name": null,
|
224 |
"trial_params": null
|